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Abstract

At the 13" ICCRTS | proposed that a well-known mathematicatled for synchronisation on
networks — the Kuramoto Model — serves as a ugafiadigm for Command and Control (C2).
This model places nonlinearly coupled phase osuillzat a network’s nodes. Increasing the
coupling constant sees the oscillators manifediallphase synchrony. Mapping the phase to
Boyd’s Observe-Orient-Decide-Act loop (or any iter@ decision making process) established
the relationship to C2. | generalised this to tweeasaries, where ‘fighting nodes’ in a Blue
network seek to ‘Act’ before adversaries in a Retivork, consistent with Boyd’'s model. Here, |
numerically solve this ‘Boyd-Kuramoto’ model, sutii@g a Blue hierarchy against a Red
random network with oscillator frequencies drawenfra uniform random distribution. |
represent the Intelligence-Surveillance-Reconnagssaapability of the Blue force such that a
Blue node is aware of the state of a Red node’sghaross the decision-cycle while Red only
has knowledge of Blue node’s state when it ‘Actéie model is sufficiently rich to capture
surprising, but in retrospect understandable, behav- it displays ‘emergence’— while
remaining solvable with minimal computational eff@rhe model allows for exploration of the
degrees of freedom of a ‘rigid’ Blue force agaiastagile’ Red adversary.



1. Introduction

In [Kalloniatis 2008] | proposed a hew mathemativaldel to represent two adversarial
Command and Control (C2) systems whose elementngiaged in iterative cycling through
continuous Observe-Orient-Decide-Act (OODA) looBsyd 1987]. This proposal drew upon a
well-known existing model in the mathematical coexpbystems literature that displays the
phenomenon of “self-synchronisation”. Given thengigance of that term in the drive to
network-enable military forces through this pastatke, application of this Kuramoto Model to
Network Centric Warfare (NCW) seemed an obviousgho undertake; curiously, such an
application was missing in the C2 literature. Irdiegee Kuramoto model has now seen some
uptake in the C2 community [Dekker 2007, van det 2040, Dekker 2011] as a compact but
sufficiently rich model — but always from the poaftview of a single C2 system engaged in
some aspect of an internal process (choosing fopticns’ in Dekker and sensor fusion in van
der Wal). As some C2 researchers have pointedrmliiding Boyd [1987], the adversary is often
neglected when analysing a C2 system and thislveasiain motivation here in adapting the
Kuramoto model to the casetafo rival C2 systems. Having waited now several years for others
to explore my proposal, | will address numericdlisons of it and call it the ‘Boyd-Kuramoto
Model'.

The model is expressed as a set of coupled nonldigarential equations. | put these forward as
a C2 version of Lanchester’s equations for attitior Hughes' equations for salvo missile
combat [Hughes 2000]. In this era, proposing sustodel for C2 may seem naive. However, by
any definition C2 (and we prefer that of Pigeau EluCann [2000]) is complex; no single model
can be entirely valid; there is a need for divgreftmodels of C2. The simplest model for C2 is
the beloved wiring diagram. This often extendsaci&8l Network models to capture informal
interactions. These are generally static repreenta Business process models try to
incorporate the time dimension, while agent basstilldtions offer more sophistication.
However, such models are invariably tactically lobased mix a rudimentary decision process
(the C2 part) with kinetic activity in a represeita of physical space. No single model of a
complex system, such as the C2 enterprise, hasnsaiwalidity [Harré 1970]. The

determination of the ‘truth’ of any hypothesis @2 requires cross-validation between a number
of models. To that end, the model proposed hdgedifjap across the above spectrum of existing
models.

The present model combines a number of elementidemed important in C2 in the context of
the broader organisational theoretic literatureyd3® OODA loop based on his experience of US
fighter pilots in the Korean War is now used actihesDefence and Business environments as a
simple but effective model for the iterative andaitive aspects of decision-making. The
“essence of winning”, to draw from a 5 slide senfrBoyd [Boyd 1996], is “the ability to get
inside other OODA loops”. An OODA cycle takes ancamt of time that depends on the

intrinsic ability of the individual to internallyprocess’ and the pressures on the individual to
keep pace with colleagues and outpace the adver®agyproperty of self-synchronisation — that
local interactions between agents can multiply s&@coupled system in order to achieve global
effects — has been highlighted with the formulabdétNCW; the Kuramoto model is the
mathematical representation of tha excellence. Of course both NCW and the Kuramoto
model highlight the importance of the network deactions. In unifying these here | achieve a
mathematical instantiation of the networked OODAa&pt proposed by Moon, Kruzins and
Calbert [2002]. By using the Kuramoto model in thiy | capture another element of
organisational behaviour beyond “structure’ andhadyism’, namely ‘coupling’. This property of
an organisation is well known to theorists suchrd®e{1984], Mintzberg [1979] and others of

the Contingency Theory School [Donaldson 2001]nemted nodes in a C2 structure can have



quite different strengths of coupling or degreesesponsiveness to changes in their respective
states. The model | propose enables an explorafitire balance between the properties of
‘dynamism’ (expressed in a frequency spectrumrdividual performance of the OODA loop),
‘structure’ (expressed in a network structure) @odipling’ (expressed in a set of constants for
intra and inter C2 network coupling strengths.

A preliminary comment on synchronisation and whetrenot it is a universally ‘good
behaviour’ for a C2 system is in order here. Whitsoherence is never good, | do not assume
here thatotal synchronisation is a good thing. | refer hereitwto incomplete forms of
synchronisation. ‘Partial synchronisation’ is wharany nodes are locked together while others
are subject to random behaviour with respect tdableed core, and ‘sub-synchronisation’ is
where nodes may form into two or three internailgkied clusters but each cluster moves with its
own frequency [Kalloniatis 2010]. Each of thesedaéburs may be more useful in a C2 context
than total synchronisation. | will consider eachiafse scenarios, which will lead to some
surprises — the ‘emergence’ alluded to in the.tilg aim nevertheless is to demonstrate the
broad value of the model rather than to apply & &pecific situation. For that reason | consider
simplified representation of contemporary C2 systeartree hierarchy and a random network.
Western military forces are no more rigid one-disienal hierarchies than terrorist/insurgent
networks are purely random. The former alreadyrpa@te informal links [Ali 2011] and the
latter are known to have elements of a hierarchgrfidn, Larsen, Hicks and Harkiolakis 2008].
Thus my aim is not to validate a model in some ifigezontext and to extract recommendations
for that situation but to demonstrate the broadiegipility of the ‘Boyd-Kuramoto Model'.

The paper is structured as follows. Section 2 dessthe model, while Section 3 defines
Measures of Effectiveness for intra- and inter-€&fg@mance. Section 4 presents some extreme
scenarios of two forces respectively in the inceheand fully self-synchronised states as an aid
to understanding of the basic patterns of behavi®eiction 5 explores some sub-synchronised
behaviours and demonstrates unexpected behavimirsrt retrospect, can be understood. The
paper closes with suggestions for future enhancenoénthe model.

2. The Boyd-Kuramoto Model

The literature on self-synchronisation in matheoadly encoded cooperative systems is vast,
going back to Wiener [1961] and Winfree [1967] aadttered across mathematical, physical,
biological and computational scientific journalfi€Tbasic idea of such models is that linking up
nodes that individually undergo cyclic behavioun &@ad to a mass effect whereby a large part of
the system locks itself into a collective cyclithbgiour. This is legitimately called self-
synchronisation because it is a consequence of fnaalinteractions and not the manipulation

of the system by a master-controller. It was Kuremji©984] who succeeded in distilling the bare
essentials of such models into the first ordereddhtial equation:

B =q+oysn@ -p). 1)

Here [, represents a time-dependehase associated with nodeof a complete network i

nodes, ,6’, is the angular rotation speed via the derivativethefphase with respect to time

t, ) represents a ‘natural’ or ‘intrinsic’ frequencypuadly randomly chosen from a statistical
distribution, ando is a coupling constant. The role ff as a phase is seen when it is reinserted
in the complex variable

X, =eh. (2



A general network is introduced straightforwardéyng the adjacency matr#; whose elements

take value one if a link (or edge) exists betweedesi andj and are zero otherwise; for
simplicity we remain within the bounds of undiretgraphs, though further generalisations are
possible. The governing time evolution equatiothéen:

B = +ay AjsinB - ). (3)

The behaviour of the system can be visualised adspmoving about the unit circle as in Figure
1. At any point in time each oscillator will be repented by a point on that circle.
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Figure 1 Visualising the individual oscillators as pointstdibuted on the unit circle at a snapshot in time
for different values of coupling: weak couplingipstrong coupling (bottom left) and very strong
coupling (bottom right).

For weak coupling the points will be randomly diatited around the circle (Figure 1, top), given
the random individual frequencies. For strong cimgpthe points move with the same angular
speed and group increasingly together as the cau@iincreased (Figure 1, bottom left and
right).

Translating this to the C2 context, the ph#sét) represents the point in a continuous decision

(or OODA) cycle of agentat some timé. The network represents the C2 structure itdedf: t
relationships of agents who need to mutually adhsst individual decision cycles. The coupling
O is a somewhat more abstract concept but can Ipesselgow “quickly’ one agent should adjust
their progress through the decision cycle givehange in the progress by any other. The 2
periodicity of the sine function is appropriatethiat it locally synchronises decision cycles within
the ‘current phase’. The frequency is how many decision cycles per unit time can beeaed

by agenti . This is chosen from a random distribution, repnéisig the underlying heterogeneity
between individual decision makers in the C2 sysfBrining and discipline can narrow that



distribution; namely, introducing more homogenéityhe population of decision makers. But the
intent is nonetheless to retain some degree ofduaeity. Moreover, one does not have the
luxury of ‘managing’ that heterogeneity: the C2teys is not designed with individuals of certain
frequencies placed deliberately at certain nodes.

Certainly in the NCW literature, such as [Albentsladayes 2007] and references therein, the
desired self-synchronisation is appliedattivity in the external environment. | am proposing that
the precursor to this is synchronisatiordefision cycles and therein mapping the phase of the
Kuramoto model to the decision cycle; another imm@atation of the Kuramoto model is

possible at the level of activity and is that usefDekker 2007, 2011]. These two options are not
very far apart: a decision cycle in a context sa€la headquarters will very often leave a trail of
external artefacts (draft documents, emails, chaebal communication) that indicate to the
stage of OODA of a unit or individual; these artt$aare thus points of reference for another in
the same organisation in synchronising their cyid@ther words, even the cognitive stages of
Observe-Orient-Decide involve some form of exteawivity, is a social enterprise, when one
steps beyond Boyd'’s original application to thddsed fighter pilot alone in the cockpit.

| now turn to the case of Blue-on-Red interactighe,regime of Boyd’s original OODA concept.
I now associate3 with the point in a continuous decision loop oféats’ of the Blue C2 system,

o, with the OODA loop of Red agents, and intrins@guenciesy andv, respectively. Let
B; and R, represent the adjacency matrices ofdeeupled Blue and Red networks, of si2¢,

and Ny respectively. The interactions between Blue and &stems are represented by the
adjacency matrixM;; with Ngg <Ng + N nodes. Finally leoy, 0, ¢zrandqyg represent

coupling constants for intra-Blue, intra-Red, BtoeRed and Red-to-Blue interactions. The
model can now be given in terms of the couplecediffitial equations:

Ng Npg
B =w +UBZBij Sin(ﬂj _:Bi)"'CBRZMijF(pj -B)

= e

,\IIB N]BR (4)
P =V, +URZR] sin(p; _pi)+CRBZMijG(ﬂj -P)

j=1 j=1

Implicit to the intra-C2 interactions here (thessfanctions) is an assumption of a node’s
complete knowledge about the state of a connectedgr at any moment in time (in other
words, connection in the unweighted intra-C2 grisgdtased on complete knowledge). This is a
reasonable aspiration within a C2 system — thamkiset artefacts of the cognitive process
mentioned above — which is not generalisable tathersary. Thus the inter-C2 interaction
functions, F and G, are different. | refer to these as ‘ISR functidos the Blue-Red and Red-
Blue interactions as they reflect the respectitelligence-Surveillance-Reconnaissance (ISR)
capabilities of the two forces. | shall assume symanetry, that the Blue force has superior ISR
over Red (contrastingly, later when | specify tleéworks, | shall take Red to have a ‘superior’
internal network). In the most extreme case, tHg imfiormation a Red node may have of the
state of a Blue adversary is when Blue performisi@le activity or leaves a visible artefact in the
external environment, namely ‘acts’. The time ataltthis occurs would be the point at which
Red would synchronise their ‘observe’ activity: Remserves Blue’s instantaneous action and
thus synchronises to that point. Thus sine funsti@s in the intra-C2 systems) may be used
again (to reflect local synchronisation) but oryaapecific state of Blue at the point in time at
which it occurs. Assigning the four OODA stagesh® four quadrants of the unit circle, with



‘Observe’ coinciding with the first quadrant, thitie point at which Red should synchronise to
Blue corresponds to some phase anglan the fourth quadrant in Figure 2.
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Figure 2 Choosing a point in the OODA loop at which an Aatis visible to an adversary

Thus, for this extreme case, Red's ISR functiorBlok) is
G(B;(t) - p, (1)) =sin(B, (t) - p, (1)) A(B; (t) — k)

with a Dirac delta function capturing the instamtiyof Blue ‘observing’ Red ‘act’. The
‘instantaneity’ is perhaps too strong and shoulddfeened by a bell-shaped curve indicating that
the visibility of Blue’s action involves some builgh towards a peak of activity (with output ‘1)
and a fall-off afterwards. Red has an opporturgtgliserve, and synchronise within, some
extended period around this activity (Figure 3)u3htake for Red’s ISR function

G(B;(t) - p (1)) =sin(B; (t) - p; () exp(B; (t) — k) 2s?), (5)

wheres determines the width of the curve.
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Figure 3 Bell-shaped smearing of the ISR function aboutfstibn’ occurring at phase angle zero with
width s = /77

The contrasting extreme case to ‘no-knowledgehefadversary is that Blue has perfect ISR of
Red: the exponential in Eq. (5) is replaced by &Verywhere. Furthermore, Blue’s doctrine
follows Boyd, whereby an advantage of Blue over Red be gained by “getting inside the
adversary’s OODA loop”. Here | make a deliberateict: Boyd's formulation is not
mathematically specific. Rotating through the OOIRAp faster in itself will not achieve success
in the instantiation of the model | am developiegentually Blue will lap Red and turn out to be
behind Red’s decision cycle. | will therefore egjily say that “getting inside” means
synchronising a step ahead of the adversary. This is achieved by gaining insight into the
adversary’s internal processes in order to antieiffeeir external activities. This can now be



mathematically represented with an additional dispiment/ in the argument of the sine
function (similar to the parameter). Thus Blue’s ISR function is taken to be:

F(o;(t) =B (1)) =sin(o; () + A= B (1)). (6)
There are many further modifications that can bdertgere: using an exponential smearing like
Eq. (5) also for Blue, giving Blue only intermittentelligence at certain points of Red’s internal
‘observe-orient-decide’ stages, using noise fumstion those points. The mathematically
inclined reader will see the straightforward gelisaions that are possible here. For the purpose
of this first look at its utility, the model is cquietely specified by Eqgs. (4,5) and (6).

3. Measures of Performance

| now need to specify what quantities should bemated from the solutions to the differential
equations. For a measure of synchronisation wihietwork, Kuramoto’s order parameter,
applied separately to the Blue and Red networkseaively, is appropriate:

e =Y. @)

The sum is taken over tiNenodes in the respective network. Values oflose to 1 over time
indicate high synchronisation. For the Blue and Bedlems, specifically, the synchronisation

parameter will be denotei and ry respectively. When the system is highly synchreahishe

angle W represents the ‘collective phase’ of the systentémtroid of the points for each
oscillator on the unit circle). More directly, trasgle is calculated by

D sing
W=ArcTan &<—— |-
rcTa ZCosﬁi (8)

Thus W, would be the collective phase for the Blue noddsene angless are used to calculate
Eq. (8), andW corresponds to the Red collective phase basedglassn used in Eq. (8).

One measure of the adversarial performance carttacted directly from Kuramoto’s order
parameter: the difference of the two collectivegdsa

AW () = Wy (1) —We (D). (9)
A positive value ofAWY at some point in timemeans thatollectively the Blue C2 system is
ahead of the Red C2 system within the current plid@eever, such a collective measure may

not fairly reflect the performance of the ‘fightimy ‘tactical nodes’ directly in contact with the
adversary. Thus, another measure is the differeficellective phases of the fighting

nodesAW, ..., where Eq. (9) is used but only considering inghm in Eq. (7) those nodes
directly connected to an adversary. Either waynaationed,\V really only has meaning if both

networks are exhibiting some degree of internatkyonisation. Therefore, a more direct
measure is also worthy of consideration: the awedifference in phases of the tactical nodes:

B® =X (A0-20). (O

BR i=1
| show below that all AW, AW, ... and A provide insight into the success, or otherwise, of

the Blue network in getting inside the OODA loopR#d. Indeed, both plotting of these
measures as functions of time and computing tineeaaes will prove useful.

4. Basic Scenarios



As hinted at the outset, | consider a Blue hielaetinetwork in competition with a random Red
network. The Blue structure is a simplificationaotraditional military force operating within a
framework of accountability and legally delegatetharity. The Red force may be an insurgency
network, not bound by the same legal frameworkbea$lue force, and being more
interconnected due to family and tribal relatiopshiAs mentioned at the outset, both are a
caricature of the real world. Both networks consfs21 nodes. Thus the Blue network is the
classic tree structure (a ‘quaternary tree’) ouFig4. The Red network is a random graph where
links between nodes occur with probability of Gd,in the right hand panel of Figure 4.
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Figure 4 The tree hierarchy of the Blue C2 network (left)l &ihe random graph of the Red C2 network

The Blue-Red cross interactions involve each ofifhé&actical’ nodes in the Blue network
linked to a single random node in the Red netwiorlother words, the Blue side clearly
demarcates who is a ‘fighter’, who is a team leamteronduit of information, and who is the
overall commander. The Red side has no such détmeany 16 of the 21 nodes may be a
fighter, according to chance encounter with thesashry; after that, anyone may be a conduit.

The intrinsic frequencies are drawn from a unifatistribution between zero and one, so that
both sides are attempting to conduct their decisiates within the same broad time period
(frequency of one may mean one decision per 24 pexiod, but this factor may be scaled out)
but there is heterogeneity in the speed of indi@ichodes. This means that, although the
hierarchy has a number of echelons, in this speicifitantiation of the model they do not work
within nested cycles as may be the case for aheitiquarters in relation to a higher operational
headquarters; for example the former may plan ahdihin a 24 hour cycle while the latter
plans over periods of weeks to months encapsulatigy cycles of its subordinate unit. An
example of a hierarchy such adhigure 4with all layers working to the same broad cyclénis
XIX Corps Headquarters of Heinz Guderian in tha@ton French forces through the Low
Countries in 1940. As documented in his memoird,teamslated in [Fitzgibbon 2001],
Guderian’s headquarters would issue orders to diriaie units in the same 24 hour cycle of
their activity thus succeeding in operating indtoke OODA loop of opposing French forces.

The Blue network has complete ISR on Red and, innstantiation of Boyd's doctrine, seeks to
stay one quarter of a cycle ahead of Red. Thusaved = 71/4 = 0.7854. Red, on the other
hand only has visibility of Blue's actions consigtevith Figure 3.



The system of equations are not readily analyticalvable due to the property that the
interaction in the Kuramoto model is a (sine) fumetof differences of phases, not a difference of
functions of the phases. This simple distinctioransethat the approach, using Lyapunov theory,
of [Chen and Lu 2008] to a similar problem of twbeiracting networks cannot work here. |
therefore numerically solve Eqs. (4) whht hermat i ca for a time interval of 200 units using

its ‘NDSolve’ function for solving coupled differéal equations. The initial conditions for both
Blue and Red phases are drawn from a uniform rardlstribution between-72/2 to 71/2. A
maximum number of steps of 10000 has proved sefftdior solving in the incoherent regime,
which is most taxing due to the zig-zag nature ofhof the variables. The computation takes
less than one minute on a desktop computer; calonjavith the numerical solutions, of the
measures discussed in this paper is a matteredf aninutes. Normally one would seek to
average measures over a number of instances f@ifnettpuency distribution. However, this may
smear out some subtler aspects of behaviour, tiisbassed later. Therefore in this paper |
present the results of specific instances but tebhee otherwise ‘typical’ behaviour.

To obtain an initial sense of typical behavioupdsent here two extreme cases: the C2 networks
internally poorly coupled but Blue strongly couplettoss to Red; and the two networks strongly
internally coupled but weakly cross-coupled. Thesfirst case represents two forces whose
individual C2 is ‘poor’ but with Blue more focused its engagement with its adversary. The
second represents forces who are overly conceritedheir internal C2 but with little regard for
the adversary.

4.1 Poor C2-Srong Adversarial Engagement
The couplings for this case are chosen to be

0z =0 ¢ =30
;=0 G =0
Examining the variables, and ry we see the typical zig-zag pattern for the inceheregime

in both networks in Figure 5. However, there is satagree of coincidence between peaks of the
two curves consistent with the property that BRtital nodes are strongly engaged with their
adversaries. This could be verified by performirapeelation analysis between the two time-
series, which we forego here for the sake of byevit

(11)

Time

50 100 150 200

Figure 5 The synchronisation parameter as a function of fon¢he two networks for the case Eq. (11)

The success of the Blue tactical nodes in keepiig = 0.7854 ahead of their adjacent Red
nodes is seen in the average phase differenchdee thodes in Figure 6.



Delta BR
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Time
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Figure 6 The average phase difference for the tactical BhebRed nodes, as a function of time for the
case Eq. (11)

The collective phase here is not a useful variainiee the two systems are internally incoherent.
However, for completeness, the result in this éashown in Figure 7. The behaviour is more
incoherent due both to the inclusion of all nodethe networks and because the definition of Eq.
(7) is modn. However, the basic feature remains that the Ritze, even by this coarse
measure, is able to remain/ 4 ahead of Red.
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Figure 7 Difference between collective phases for the twan€&vorks for the case Eq. (11)

4.2 Srong C2-Poor Adversarial Engagement
Now | consider the coupling regime
0, =08 ¢z =0
0,=015 (o =0
The synchronisation parameters for the two netwarkggiven in Figure 8 showing the typical
behaviour for the strongly coherent regime, witkhbe, andry stabilizing at a non-zero value.

The Red network is better synchronised than Bluaenof the individual oscillators have locked
into the collective mode. However, the internallings have been selected to be close to the
threshold for this behaviour. Thus the hierarclguiees stronger internal coupling than the
random network in order to achieve phase synchatinis essentially because of the better
connectivity within the random network (for exammenaller average distance [Dekker 2007]).

(12)

10
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Figure 8 Synchronisation for the two networks for the cage(&2)
It so happens that in this numerical run the avefegpuency of the Red nodesds= 061
while for Blue it iscc = 056. This means that the collective phase of the Reéark should be
advancing faster than the collective phase foBilne network; Red will lap Blue, not due to any
‘intent’ but simply due to its own internal dynami@Because of the better synchronisation in both
networks, the collective phase is a more insightfulable. For this case the behaviour is seen in

Figure 9. Apart from the jumps due to theod7 ambiguity in Eq. (7), a negatively sloped linear
behaviour is seen consistent with Red out-pacing Bl
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Figure 9 The difference between collective phases for treretworks for the case Eq. (12)

(For runs where the random frequencies delivevanage Blue frequency greater than that of
Red | have checked that the linear slope is p@sjtiVhis lapping phenomenon can also be seen
in the average phase difference, Figure 10, butmmtvpolluted by the phase jumps: the average
phase for Blue runs behind that of Red with a ghtédrward linear dependence.

11
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Figure 10 The average phase difference for the tactical némtethe case Eq. (12)

Having set the scene for ‘expected behavioursh) haw positioned to explore the interesting
cases where couplings fall into intermediate regiared the two C2 systems are caught between
their internal dynamics and their engagement whithadversary.

5. Emergent behaviours

For the ‘layman’, emergence is the property of dyital systems to ‘surprise’ — to exhibit
unexpected behaviours. Above, | have shown a nuoftfereseeable behaviours. What other
behaviours might the reader now anticipate? To nilkenore precise, | adopt Laughlin’s
[2005] definition of emergence as: system qualitiebehaviours that are not reducible to the
system components but arise from their interactibnthis case there are a number of layers
explicitly built into the systendesign: 1) the individual oscillators at the nodes ofteaetwork,
2) the two networks as entities unto themselved,3rhe collective system of Blue and Red
interacting networks. | shall be primarily intestin emergence across these layers; namely,
behaviours that are not reducible to one of thessetlayers.

These ideas can be made mathematically concretergence in dynamical systems is also
associated with an intermediate region betweenr @dg disorder, stability and instability or the
‘Edge of Chaos'. Formally, this means the existesfcixed points in multi-dimensional phase
space, in the vicinity of which some trajectoriedtimer exponentially converge back to the point
(Lyapunov stable) nor diverge away (Lyapunov ursfabut follow power-law dependence on
time. Mixed in with more standard stable and urstdirections, this gives rise to forms of
patterned behaviour through collective degreeseafdfom. My colleague Richard Taylor has
shown that there are thresholds for more type&efifpoints in the equal frequency Kuramoto
model than just ‘globally phase synchronised’ [Bay2012]. In the Kuramoto model with non-
equal frequencies, | have also identified suchdfigeints [Kalloniatis 2010]: for many classes of
networks there is an intermediate range of couplihgre nodes have formed a small number
(two to three) of clusters, within which oscillegare locked to a common frequency, but across
which there remains incoherence; a further incr@aseupling tips these clusters into forming a
single overall cluster (I have shown that thesealiglurs occur in a regime of vanishing real
parts of Lyapunov exponents). The system of manillamrsmay devolve to a two or three

body system of effective modes, the internally Extklusters, sufficient to give rise to structured
behaviour. The membership of these clusters depmmtise vagaries of how the frequencies are
distributed: oscillators with nearly identical frggncies placed at adjacent nodes will tend to
cluster. This clustering as an intermediate regsnkustrated in a series of parametric plots for

three different values of the coupling, in Figure 11.
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Figure 11 Parametric plots over the time duration of cosiné sine of the Blue phases divided by time for
weak (top), intermediate (bottom left), and strédbgttom right) coupling; respectively these show
incoherence (top), intermediate clustering (botteft) and complete phase locking (bottom right).

Unlike Figure 1, which represents a snapshot i tinam now plotting as a series of points the
cosine and sine of the phase of a Blue oscilfatoeach moment in time. For any single point |
would obtain a circular track. Dividing the cosisiagby the time brings this track, for zero
coupling, to a single point consistent with the imobf an individual oscillator about the unit
circle being largely uniform in time. Plotting tHisr all oscillators, for zero coupling, gives a
distribution of points lying on the circle (Figutd, top); unlike the first case in Figure 1, the
points here are not spread over the entire cirtabse dividing by the time here exposes the
individual oscillator frequencies, which are sebectrom the range [0,1]. Now, as coupling
strength increases there is a transition from thkiphe points to one single point, corresponding
to all oscillators locked to the same phase mowitl the average frequency (Figure 11, bottom
right). In between these extremes is a state ofitdependent clusters (Figure 11, bottom left).
This intermediate level clustering gives riseydic behaviour of the order parameteifwo
examples of this are shown in Figure 12, respdgties the Blue and Red systems, with
couplings

0, =06 ¢ O. (13)

O = 0075 ¢gz =0

For a given network structure, within a range afgings (intermediate between strong, for
coherence, and weak for incoherence) cyclic beliavibthe order parameter will occur with
probability almost one for any configuration ofdteencies from a selected distribution. On the
other hand, thperiods of the cycles are sensitive to the particularanse of frequencies,
whereby the aforementioned clusters consist of aibdén related to each other by connectivity
(according to the network) but also according tisehess in frequency. Averaging over a sample

will smear this behaviour out, for example givinge-averaged values (éfB> =08

and(rR> = 0.6. This is the reason | present specific instaritks.patterns in Figure 12 are
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consistent with their being two clusters in eacthefBlue and Red systems. The presence of a
third can create additional ripples in the otheerggusoidal behaviour. Properties of the
periodicity and Lyapunov exponents for this behawioave been analysed in [Kalloniatis 2010].

: : : time
50 100 150 0

Figure 12 Two examples of cyclic-self-synchronisation
| refer to this behaviour as cyclic-self-synchraitiisn.

This intermediate phenomenon has a straightfor@@2rchterpretation: within the C2 system, two
or three sub-structures form that lock out-of-phaik each other or move in and out-of-phase.
This may be a desired behaviour: teams within tBsytem may not be required to be rigidly
in-phase due to operating in different time-zorsag/( an in-theatre deployed team maintaining
links back to a control centre in an operationadteategic headquarters; two teams working on
relatively decoupled aspects of an operation). Gdteaviour may be undesirable: a cluster of
members of the C2 system who are never able toig#te same page’ as the rest, who have
barely understood the mission in a planning agtiwihen the rest are already developing courses-
of-action. In such cases, the full human capita &f2 team is never brought to bear at the same
time on the situation.

In the following, | examine variations from thishHaiour as the coupling between Blue and Red
is varied, keeping fixed the frequency samplesemeated the patterns in Figure 12. It suffices

to say that the average frequencies arising he@ar 053 @, = 050. Thus, for the case Eq.
(13), with no cross-coupling Blue should lap Redpie their respective cyclic-self-synchronous
internal behaviour. This is evident in Figure 18stigularly A, (right panel).

Delta Psi Delta_BR

: : : — time
50 100 150 200

Figure 13 The two cross-system measures for the case Eq. (13)
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5.1 Blue cyclic-sdlf-synchronous vs Red cyclic-self-synchronous
| consider first the case of ‘weak coupling’ of BIto Red — in the sense that Blue is coupled to
Red more weakly than it couples within itself:

o, =06 =01
B Cor . (14)
or = 0075 (g =0

Delta BR

0.6
0.4
0.2

time
50 100 150 200

: : : - time 55
50 100 150 200 :
Figure 14 Behaviours of the system for case Eq. (14)
Red is unchanged (it does not ‘see’ Blue): the &etle in the left panel of Figure 14 is the same
as that in Figure 12. It is evident that Blue tsuggling’: its own internal synchronisation has
worsened in the sense that the period of the egelitsynchronisation has increased (compared
to the period in the Blue curve of Figure 12 —Vénahecked that over longer periods of time the
pattern is repeated). However, there are hintsfatr sub-frequency, which corresponds to the
Blue fighting nodes. This in turn matches the ptiiothe Red C2 system. However, looking at
the average frequency difference between the ttgoddactical nodes (right panel, Figure 14) it
is clear that the Blue ‘fighters’ are failing t@gtthat step ahead of their adversaries; they are
caught between being locked into their C2 structune being responsive to the enemy. But it is
even more complex than that with the adversary @ssisting of two clusters.

Now | increase the Blue-Red coupling:

o, =06 =08
B Cer . (15)
0, =0075 ¢z =0

Thus Blue tactical nodes are coupled to their argrmore strongly than they are coupled to
each other and their other C2 partners. The measur¢his case are combined in Figure 15.
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Figure 15Measures for the case Eq. (15)

The top left panel of Figure 15 suggests that Bluauch more successful now with its cyclic-
self-synchronous behaviour almost mirroring thaRetl. From the perspective of the difference
of the collective angles, bottom panel of Figureth® same picture emerges. However the
average difference of the tactical node phasesusll subtler story. There are indeed periods of
time where the clusters of Blue are staying lookét respect to the clusters of Red — the flat
parts of the curve in the top right panel of Figlise— but then they ‘slip’ and lock again. The
overall slope of the descending stairs is indieati’Red lapping Blue.

Now | increase the coupling of Blue to Red evethier, making it significantly greater than that
for its internal network:

05 =06 (g 2. (16)
ox = 0075 ¢ =0
The key behaviours are plotted in Figure 16. Fp@lue is proving successful. The left panel of
Figure 16 suggests Blue is completely self-syncbusrbut for very low amplitude cycles that
appear to mirror the periodicity of Red. The riganhel shows further how successfully the
tactical nodes stay close to their intended fixet4 = 0.7854 phase ahead of their adversaries.

However, there remains a cost at being attachétetBlue system with the same coupling as the
other Blue nodes, with minor oscillations arounel itheal point. By now a consistent picture is

seen betweed ;; and AW . The former offers a cleaner insight into the védar of the system.
| therefore forego the corresponding plots £8¥ for the remainder of the paper.

16



- o7
AN ANA AU NANA VAN
o8l N NN \f\ NSNS N N 076

0.6 0.75
0.4 0.74

0.2 0.73

= o = 0 \ 50 100 150 20
Figure 16 Ther order parameter for Blue and Red (left) and D& (right) for case Eq. (16)

5.2 Full Blue self-synchronicity vs Red cyclic-self-synchronicity
Now | examine the case of Blue internally coupledhsthat, left to itself, it fully synchronises,
but Red is in a state of cyclic-self-synchronisatio
0, =06 ¢z =0
0,=008 (o =0
| use, again, a different selection of frequenai@sy with &, = 053 &, = 048. The basic
measures are show in Figure 17.

(17)
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Figure 17 Ther order parameter for Blue and Red (left) and D& (right) for case Eq. (17)

Now | begin to increase the coupling of Blue to Rethe ‘weak’, less than the internal coupling
of Blue:

0y =06 (=02
0.=008 (=0
Delta BR
£l
al
3l
0.4 2L
0.2 1
50 100 150 200m° 50 100 150 200

Figure 18 Ther order parameter for Blue and Red (left) and D&#R (right) for case Eq. (18)
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Blue begins to respond to the cyclic fluctuatiohRed, but quite poorly, indeed worse than in
the cases for Figure 14 and Figure 15: the stresigiue’s internal coupling has to be
overcome. Levelling the two couplings out,

o, =06 =06

i ‘T )

0,=008 ¢z =0
leads to the performance in Figure 19. Initially@&kppears to be successful in locking into its
desired point ahead of Red, up to some fluctuatitwesr-parameter of the Blue force begins to
reflect the cyclic patterns of Red, aivg, is initially fluctuating around 0.87. However, atene

the behaviour begins to ‘slip away’, with a steftgra emerging across longer periods of time
(superimposed with small oscillations), much like behaviour in Figure 15.
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Figure 19 Ther order parameter for Blue and Red (left) and D&R (right) for case Eq. (19)

Now | increase the coupling of Blue to Red everhieir.
0,=06 ¢gr=2
0, =008 (o =0’
The performance measures are shown in Figure 28.ig blose to the situation in Figure 16:

small oscillations by Blue close to the intendedthpahead of Red. However, this point is not
precisely the desired point; the case of Eq. (1&) be deemed to be more ‘successful’

(20)
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Figure 20Ther order parameter for Blue and Red (left) and D& (right) for case Eq. (20)

Now | weaken the asymmetry between Blue and Realiolv Red some knowledge of Blue’s
OODA loop through visibility of external artefadétsBlue’s ‘Actions’. | therefore choose the
parameters:

o, =06 =2
B Car . (21)
0,=008 ¢ =1
Thus Red is adapting to Blue, just as Blue has hédapting to Red. Note that the strength of
Red'’s coupling to Blue is significantly greaterrnhthat of Red’s internal coupling. The measures
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now are shown in Figure 21, virtually identicalRigure 20, so the Red side has gained
significantly: Blue is neither able to more smogttthck Red nor track more precisely ahead of
Red; Red is not able to disrupt Blue any furtheBlme's goal of fixing a certain point ahead of
Red’'s OODA loop.

Delta BR
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time
‘ ‘ ‘ ~ time 50 100 150 200
50 100 150 200 0.79

Figure 21 Ther order parameter for Blue and Red (left) and D&#R (right) for case Eq. (21)

| have explored further increases in the Red-teeRloupling and changing the network structure
of the Blue force, introducing a small number afdam links between the ‘tactical’ level (the
leaves of Figure 4(a)) and the ‘operational’ anithtegic’ levels (the middle and apex nodes).
These scenarios are also indistinguishable fromrEigl. Blue is unable to perform any better
because it remains, essentially, a hierarchy. Redéable to perform better because it has limited
ISR on Blue and is not seeking to operate ‘insigedecision cycle’ of Blue. In this intermediate
coupling range, all of these scenarios generatiécdyehaviour of the measures: Blue achieves
close to its intended state with respect to Redulitht cyclic fluctuations away from this point.

It is noteworthy that, to achieve the ideal stdtBlae quasi-locking ahead of Red, the coupling
needs to be very high. This is a consequence @'8hlready high internal coupling (compared
to that for Red to achieve the same state), asdrturn is needed to enable the hierarchical
structure of the Blue C2 system to reach closelfesgnchronisation. In words, hierarchically
structured C2 systems can match flat networks tiilieacost of tighter internal responsiveness
and even tighter responsiveness to the adversarthéother hand, the accountability that
hierarchies traditionally support means they mayeseurced to have superior ISR capabilities
that give them more insight into the adversary'siglen cycle than the adversary has into theirs.

These patterned behaviours are emergent in thattreneither be understood nor foreseen in
terms of the Blue and Red systems as wholes, nagshthe individual oscillators. When all
couplings are non-zero, one might easily anticigitteer unadulterated success — locking of the
two systems at some point in relation to each othmrsome chaotic behaviour representing an
irresolvable tug-of-war between adversaries. Thiepged behaviour is explained retrospectively
in terms of the intermediate scale structures wdters and their interactions, none of which were
intended in the design of the original networks#étemy comment on the absence of
‘management’ of the heterogeneity of the decisiahken frequencies); they arise as an accident
of the falling of the dice on individual frequengiacross the network. Thus, in a certain range of
couplings, the three layers of the system — thividhaal oscillators, the Red and Blue C2
networks separately and the entire interactingesyst are supplemented by an intermediate layer
of clusters of nodes in each C2 network, and anddlyer in which Red and Blue nodes (or
clusters of nodes) may cluster with each othehdir tadversarial interactions.
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6. Applications and Future Work

| have shown that the Kuramoto model of synchrogigihase oscillators can be applied to model
adversarial C2 systems, reflecting Boyd’s principiat success follows from operating inside the
adversary’s decision loop. The resulting model leithirich dynamical behaviours. The
illustrative example | selected, of a pure hiergropposing a random network, is intended as a
caricature of a direct force on force, such as b&gncountered in contemporary counter-
insurgency operations. The method can also betogeair-wise test opposing headquarters
designs. Real data on network structure is strimghardly applied into this model. Realistic
frequency distributions should also be more sojaaitetd in that a multi-echelon C2 structure
would not all operate on the same time scalesnjlgrteams would work to longer time-frames,
operators to shorter scales. The frequency distoibsi would thus generate nested cycles:
operators seeking to synchronise with each othkojps that cycle inside slower planning cycles
to which planners seek to synchronise. In suchsa ttee interaction function requires some
modification. Within any echelon, one may studyithpact of greater training in reducing
decision frequency heterogeneity — narrowing tegdency range of Blue compared to that of
Red. | have also used a highly idealistic ISR mdadieBlue. A Blue force rarely has access to
every stage of the decision-making cycle of Redrdveer ISR functions over specific or even
random points in the decision cycle can be reptegeMore challenging, but | believe
achievable, is the task of representing memorgaming effects by replacing the sine function
with longer tail functions. The model thus may irmarate a range of rich properties of C2
systems — all with a set of coupled differential@ipns solved on a desktop. It is not yet the
definitive model of C2, but one that may genuingliglge the chasm between static and vastly
more complex dynamical C2 representations.
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