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Abstract: 
 
Complex Event Processing, or CEP, is an event processing technique that analyzes multiple 
events with the goal of identifying meaningful complex events within an event cloud. CEP 
employs techniques such as detection of complex patterns of many events, event correlation and 
abstraction, computable event hierarchies, and event relationships such as causality, membership, 
timing, and event sequences.  In this paper we present a detailed analysis of the characteristics of 
Multi-INT data streams from an Expeditionary and Irregular Warfare (EIW) environment. After 
evaluating these characteristics we propose a solution using approximate, incremental graph 
pattern search algorithms. Finally, we present a prototype implementation of these algorithms 
and a preliminary evaluation of their use and performance. 

Keywords: multi-INT, data fusion, complex event processing, graph theory, graph patterns, 
graph search, expeditionary warfare. 

 

1. Introduction. 

A complex event is a composite of simpler events. The components of a particular complex 
event are frequently variable and spread across a significant period of time. Complex Event 
Processing (CEP)  is concerned with finding these complex events in both large collections of 
events and event streams. Many intelligence gathering systems produce high volume input and 
output streams of simple events [1]. Many systems also store events for some period of time 
depending on user need for history, information fusion, or other system processing.  Warfighters 
demand that these streams and collections be examined often and in near real-time for situation 
awareness, force protection, and force projection. To meet this demand, processing strategies and 
algorithms are needed to automate detection of events in clutter. 

The literature of ideas in CEP appear to have had their genesis in the active database community 
[3, 47], and discussion continues recently [41]. Current CEP techniques have been widely 
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discussed in the business-oriented data management community for a lengthy period [9, 19, 20, 
21, 23, 25, 32, 41, 43, 46]. Additional, application areas include intrusion detection [17], 
provenance and workflow management [40], and software maintenance [28]. 

Our first approach to detecting complex events in multi-INT Expeditionary and Irregular 
Warfare (EIW) data streams was to try adapting current business-oriented CEP techniques for 
use on multi-INT data streams. In the next subsection of this paper we will present our analysis 
difficulties and shortcomings of this initial approach. In the second section of this paper we will 
discuss an approach that we took and the expected benefits. In the third section we present our 
dynamic complex event processing algorithms based on graph pattern search. In the fourth 
section we will outline our prototype implementation and show an example of its operation. In 
the fifth and final section we will present the results of a preliminary examination of the 
performance of our algorithms compared to a standard search algorithm. 

 

2. Multi-INT data streams. 

Our initial examination of current event processing techniques and implementations revealed that 
the data operated on is generally well defined. For example, financial transactions are usually 
generated by machines and while the volume may be high, the definitions and character of the 
messages is rigidly defined and displays little variance. In contrast, military messages are 
frequently generated by humans, and while the format of the messages may be defined, the 
content is often not constrained. Reporting is often subjective, arbitrarily delayed, and 
incomplete. This makes current open-source and commercial CEP engines [12, 33, 34, 37, 38, 
45] unsuitable for use in Expeditionary and Irregular Warfare (EIW) environments. This 
presented a challenge that we undertook by characterization of event streams, generalized search 
methods and use of dynamic algorithms best suited for EIW user needs. 

Since our work is aligned with the EIW development environment the first step we undertook 
was an informal survey of related projects to determine data storage facilities and formats. We 
found that graph-based notations are dominant in EIW Science and Technology (S&T) projects. 
Projects are increasingly sharing results of data analysis in Resource Description Format (RDF) 
[30], a recently released World Wide Web Consortium (W3C) [44] standard for flexible 
knowledge markup. Figure 1 show a typical workflow of several US Navy development projects 
we reviewed. RDF is an explicitly specified directed graph format where nodes represent known 
entities and directed edges represent a defined relationship between the source and sink nodes. 
The use of RDF enables data and service sharing but for extended use requires definitions of 
entities and relationships and this is still in flux. Despite this uncertainty we feel that graphical 
notations will dominate future data storage and processing environments in EIW.  



 

Figure 1. The Expeditionary and Irregular Warfare (EIW) data environment requires multi-INT 
data sources. The S&T community is increasingly using RDF for data storage. 

 

The essential function in any event processing system is some method of pattern finding. The 
RDF standard has an associated query language named SPARQL [36]. SPARQL on an RDF 
store serves a purpose similar to SQL on a relational database store. One problem in using 
SPARQL to find complex events is that the presentation of events is variable. Significant event 
patterns can be buried in large amounts of data over extended time periods and thus not evident 
or require multiple queries.  Additionally, the RDF store undergoes considerable change and may 
contain gaps in information or out of order entry of information.  Due to these factors, the results 
of a query can be non-deterministic. Since the essential format of RDF information is a graphical 
network we conducted a survey of network algorithms available in the literature. 

For our survey we divided the network literature into three distinct regimes: static networks [35], 
dynamic networks [4, 11, 14, 29], and event sequences [2, 5, 7, 8, 15, 16, 24, 26, 47]. Figure 2 
shows the general characteristics of each of these literature regimes. In general we find that EIW 
data streams contain very little static information. Static information is limited to physical 
geography and major structures. While social networks are usually present, the relations are not 
predominately concurrent and relations and dependencies across the data are complex. Similarly, 
while much of the data consists of some approximate sequence, sequence may be only roughly 
decidable. Likewise, persistence and concurrency are variable. In contrast, characterizations of 
dynamic network data fit the EIW data environment well for reasons shown in the figure. 



 

Figure 2. Three distinct network regimes have been explored in the literature. CEP in EIW event 
streams rarely has the characteristics of static network data. 

 

3. Approximate, incremental graph pattern search. 

The characteristics of C4ISR data environments, and EIW in particular, suggest a more general 
approach than those previously reported in CEP literature. Since the information environment is 
often stored and visualized as a graph this suggests an approach based on some method of 
approximate graph pattern matching [6, 10, 13, 29, 39, 49]. However, the data stream creates a 
dynamic environment. In this section we will present such an algorithm based on new work [13] 
in combination with previous incremental update techniques for dynamic graphs [29]. Our 
requirements are depicted graphically in Figure 3. We wish to search for approximate matches 
across RDF defined by multiple ontologies and potentially disconnected graphs. 

 

Figure 3.  The graphic illustrates how data triples (subject-predicate-object) can be associated 
into ontologies (O1, O2, O3) and these in turn can be mapped into a complex graph. 



Of particular interest to our research, was a polynomial time algorithm for graph pattern search 
and constructs a proof of its run-time [13]. This suggests that their algorithm will scale well 
enough to handle large data sets encountered in many C4ISR applications. However, since it 
assumes a static graph, it does not take into account the scale of change in the underlying graph 
that would be expected. Earlier work by Ramalingam [29] provides a basis for incrementally 
updating data structures that may allow tractable graph pattern searches. Figure 4 shows pseudo 
code for our graph pattern match algorithm [29]. 

Figure 4. Pseudocode for our graph pattern match algorithm. The distance matrix M is updated 
separately using the algorithm in [29]. 

 

4. Prototype implementation. 

In this section we describe out proposed system and prototype implementation of our algorithms, 
and present an example using data generated by the US Marine Corps. The architecture of our 
proposed system is shown in Figure 5. For our study, we assume to have access to a variety of 
multi-INT data streams in RDF format that could be stored and managed centrally. The lifetime 
of the data will be expected to vary with the capacity of the overall system and the needs of the 
processing systems generating and consuming the data. A prototype was constructed to show a 
proof-of-concept for identifying complex events.  The complex events are built from simple 
events that can arrive through separate event streams.  It is necessary to combine the data 
through a common lexicon and ontology.  Python scripts were used to simplify prototype 
implementation. 

The data used for the proof-of-concept was from a Second Marine Expeditionary Force (IIMEF) 
experiment that took place a Camp Jejune, Dec 13-15, 2011. A use case was constructed for 
emplacing an Improvised Explosive Device (IED). This involved vehicles, individual dismounts, 



and activity alongside a road.  There was contextual information and prior relationships 
established of vehicles, individuals and area that activity occurred. The data arrived in the form 
of Intel reports (e.g. DIIRs) and tactical reports (e.g. TACREPS).  This data was tagged, 
associated and analyzed.  The collection consists of 35 short text reports prepared during the first 
phase of the exercise, Intelligence Preparation for the Battlefield (IPB). The IPB reports describe 
a fictional background scenario spanning several days before a Marine squad undertakes 
movement in to and then out of a fictional Afghan village. The objective of our CEP system is to 
identify potential IED-related activity in these reports. 

 

Figure 5. Graphic diagram of processing method that inputs event streams, converts data sources 
to metadata, analyzes metadata with CEP algorithms and outputs complex events. 

 

We reduced the content of the reports to RDF by hand. In a working prototype this step would be 
automated in cooperation with other systems to reliably identify entities and relationships and 
encode them. The output of our encoding into RDF of all IPB reports. The complexity of the 
graph makes human interpretation very difficult.  In addition, we created an informal ontology, 
for the objects and relationships in the IPB reports. This ontology is used to find the descendent 
nodes for a pattern matching algorithm. The hierarchy of entities and relationships can  infer 
groups and similarities.  For example, a storage facility may be any building or enclosed 
structure, and a vehicle may be a car, truck, or bus.  In practice, an ontology would be developed 
cooperatively with the other systems contributing to the multi-INT data streams. 

Finally, Figure 6 shows an example of a graph pattern specifying a potential threat related to IED 
activity. In this case we are looking for persons with a previous association with some type of 
IED activity who have direct access, or are linked to persons with access to, fertilizer, a vehicle, 
and a storage facility. For example, IED activity could include IED funding, manufacture, 
placement, transport, or triggering. Examples of a vehicle could include cars, trucks, and other 
vehicles. A storage facility may include a shop, house, or out building. 



 

 

Figure 6. An example of a graph pattern for complex events related to IEDs. In this case we are 
searching for any set of relationships involving a person previously linked to IED activity and 
persons with access to fertilizer, a vehicle, and a storage facility. 

 

The IPB reports which were the source of the colored nodes in the threat warning output are 
shown in Figure 7. The full data graph with similarly colored nodes is shown in Figure 8. The 
IPB reports were processed roughly in the order shown. It can be seen that earlier information in 
reports DIIR 1-05 and report DIIR 1-08 was later connected with information in TACREP 4-13. 
Our system builds data graph incrementally and raises a threat warning whenever the a match is 
found for the specified pattern graph. The pattern graph produced that is of interest is depicted in 
Figure 9. 

 

Figure 7. The raw data for our example is contained in two sets of reports. The color highlights 
show reports that are linked to IED activity. 

 



 

Figure 8. The full RDF data IED related activity.  

 

Figure 9. The threat warning graph generated by our graph pattern match algorithm.  

 

5. Preliminary performance evaluation. 

We tested out prototype against a well-developed library implementation of SPARQL. Figure 10 
summarizes the results. We used synthetic data sets so that we could vary the size consistently 
and control the complexity of the RDF sets [18]. Our graph pattern algorithm prototype consisted 
of a 680 line implementation in Python using the networkx graph library [27] and the rdflib RDF 
library [31]. The SPARQL query prototype was a 200 line implementation in Python using the 
rdflib RDF library and the rdflib SPARQL library.  

The results of our test show that the running times of the two implementations was significantly 
different at a confidence level of 95 percent. The difference in run time for the SPARQL 
implementation for the 10,000 and 100,000 RDF triple tests was not statistically significant at a 
95 percent confidence level. The results are shown in Figure 10.  



 

 

Figure 10. A comparison of graph pattern search and SPARQL queries.  Total execution time 
for 10 executions each of  5 random pattern searches in synthetic data sets.  

 

Statistics were gathered for the six test runs of the prototype graph pattern search implementation 
and SPARQL query standard algorithm. The execution environment was a Dell Precision T1500 
desktop PC with Core i7 processor, 8GB of RAM, Windows 7 operating system, and a one TB 
hard drive.  Fifty runs were made for each RDF triple graph.  From these preliminary tests we 
conclude that our graph pattern search algorithms have a runtime performance that is acceptable 
at this early stage of investigation. We are currently engaged in implementing a more extensive 
prototype which we can use to test in more realistic data environments. 

 

6. Summary. 

In summary we have presented an analysis of the generalized EIW multi-INT data environment 
and an approximate graph pattern search algorithm for identifying complex events. We tested our 
prototype algorithms against standard search algorithms and determined that the performance is 
acceptable. In our view the preliminary performance of the system is adequate to justify further 
research investment. There is a wide range of potential EIW datasets. 

Our future work will involve continued development of the prototype discussed in this paper. 
The objective of the next phase of research will be demonstrating operation in the streaming 
environment of a Marine Corps exercise. We will also seek to evaluate and better understand the 
developing data environment and adapt our algorithms as necessary. 
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