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Abstract—Tactical networks require a significant

amount of pre-planning and configuration before deploy-

ment. This process is error-prone, time consuming, and

ultimately reduces mission flexibility. In this paper we

describe an approach to node discovery and automated

configuration for dynamic tactical networks. Our architec-

ture allows unplanned nodes to join a network dynamically

with little pre-planning or operator intervention. Once

joined, we can distribute configuration changes to any node

in the network. By introducing our neighbor discovery

protocol and configuration dissemination capability, we

can reduce the time it takes to integrate tactical nodes into

the network and limit the possibility of mis-configuration

while improving mission flexibility.

Index Terms—auto-discovery, configuration, network-

management, tactical networks

I. INTRODUCTION

The current state of the practice in deploying tactical
networks requires configuration of the network infras-
tructure to occur prior to deployment. This pre-planning
stage takes a significant amount of time and effort, and
as a result it is difficult for unplanned nodes to later join
the network. For example, to have a new node join the
network, a network operator must manually configure the
networking equipment by dictating low-level device con-
figuration commands to someone on the platform. This
process is error-prone and time-consuming, particularly
since the commands may be entered by someone with
limited networking expertise. In addition to the difficulty
in adding new nodes, there are no solutions for efficiently
distributing configurations to devices in the network to
support changes in the mission. These factors lead to
rigid and inflexible networks, which impact the higher
layers and limit the capabilities that the network can
support.
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To make tactical networks more flexible, we propose
two main capabilities. The first is node discovery.
The network must be able to dynamically discover
new, possibly unconfigured, nodes as they become ca-
pable of joining the network (i.e., they come within
radio range).The second is configuration dissemination.
There must be a mechanism to distribute configurations
to new nodes and to existing nodes. With these two
capabilities, the network can be changed dynamically
and with little human intervention.

Both problems in tactical environments are unsolved
by commercial products for a number of reasons. As
we will discuss in Section II, the underlying network
links may actually consist of black-box proprietary radio
networks creating additional IP network hops. Tradi-
tional neighbor discovery approaches do not work in this
environment. Another important issue for both discovery
and configuration is that most solutions from industry are
vendor specific, meaning they do not support heterogene-
ity of networking devices. Lastly, commercial networks
are typically static and change on much longer timescales
than tactical networks, so there is little incentive for
industry to work on these problems. We will discuss
related work in more detail in Section IV, but we found
that this problem requires novel solutions.

We propose a protocol that allows nodes to dy-
namically discover their neighbors and establish ini-
tial connectivity (Section III-A). Then we propose a
mechanism that allows configurations to be dissemi-
nated across the network. Finally, we propose a device-
independent configuration format that allows nodes to
automatically apply configurations (Section III-B). This
approach solves the two problems previously discussed.
The protocol can be used to discover new nodes and push
configuration to them, allowing them to join the network
automatically with little or no human intervention. It can
also be used to disseminate configuration data throughout
the entire network to change other devices over the



course of the mission. This capability allows operators
to dynamically adjust for unexpected mission variations,
perform network administration, and improve network
performance. This can be done by an experienced oper-
ator and automatically distributed/applied throughout the
network without any other humans in the loop.

The paper is organized as follows. We discuss the
technical challenges in more detail in Section II. We
present our solution in Section III. We then discuss
related work in Section IV. Lastly, we conclude in
Section V.

II. PROBLEM DEFINITION AND ASSUMPTIONS

In this section we discuss in more detail the technical
problems of dynamic node discovery and configuration
dissemination in tactical networks. We begin by provid-
ing definitions.

We assume that each node in the network that we wish
to configure is a platform (e.g. an aircraft). A platform
has one or more networking devices, such as routers,
switches, performance enhancing proxies (PEPs), etc.
The devices on a platform may be supplied by different
vendors running different software. For example, Cisco
devices run Cisco IOS while Juniper devices may run
Junos. We will use the term node and platform inter-
changeably. There is at least one router on each platform
that is considered the controlling device. This device
handles all traffic entering and leaving the platform.
The protocol will run on the controlling device of each
platform. Any node that a platform discovers with the
discovery protocol is considered a neighbor. Config-

urations specify behavior for a particular device and
are disseminated throughout the network. For example,
a configuration can enable Open Shortest Path First
(OSPF) routing on a particular interface of a device.
The configuration contains a collection of generic device
commands, but will ultimately be translated to device
specific commands (e.g., a sequence of Cisco IOS com-
mands).

The communications links between these platforms
may consist of line-of-sight (LOS) tactical radio termi-
nals, beyond-line-of-sight (BLOS) satellite terminals, or
a collection of both. The communications links them-
selves may actually be multi-hop networks. For example,
in Fig. 1, the path from the radio terminal connected
at Platform A to a radio terminal at Platform D may
actually have to go through the radio terminal at Platform
B first. The routers at Platform A and D would not be
able to determine that they are connected by a multi-
hop network. The routers only communicate with their

Fig. 1. A sample network with a variety of platforms and com-
munication links. If Platform B is an unplanned node, it could be
discovered by Platform A or D and retrieve configuration data in
order to join the network.

attached radio terminals, which may or may not be in
direct communication with each other.

We use Fig. 1 as an example of the types of networks
considered for this work. The figure shows a variety of
platforms and communication links. We only show one
router on each platform, but the platform could consist
of multiple devices. In this example Platforms A, B,
and D may be neighbors, as well as D/E and E/C. If
a configuration is added to the network at any platform,
it will be disseminated to all other platforms.

A. Discovery

We will now discuss in detail the problems with
dynamic node discovery in tactical networks. The major
technical challenges are as follows:

• Lack of configuration on platforms joining the net-
work prevents access to services available on the
network. Because the platform is not properly con-
figured, it is not possible to establish IP connectivity
between the platform and other network nodes. This
prevents us from using an application-layer solution.

• Lack of configuration means routing protocols can-
not discover neighbors. In normal scenarios, once
routing protocols are configured, all of the nodes in
the network are discovered. Without proper config-
uration, the protocols cannot talk to each other and
will not be able to discover the new node.

• Typically neighbor discovery uses link-local mes-
saging for discovery, but the introduction of IP
enabled radio terminals may prevent this. This
means we cannot use existing discovery protocols
or applications.

While there is significant work on discovery and auto-
configuration in Mobile Ad-hoc Networks (MANET)
and discovery protocols, these protocols do not solve



our problem for two main reasons. One is the lack
of configuration or the fact that the devices may be
configured for different networks. The protocols have
to be properly configured before they can work. The
other is that the radio clouds may be multi-hop networks
which prevent link-local messaging from being used.
This constraint is due to particular radio terminals, but
because of it we designed our discovery protocol to be
able to discover other nodes across arbitrary network
topologies, rather than being limited to neighbors at
the other end of the link. For more details about the
particular environments we consider, see [1].

The goal of our discovery protocol is then to be able
to find new (unconfigured/mis-configured) nodes eligible
to join the network through an arbitrary number of hops
and setup initial connectivity. We call this initial connec-
tivity an orderwire. An orderwire allows bidirectional
communication to occur between two nodes. With the
orderwire established, configuration data can be pushed
to the new node so that it can fully join the network.

B. Configuration

The major technical challenges for configuration dis-
semination are as follows:

• Dissemination should be done in a distributed man-
ner, rather than centralized, to avoid a single point
of failure.

• In order to support a heterogeneous vendor net-
work, the configuration format should be device-
independent.

• The configuration of devices can be done at two
levels of granularity. Some configuration applies at
the device level and some configuration applies to
individual interfaces. Different devices also require
different configurations. This means that the config-
uration format and dissemination mechanism must
be able to specify which configuration snippets get
applied to particular devices and interfaces.

We prefer a distributed scheme so that there is no single
point of failure and consequently configurations can
still be disseminated in the case of temporary network
partitions, which could occur frequently in a tactical
wireless environment. A configuration can be provided
by any node and distributed to all other reachable nodes.
This also means that we need the ability to target
particular nodes or node types. Lastly, we assume that the
network will consist of heterogeneous device types, so
the configuration itself should not be specified in device-
specific commands.

The goal is to define a flexible configuration format
along with an advertisement protocol that can dissemi-
nate the configurations throughout the network from any
node currently on the network. The configuration format
will be device-independent and translated to specific
devices as needed.

III. SYSTEM ARCHITECTURE

In this section, we present the architecture for dynamic
node discovery and configuration. We will discuss the
architecture in two separate sections, the first being
discovery in Section III-A and the second being con-
figuration in Section III-B.

The protocols we are about to describe use IP mul-
ticast to send their messages. Multicast allows a single
sender to transmit a message to a group of destinations,
rather than a single destination as in traditional unicast.
This means that when sending a multicast packet, the
destination IP address is not the address of a host, but
of a multicast group. Any other node on the network
can join (or leave) a multicast group to receive messages
directed to that group. Multicast has been deployed and
demonstrated in similar environments so we assume that
all the nodes in the network are multicast-capable. We
will explain why we used multicast in the following
sections. We also assume that each platform is assigned
a globally unique device ID used to identify it. This can
be generated according to RFC 4122 [2] or, if shorter IDs
are required, using a MAC address from the controlling
device.

A. Discovery

The discovery protocol uses multicast messages to
discover neighboring nodes. Each platform will join the
multicast group on each interface of the controlling
device. The controlling device then periodically sends
out multicast packets we refer to as beacons. When a
platform receives a beacon packet, it records the interface
on which the packet was received. This allows us to
determine which neighbors are attached to each interface
(rather than just knowing a neighbor exists). Next, a
static route is added to the neighbor (we can get the
neighbor’s IP address from the IP header of the beacon).
Once two neighbors have exchanged beacon packets,
they will both have added static routes to each other.
With the static routes in place, bidirectional data transfer
can begin, i.e., the orderwire is established.

The format of the beacon packet is shown in Fig. 2.
The beacon packet contains the sender’s device ID along
with a beacon and stale interval. The beacon interval



Fig. 2. Beacon packet format. The version field denotes the version
of the protocol while the type field denotes the time of message:
beacon or advertisement.

Algorithm 1 Processing of beacon packets.
1: packet, interface = RecvBeacon()
2: updateNeighbor(packet.deviceID, packet.src, lastRe-

fresh=now())
3: if not routeAdded(packet.deviceID) then

4: addStaticRoute(packet.src, interface)
5: updateNeighbor(packet.deviceID, packet.src,

routeAdded=true)
6: end if

7: for neighbor in packet.neighbors do

8: if neighbor.deviceID == myDeviceID and neigh-
bor.routeAdded == true then

9: updateNeighbor(packet.deviceID, packet.src,
routeToMe=true)

10: end if

11: end for

specifies how often the sender will send a beacon packet.
The stale interval is used to determine how long to wait
before a neighbor node is timed-out. If a node stops
receiving beacon packets from a neighbor for a period
longer than the neighbor’s stale interval, the node will as-
sume the neighbor is no longer active. The beacon packet
also contains all of the discovered neighbors, as well as
each neighbor’s collection of addresses and whether a
static route to each address has been established.

Algorithm 1 shows how a node processes incom-
ing beacon packets. The system will keep state in-
formation about discovered neighbors. State is kept
for (neighbor deviceID, neighbor IP) pairs since we
may hear from the same neighbor (same deviceID)
on different interfaces. In the pseudo-code we use an

updateNeighbor function to modify this state about
neighbors. We also use the notation packet.X to access
different fields of the received packet. Line 2 updates the
last time a beacon was received. If this becomes larger
than the stale interval for that neighbor, the neighbor
is pruned. Lines 3- 5 are used to add a static route
to a new neighbor. Lines 7- 9 check to see if the
neighbor has added a route to this node yet. As we
mentioned previously, the beacon sender will include a
flag indicating which neighbors the sender has added a
route to. Here, the receiver checks to see if the flag is
set. This allows two neighbors to determine when they
have added routes to each other. Note, the sender must
include all neighbors in the beacon packet because the
packet is sent only once using multicast and received by
all neighbors. Each receiver will then search the list for
itself.

At the end of this phase, both neighbors have added
routes to one another. This is a requirement for sending
configuration data, discussed in the following section.
Without both nodes having routes, a regular unicast
connection using TCP would fail. The addition of these
routes constitutes an orderwire, whereby neighbors can
exchange configuration information.

The use of multicast allows the system to discover
unconfigured neighbors, as long as the new platform
joins the multicast group. We note that while we use
multicast, the processing of packets once they reach each
platform is different from normal IP multicast. As an
example, consider the Protocol Independent Multicast
(PIM) [3] protocol. When PIM dense-mode is used to
route multicast messages, a node forwards an incoming
multicast packet only if it is received on the reverse
path interface (to prevent loops), otherwise the packet
is dropped. In our case, the new unconfigured node will
not have any paths so we have to intercept the beacon
packets before they are processed normally. We also do
not forward beacon packets beyond neighbors. Once a
platform receives and processes a beacon packet, the
packet is discarded. In this way, the protocol behaves
like a routing protocol discovering neighbors, except that
it can traverse multiple hops between neighbors.

B. Configuration

In this section we discuss device configuration. First
we discuss a multicast protocol, similar to discovery,
that is responsible for disseminating the configuration
throughout the network. Next we introduce the format
that specifies how the configuration files are structured.



Fig. 3. Advertise packet format. The first 20 bytes are the same as
the beacon packet.

Lastly, we show how the configurations are applied to
devices in the network.

The configurations files that are disseminated across
the network are broken up according to device type. For
example, there are separate configuration files for routers
and for switches. Each configuration file has a version
number associated with it that is incremented whenever
the configuration changes.

When a configuration changes, it must be redistributed
to each node in the network. To make this process more
efficient, we use separate configurations for each device
type to reduce the file size and limit the number of
times the file must be transferred between neighbors.
If everything were contained in a single configuration
file, the large file would have to be redistributed ev-
ery time something changed. This would result in a
large amount of data being frequently passed between
neighbors, even for small changes to a single device.
We currently assume there is out-of-band coordination
between multiple network operators making changes at
the same time in order to prevent versioning conflicts. An
automatic approach to this conflict resolution problem is
left as future work.

1) Advertisement: The advertisement protocol is used
to disseminate a list of available configurations across the
network. Once a node receives a configuration, the node
advertises the new configuration’s details with a multi-
cast protocol to inform its neighbors of the presence of
updates to the configuration. The packet format is shown
in Fig. 3. The packet is a list of available configurations
for different devices. Each listed configuration is a two-
tuple consisting of a device type identifier and a version
number. Like the aforementioned discovery beacon, the

configuration advertisement is transmitted on a periodic
basis.

When a node receives a configuration advertisement,
it compares the advertised configuration version to its
current configuration version. If the advertised version
is newer, the node will request the configuration from
the neighbor advertising the newest version by issuing
a unicast request for the data. Configuration advertise-
ments are not limited to only the configurations used
by a specific platform. A platform will request and
advertise any configuration, not just the configurations
that apply to the devices on the platform. In this way,
configurations are disseminated throughout the network
hop-by-hop without requiring a central server.

It is important to note that a node will only pro-
cess configuration advertisements once the node has a
route added to the neighbor and the neighbor has a
route added back to the node. Information about added
routes is available via the discovery protocol. Once these
conditions are met and it is found that a neighbor is
advertising a newer configuration, the node will request
the configuration, store the configuration locally, and
install the configuration on its local devices. Once this
process is complete, the node will begin advertising the
new version of the configuration to its neighbors.

2) Format: In this section we present the configu-
ration file format. Because the configuration describes
devices network-wide, the format must support target-
ing specific devices, allowing particular sections of the
configuration to only apply to certain devices. To do
this, each device can be assigned one or more roles.
Roles are specified by network operators or users and
offer an informative description of a device and its
use in the network. For example, a role may classify
a platform as an AirborneNode. If there is a piece
of configuration that specifies all airborne nodes must
implement a specific access control list (ACL) on its
router, each node assigned this role would change its
router’s configuration to implement the specified ACL.
We denote a piece of configuration for specific targets
as a requirement. The configuration itself is a list of
requirements (see Fig. 5) where each requirement has
its own version number. The version number of the
entire configuration is incremented whenever one of the
requirements changes. This allows devices to determine
which requirements have changed between configuration
versions and only update those specific requirements.

The configuration within a requirement could be low-
level device commands like Cisco IOS, but this would
require vendor homogeneity. Instead, we define a set of



(a) (b)

(c)

Fig. 4. (a) and (b) show XML representations of an abstract command to enable OSPF on the specified network. (b) shows how substitutions
can be used, where the receiving node will replace variables starting with ’$’ with local values. (c) shows a the code that converts the abstract
commands to device specific commands.

abstract commands that will get translated to device spe-
cific commands. The abstract commands are defined as
a set of command names and their parameters, formatted
in XML. For example, the OSPFNetArea command adds
an interface to an OSPF area, as shown in Fig. 4(a).
The command has parameters Addr (the interface to
add), Mask, and Id (the OSPF area ID). We refer to the
parameter/value pair as a binding. For the OSPFNetArea

command, the Addr parameter might be bound to the
value 10.8.8.1 as shown in the figure. We are currently
working on defining a more formal specification for the
abstract commands.

Another feature supported by the configuration format
is substitutions. Substitutions are used in configuration
files to allow the receiver to substitute local values for
a generic parameter. This allows a node to advertise
a configuration without knowing specific details about
device(s) that will receive the configuration. We show
an example of substitutions in Fig. 4(b). The values for
ReversePathIP and ReversePathMask will be substituted
at the receiver for the IP address and network mask of
the interface on which the configuration was received.

Now we will discuss the overall configuration file
format with requirements. An example configuration is
shown in Fig. 5. The configuration shows three re-
quirements, each having a name, version, and targets.
When a platform receives a configuration, it matches
the targets with the roles of the devices and selects
which requirements must be applied. The actual con-
figuration is specified within the Config XML tags.
The configuration is extracted and will be translated
to specific commands for that device. In addition to
requirements having targets, the configuration snippets
can also have targets for interfaces. This means that
the configuration snippet will be duplicated for each
interface. For example, in Fig. 5 the configuration in the

Fig. 5. Sample configuration file.



�Config target=”Radio”� tag will be applied to all radio
interfaces on the device.

3) Translation: When a requirement matches the
roles of a particular device, the configuration is extracted
for translation. The translation from abstract commands
to device commands is done using a subset of the
Python language. For each vendor (Cisco IOS, Juniper
Junos, etc.), a translation file is supplied with code to
do the translations. For each abstract command, there
is a function definition. Each function has access to the
bindings of that abstract command and some pre-defined
functions to output the final configuration. For example,
in Fig. 4(a), the bindings that the code has access to
would be Addr and its value 10.8.8.1, along with Mask

and Id with their values. Example translations to IOS
and Junos for the OSPFNetArea command are shown
in Fig. 4(c). The code has access to all of the bindings
(Addr, Mask, and Id) and uses the WriteCommand func-
tion to output the final configuration. There are a number
of helper functions available, including InverseMaskIOS

as shown in the figure. After translation, the device-
specific configuration is sent to the device.

IV. RELATED WORK

There are a number of existing solutions for the
dynamic node and service discovery problem. The IETF
Zeroconf Working group [4] defined an architecture to
allow dynamic service discovery in local area networks
using link-local techniques, which do not work in our
case. There are proprietary or vendor specific solutions
such as Cisco’s CDP [5]. A number of MANET routing
protocols also allow dynamic discovery of neighboring
nodes. We cannot use these common approaches in our
work because of the previously discussed issues (see
Section II). The radio terminals may introduce multiple
hops between any two nodes, which breaks any link-
local type discovery. This constraint forces us to develop
a new discovery technique.

There is work in network configuration management,
but most approaches require a centralized architecture,
which is in conflict with our requirement of a dis-
tributed system. We have borrowed some ideas from
these systems though. For example, roles are similar
to classes in [6] and our configuration format support
some features of the configuration template language
presented in [7]. We also wrote our own translation
layer to target multiple vendors. The IETF NETCONF
Working Group [8] is proposing a protocol and modeling
language for configuration of heterogeneous networking

devices, but this work is not widely supported by vendors
at this time.

We also considered policy-based network management
techniques [9]. Policies are similar to the requirements

that we propose in this paper. The difference is that
policies are typically applied to determine a course of
action. For example, a new incoming flow may trigger a
policy look-up to determine how to handle the flow. In
our work, requirements are automatically applied without
any need for policy look-up, policy decision/enforcement
points, or other policy based mechanisms. It is also the
case that most work in policy-based network manage-
ment focuses on quality of service (QoS) issues.

V. CONCLUSION

In this paper we have presented a neighbor discovery
protocol that can traverse arbitrary network topologies
and establish initial bidirectional connectivity between
two network devices (e.g., routers) regardless of their
initial configuration. We also propose a configuration
mechanism that can disseminate configurations through-
out the network and automatically apply configurations
without operator intervention. These two capabilities
allow unplanned nodes to dynamically join a network
with little operator intervention.

In evaluating our approach, we were limited to a
qualitative assessment of our prototype, where we com-
pared the ability of a human operator (ranging from
novice to experienced) to configure a newly discovered
router, with our software’s ability to perform the same
task automatically. This comparison can be affected by
numerous conditions including the difficulty and length
of the desired configuration, potential operator input
errors, etc. While these limitations prevent us from
quantitatively defining the improvement demonstrated by
our system in a generic way, our assessment showed a
significant improvement in configuration time (at least
one order of magnitude) when our system was compared
against manual configuration by a set of operators.

We are currently pursuing several extensions to the
project. We are working on developing and integrating
an artificial intelligence or reasoning-based model that
can map high level requirements to abstract device
commands. For example, instead of having to specify in
the configuration all of the abstract commands to enable
OSPF on a set of interfaces, the reasoning engine can
determine how to do it using a backward-chaining engine
and a knowledge-base.

Another area we are pursuing is dynamic network
visualization. Many commercial off the shell (COTS)



network management products can create static network
maps, but in a tactical network we need the ability for
the maps to change over time as nodes enter and leave.
We can use the neighbor data gathered by our protocol
to build a network topology map and can update it when
nodes leave or join.
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