
17
th
 ICCRTS

“Operationalizing C2 Agility”

Provenance: Information for Shared Understanding

Topics:

Primary: Data, Information, and Knowledge

Secondary: Architectures, Technologies, and Tools

Tertiary: Collaboration, Shared Awareness, and Decision Making

Names of Authors

M. David Allen
The MITRE Corporation

7515 Colshire Drive

McLean, VA 22102

804-288-0355

dmallen@mitre.org

Dr. Adriane Chapman
The MITRE Corporation

7515 Colshire Drive

McLean, VA 22102

703-983-7140

achapman@mitre.org

Dr. Barbara Blaustein
The MITRE Corporation

7515 Colshire Drive

McLean, VA 22102

703-983-5881

bblaustein@mitre.org

Point of Contact

M. David Allen
The MITRE Corporation

7515 Colshire Drive

McLean, VA 22102

804-288-0355

dmallen@mitre.org

mailto:dmallen@mitre.org
mailto:achapman@mitre.org
mailto:bblaustein@mitre.org
mailto:dmallen@mitre.org

Provenance: Information for Shared Understanding

M. David Allen, Adriane Chapman, Barbara Blaustein

The MITRE Corporation

{dmallen, achapman, bblaustein} @ mitre.org

Abstract– Agile command and control (C2) systems allow users to draw upon diverse resources to solve complex

problems. This paper describes data provenance technology being developed to support shared understanding of information

and to better equip users to assess the suitability of shared information. We describe a provenance system, PLUS, and show

how it can be used to assist in assessing trust and system quality. In addition, we describe novel and minimally invasive

approaches to capture provenance automatically within distributed, heterogeneous C2 systems, and we compare the

engineering costs and benefits of these approaches.

Index terms—provenance, trust, lineage, pedigree, agile systems, capture

I. INTRODUCTION

Threats to national security typically morph over time, and take unanticipated forms. The practice of information

technology continually seeks to provide flexible systems that permit adaptation to issues that cannot be foreseen. Trends

in the way that command and control (C2) systems are built to provide this flexibility mean increasing reliance on

networked services and on information of all sorts, including open source, received via the Internet and from multi-

national coalitions. Government mandates to increase information sharing are also widening the technical scope of C2

information systems, by requiring their interaction with other systems outside of their natural user scope. Command and

control systems must be agile enough to face these new, complex, and changing situations [21]. As stated in The Agility

Advantage [1] (p. 335),

“By their very nature, complex endeavors require information and expertise that is widely dispersed. As a result,

organic information is insufficient and information sharing is needed to construct an accurate picture of what is

occurring. In complex endeavors it is not sufficient for just one person (the head of an organization) to have the

answer. Rather the development of an adequate level of shared understanding is a prerequisite for a coherent

and effective response.” (emphasis added)

This paper describes technology being developed to support shared understanding of information and to better equip

users to assess the suitability of shared information.

Provenance
1
 is “information that helps determine the derivation history of a data product...[It includes] the ancestral

data product(s) from which this data product evolved, and the process of transformation of these ancestral data product(s)”

[19]; it is, the family tree of data creation and manipulation. Data provenance enhances the utility of information by

adding context. First, provenance information helps users to make trust decisions about data, by providing them the

information they need to assess how much to trust data from unfamiliar sources. Second, provenance helps users

understand the impact of erroneous data or defective processes. Finally, provenance information provides essential records

for forensic investigations that seek to link available data, processing chains, and outcomes. Provenance is typically

captured by observing a system as it is running and reporting the information to a provenance manager. We call the

software which captures provenance a provenance reporter.

As a simple running example, we will examine airborne surveillance reports used by analysts and automated processes

to locate high value targets. These collaborations require the participation, services, and data of multiple military and

intelligence organizations. Consider the following scenario, outlined in Figure 1a. This figure describes a distributed

system which provides data and services from many different branches and organizations. These multiple systems

collaborate to provide an agile environment bent to the task of locating high value targets. For instance, Air Surveillance

data is available through an Air Surveillance Supplier Gateway. Meanwhile, an Analyst Gateway provides analyst reports

based on available data using tools such as Palantir
2
, an Extract, Transform, and Load (ETL) tool. Finally, an

AutoTargeting Gateway provides a geo-tagger to map location data into latitude and longitude information. The geo-

tagger receives un-annotated text, such as the airborne surveillance reports, and returns a version of the text annotated

1 Sometimes also called “lineage” or “pedigree”
2 Palantir is a commercial tool designed to assist analysts in viewing data over time and in doing link analysis, see www.palantir.com.

with latitude and longitude coordinates for each place name. Suppose that a Target Acquisition Officer, wishing to

identify the value of certain target locations, queries the distributed system for information about people likely to be at

certain locations. To answer these queries, the system draws upon multiple different services and data sources and

identifies people of interest likely to be at a certain location. Figure 1b and Figure 1c record two different ways this search

could proceed. If the search proceeds as shown in Figure 1b, it produces two results: a geo-tagged airborne surveillance

report and a Palantir model file generated by an analyst. If the search proceeds as in Figure 1c, the same two results are

returned. However, the quality of the returned results shown in Figure 1b and Figure 1c are distinctly different: different

numbers of sources were used in each case (one and two air surveillance files respectively). Figures 1b and 1c are

screenshots from our provenance tool, modified to use generic names of tools and people, to protect sensitive information.

Without these provenance graphs, the officer would not know how the search was accomplished and would not be able to

assess the quality of the results. These two provenance graphs demonstrate that the analyst cannot determine whether the

reports independently corroborate one another without provenance information, and consequently the analyst cannot

determine the reliability and actionability of the information.

The provenance graph can inform a user of the exact data sources and processing steps which produce each piece of

information, improving the user’s ability to assess the accuracy and reliability of the information. The basic graphs show

names and connections only, but actual provenance systems will typically store many additional details about the

processes and data in question, in some cases including technical details of settings used to generate that information. If a

problem is detected in the tools used by the distributed system, such as a mismatch in the coordinate systems used by two

geo-taggers which results in inaccurate latitude and longitude information, the system can trace through the provenance

graph to identify all of the affected customers and targets. Similarly, if future investigation shows that the system was

corrupted or attacked and therefore produced bad data, subsequent users of that data can be informed by tracing forward

through the graph to discover downstream users of that data.

In order to help understand the family tree of data, the provenance system must include certain basic information: what,

when, who, where, how, why. In general, the basic information captured for each provenance item is: what the data or

service was, a timestamp (when), who ran it, where it was executed, any parameters used (how), and where its inputs came

D
i
s
t
r
i
b
u
t
e
d

s
y
s
t
e
m

Air Data Supplier
Gateway

Auto Targetter
Gateway

Analyst Gateway

Target
Acquisition

Service

ETL Tool

Palantir

Analyst

Geo-
Tagger

Air Sur-
veillance

Data

a) System components b) Provenance graph 1 c) Provenance graph 2

Target
Acquisition

Officer

Figure 1. Multi-organizational collaboration to locate a target. a) The participants provide data and services in the distributed system.

Together, these different capabilities are used in a specific workflow. b) A sample provenance graph. The ovals represent data (files or

database entries), while rectangles denote processes (i.e. an execution of a software tool). c) A second sample provenance graph

showing the same use of tools, but with two Air Surveillance Reports providing the raw data instead of only one.

from and outputs went to (why). Additional information, in the form of annotations, can also be stored with the basic

provenance information—for example, a given user’s assessment of the quality of a particular data source. The

fundamental principle is that the basic provenance information is an historical record of what actually happened

and, as such, must be captured as processes are executed and as data is modified within each organization. Note

that this is qualitatively different from the prescriptive notions of workflows or business processes, which describe what

was supposed to have happened. Workflows or business processes may contain conditional statements (if this condition,

then this execution path) or loops describing their logic; provenance has neither conditionals nor loops. It is a directed

acyclic graph that could be described as the execution history of a workflow.

The remainder of this paper is organized as follows. Section II describes the PLUS prototype provenance manager. We

then show how PLUS supports the agile environment application needs described above: trust assessment, and taint

analysis (both in Section III). The only way these new capabilities can be provided to a user is to install provenance

reporters in the distributed system. In Section IV, we discuss capture techniques based on different engineering

approaches. In Sections V and VI, we provide experimental evidence of the developmental cost of capturing provenance,

and guidance on where to install provenance reporters within the system. We discuss related work and conclude in

Sections VII and VIII respectively.

II. PLUS

PLUS [8] is a provenance manager developed at The MITRE Corporation to address the following previously unmet

requirements shared by most of our U.S. government customers:

 “Open world” collection in distributed, heterogeneous environments [2] which enables the use of provenance in real-

world government systems;

 Flexible annotation management over provenance, which enables a number of important analysis applications,

including the “taint analysis” application in Section III;

 Attribute-based access controls which enable flexible sharing of provenance across different classes of users with

different privilege levels [20], and;

 Security techniques which enable the provision of informative provenance even when the sensitivity of certain nodes

or edges precludes sharing the entire graph [6].

Once provenance information is captured as discussed in Section IV, it must be stored for later use. PLUS can be run

as a stand-alone manager with a centralized repository or as a set of provenance managers and repositories distributed

across organizations [3]. PLUS uses a MySQL database for provenance storage, and it models provenance similar to the

emerging Open Provenance Model standard [18]. A provenance graph is a directed acyclic graph (DAG), ,
containing a set of nodes, , and a set of edges, . Each node has a set of features describing the process or data it

represents, e.g., timestamp, description, etc. Edges in the graph denote relationships, such as usedBy, generated,

inputTo, etc., between nodes in the graph. A provenance graph may include disconnected sub-graphs.

A data node can represent any object the user wishes to register, for example, strings, files, XML messages, relational

data items of arbitrary granularity, etc. The data itself is not stored in the PLUS system for security and archiving reasons;

such storage is best delegated to an underlying system or historical database. However, the provenance capture

mechanisms can provide any additional “breadcrumbs,” such as access method and identifier, to allow users to access the

underlying information. In addition to basic provenance data, users may annotate any node in a provenance graph with

additional metadata.

III. ASSESSING TRUST IN INFORMATION

Even when collaborating C2 partners have a clear picture of the overall set of services and data available, they may

only understand the details of services and data in their local systems. For example, consider the collaborative effort in

Figure 1a to identify high value targets. An analyst may understand the minutiae of link analysis, but have no idea of

which software services or data sources were used to perform geo-tagging. Some users may give greater credibility to

some services above others, or they may be wary of using information based on open source data. In a distributed system

other users with different missions will invariably have different perspectives and criteria. Additionally, as seen in Figure

1b and Figure 1c, the possible variations in combinations of data and service can lead to less trustworthy information, i.e.

that supported by less data, or using poor services, etc.

Provenance gives participants greater information about actions that occurred outside their purviews. Using this

information, users can more easily assess whether information meets their specific mission criteria. The provenance that

PLUS captures is immutable; it is a record of past events. This basic premise matches other relevant work (see Section VII

for a discussion of related work. However, in exploring our customers’ requirements, it quickly became clear that many of

them needed a flexible facility for adding annotations to provenance information. For example, a user may want to enter

an opinion about his confidence in a particular piece of information or to note special circumstances that surrounded a

certain process execution. These additional annotations (not strictly provenance information) are mutable, since any of

these assessments might change. In this way, provenance elements can become much like products on Amazon; subject to

their own individual set of reviews by their users. And again as with Amazon, the basic information about the resource

(i.e. a list of book authors) does not change, and cannot be modified by users.

Flexible annotations are essential in multi-organizational information sharing because users of the data from another

organization may have no knowledge of how it was generated, and whether it can truly be used for her purposes. In such

cases, provenance, together with user assessments of confidence and social networks of trusted colleagues, can do a great

deal to increase trust that information is suitable for the intended purpose. It is critical to note though that these decisions

are made by users in context; provenance provides the necessary information to support the decision, but does not

automate trust decisions.

In addition, provenance provides additional functionality that can help alert users to potentially harmful data. In a

widespread collaborative enterprise, if a problem with a dataset or service is detected, the process of identifying other

users of that dataset is often either impossible or at least arduous. Building a “taint analysis” application over provenance

can help inform all users of potentially bad information.

Such annotations can help users of distributed systems understand the consequences of a data modification cyber-

attack. For example, suppose that an administrator discovers that an attacker has subverted the geo-tagger to incorrectly

geo-tag location data. Without provenance information, the compromised tool would be replaced, but information that it

had already processed may still be available to downstream users of the data, such as the Target Acquisition Officer. Such

information might be available in the form of copies in other systems, within other organizations. This form of data

corruption can be especially pernicious in a collaborative environment, since system maintainers would have no way to

determine whether, for example, a targeting order was based on corrupted data from geo-tagger. PLUS provides the ability

for a user to annotate the suspect data or service invocation as being “tainted” (e.g., the geo-tagger in Figure 2) This taint

marking is then automatically propagated forward to all data and processes that rely upon it (the nodes in pink in Figure

2), and can be seen by the data owners in a different organization, thus alerting them to a potentially serious issue. While

orders may have already been dispatched on the basis of bad information from the geo-tagger, the provenance graph

provides the ability to assess the scope and severity of the problem, which makes it possible to identify the affected

analysts and consequently the potentially ill-founded orders. This “forward tracing” capability is not generally available

today; some advanced auditing functionality can indicate how serious immediate uses of bad data might have been, but

provenance represents a more flexible way of logging what happened, to support any number of different auditing styles

after the fact. Whenever integration is being performed with data generated across multiple organizations, this is an

essential capability to support proper data usage and error correction.

IV. MINIMALLY INVASIVE PROVENANCE

CAPTURE IN DISTRIBUTED SYSTEMS

Agile C2 systems such as those described in this paper are

distributed, and will naturally contain many different kinds of

components owing to the participation of different

organizations. A fundamental challenge to providing

provenance information to users, then, is the need to capture

provenance information in these systems. There are several

methods for obtaining provenance information within

distributed, heterogeneous systems. Similar to [14, 23], the

PLUS system supplies an application programming interface

(API) that any system or application can call to log

provenance information. The trick is determining where and

how those API calls should be used, such that:

1. Application developer time used to encode

provenance calls is minimized;

2. Application developers can be provenance unaware,

and legacy applications can continue to run normally;

3. Useful provenance information is obtained.

These desiderata shape our strategy for minimally

invasive provenance capture, as contrasted with previous

Figure 2: Taint propagation using PLUS

provenance systems which require custom application revisions. Our first technique for “minimally invasive” provenance

capture is to insert provenance reporters into system coordination points, such as an enterprise service bus (ESB).

However, depending on the users of the system and on the intended uses of the resulting provenance information, this

method may not yield complete coverage and may miss some desired content. In the following subsections, we discuss

three other methods, Single Application Modification, Owning the System, and Wrapping/Scraping Legacy Systems, that

can be used to augment the capture via the system coordination backbone(s).

A. Insertion in a System Coordination Backbone

Distributed systems require coordination backbones to perform the command and control functions of the systems

themselves, including the following duties:

1. Collect/route messages, and handle component interactions; and

2. Provide a mechanism to enable actors to use remote data and processes.

Even in very loosely coupled systems, there are standard mechanisms for passing messages, accessing data, running

services, etc. Our first minimally invasive provenance capture technique focuses on these system coordination backbones.

An ESB is often used as a point of coordination for applications from many different organizations. We have modified

Mule
3
, a popular open source ESB, to automatically capture and report provenance for all messages passed through the

ESB, as well as to provide some introspection into the processes being executed [2]. Our Mule-based provenance collector

is the first provenance capture facility of which we are aware to collect provenance in heterogeneous multi-organizational

environments. This capture technique scales effectively and does not noticeably affect the underlying systems [8], but it

does enable users of integrated information greater insight into that information’s usefulness and flaws. Figure 3 shows an

example of the Mule ESB provenance capture. In a nutshell, this method captures provenance by observing the

functioning of the ESB as it happens, and reporting appropriate provenance.

A second example showing the effectiveness of capturing provenance from a single coordination backbone is the

Ozone Widget Framework (OWF)
4
. Used within the Intelligence Community as a tool for providing application and data

resources to analysts, the OWF is a messaging framework that allows applications, called widgets, to be run within a web

browser. Widgets and data can be built and released by any organization and found within a repository, or marketplace.

3 www.mulesoft.com
4 Widget.potomacfusion.com

CustomerQuoteRequest
Message

LoanBrokerQuoteRequest
Message

NullPayload
Message

LoanBrokerQuoteRequest
Message

LoanQuote
Message

LoanQuote
Message

TheBank2TheBank1

LenderService
Service

CreditAgencyGateway
Service

LoanBroker

a) LoanBroker example b) Provenance graph

Figure 3: An example of provenance captured through the MULE ESB System Coordination capture point. a) Shows the workflow that

uses the MULE coordination backbone for cross organizational collaboration to produce a loan quote (from mulesource.org). b) The

sample provenance graph captured from one execution of the LoanBroker. Ovals indicate data; rectangles are processes. Notice that

provenance shows the actual data and services used in an instance, not the available set indicated by the workflow.

The OWF provenance collector thus allows provenance to be captured about interactions that take place across

organizations. However, OWF also highlights a challenge for provenance capture: finding the appropriate points at which

to insert provenance collection calls. While OWF is a government off-the-shelf (GOTS) tool, with a recommended API,

its underlying use of web technology means that there are multiple possible methods for a widget developer to access data

or processes. For instance, there are multiple ways that a widget can access data from a repository. The chief three ways

are:

1. Using a JavaScript library (Dojo) to channel all data requests. This is the method followed by most widget

developers;

2. Writing JQuery within the widget to directly query a repository for the data;

3. Writing custom JavaScript to call directly to a specific repository.

These are merely the top three routes widget developers use to access data from repositories within the framework,

although there are other less popular methods. In the case of OWF, tapping into the Dojo channels captures the largest

percentage of data accesses. However, some information may be missing from the provenance store because of the use of

other data access methods. We believe that some provenance is better than none, and other provenance capture points can

be added through time. Even if robust provenance capture required implementing all three methods of capture, it is worth

noting that those three methods would scale to dozens or hundreds of different applications on top of OWF; contrast this

with the scalability of attempting to capture provenance on a per-application basis.

A final example of a very simple system backbone is insertion into a Hypertext Transfer Protocol (HTTP) web proxy.

For their protection, organizations often funnel all requests from their organization through a web proxy. The proxy

essentially sees all data requests being sent from within the organization to the internet, as well as the response.

Additionally, SOAP (Simple Object Access Protocol) and other web service interactions typically run over HTTP. Thus,

a method for tracing public data use is to embed provenance capture points within the web proxy. We have modified the

RabbIT web proxy
5
 to log all HTTP messages that it intercepts. This provides the ability to see not only which

information a user within the organization uses, but also the sources within the internet that provide specific parts of that

content. For example, Figure 4 shows the provenance store of a very simple web request. It indicates that multiple parties

contribute information to the page finally shown to the user. This is of particular interest when tracking who owns the

data, or whether data passes through untrusted sources. One drawback of using web proxies, though, is that while it gives

great insight into process inputs and outputs, it does not provide much detail on the nature of the processes running on

remote web servers, other than their names, inputs and outputs.

The key issue is that the coordination backbone must capture as much information as possible about the collaboration.

In our examples, the multi-organizational enterprise runs on a common technical infrastructure, providing a coordination

backbone for provenance capture. The use of an ESB, OWF, or a web proxy is not required; however, the use of a central

coordination backbone provides a simple one-stop place for provenance collection to occur. Even in a system of systems,

the coordination backbones of components can each contribute to the provenance store. Alternatively, if no central

coordination backbones are available, this technique can still be used when collaborators agree on a tool set such that each

tool can itself be provenance enabled (i.e., each of these tools can report provenance to the PLUS API).

B. Owning the System

In highly specialized circumstances, all data and processes will be owned and operated within one system. When this is

the case, since the entire system is owned by a single authority, it is possible to place provenance capture points within the

executing system itself. We have two examples of this strategy implemented for use with PLUS: PASS [19] and a

rudimentary workflow manager. These systems show very different levels of system ownership.

For instance, PASS assumes that everything is run on a single operating system, on a single box. PASS modified the

Linux kernel to add provenance reporting calls. Whenever a program executes, the file system activities are logged in the

provenance system. This method has the advantage of seeing everything that occurs in the file system. However, it has the

disadvantage of being at a very low level of granularity, and capturing possibly uninteresting information such as

intermediate file read and writes. Additionally, we are not aware of work that would provide for provenance capture

scalability across multiple machines; that is, connecting the provenance records of system calls on one machine with those

of another.

5http://www.khelekore.org/rabbit

Meanwhile, a workflow execution system is also considered centrally owned system if all the enterprise’s computing is

performed within it. The workflow system controls the calling of processes and the access of data. As such, provenance

calls from within the workflow system itself can see all – particularly environmental parameters to which other

provenance capture methods may not have access.

C. Single Application Modification

In many cases, provenance-enabling a system coordination backbone, such as an ESB, OWF, or a web proxy, may not

be enough. As described above with OWF, users, processes or data may circumvent the methods that have been enabled to

capture provenance. Additionally, even if the system backbone can capture the information about a particular process or

data item, it may not be detailed enough for the user’s needs. In order to fill in the gaps, specifically targeted single

application modification is appropriate. For instance, if we find OWF users all love a particular widget that uses an

esoteric data access method instead of DOJO’s publish/subscribe model to access its data, we can provenance-enable this

specific widget to provide better coverage to our users. We have implemented several examples of single application

modification, including Palantir, D-Tool
6
, and M-Tool.

As mentioned above, Palantir is a Commercial Off-The-Shelf (COTS) tool designed to assist analysts in visualizing the

data and performing link analysis. D-Tool is a Common Data Warehouse (CDW), a data warehouse designed to serve as a

common repository for multiple structured and unstructured datasets. M-Tool is a configurable tool for performing

extraction, transformation and loading of documents into a common data warehouse. For instance, a Palantir file could be

ingested by M-Tool, and any location information found therein would be geo-tagged. Because Palantir, D-Tool and M-

Tool were each heavily used by analysts in certain environments, they were considered good candidates to provide extra

information insight.

While single application modification provides good additional insight whenever holes in the provenance of a

distributed system are found, adding provenance reporting to single applications should be undertaken with caution. The

development time to add provenance reporting to a single application is on par with doing so for an entire system

coordination backbone, while the provenance information gained is for that single application instead of every application

on the backbone. This may be an acceptable tradeoff if the single application is used often enough, or the interesting

provenance details cannot be accessed from the backbone, but an analysis of other options should be performed before

proceeding.

6 Because D-Tool and M-tool are U.S. government-owned systems, we do not use their actual names.

Figure 4: An example of provenance captured via the RabbIT Web Proxy capture point.

D. Legacy System Capture

Finally, as with adding provenance reporting to a single application, there are instances when the provenance obtained

through a system’s coordination backbone has holes, or is lacking information of interest. In the previous subsection, we

discussed adding provenance reporting to single applications, however not all applications can be modified in this way. In

every example above, an API or source code was available for the application. In many instances, particularly well-

established legacy applications, this is not the case. These applications are often central to an organization’s work, and

much information flows through them, but they were created so long ago that no open API or code base exists. For these

systems, we have two potential solutions for provenance capture: wrapping the application, or scraping the logs of the

application.

In the first case, a simple wrapper is placed around the legacy application. The wrapper merely passes all inputs

directly to the legacy application, and routes all outputs back out. However, while doing this message passing, calls are

made to the provenance system, thus capturing the provenance of what was being sent to and returned from the legacy

system. The interface to the legacy application remains the same for any caller, but its functionality is augmented by the

provenance wrapper which puts itself in the middle to observe the legacy application’s usage patterns.

In the second example, the log file of the legacy application can be scraped, and any interesting information placed

within the provenance system. This typically involves parsing log files generated by tools, or monitoring facilities of an

operating system. We have a working example of both these strategies using STrace
7
. STrace is a UNIX tool that traces

system-level calls. When a program is executed through STrace, a user can write an output file of system calls. In other

words, STrace is effectively a wrapper for the shell script, allowing it to run unimpeded, but watching what occurs. The

output file from STrace can then be scraped to populate a provenance store. System calls (such as open(), read(), and

close()) become processes, while their inputs and outputs are data sent to and from those processes. While most legacy

solutions will involve one or the other strategy, not both, our work with STrace uses both methods effectively.

V. EXPERIMENTAL RESULTS

The highest cost for provenance is the developer hours needed to customize provenance capture points. We have

tracked developer hours in a number of the provenance capture methods discussed above. Figure 5 shows an example of

the possible spread of costs for providing provenance capture. The backbone shown in Figure 5 is the development time

required to add provenance capture to a MULE ESB backbone. N-Tool and X-Tool
8
, both shown as instances of a

backbone, is the time required to configure the provenance-enabled MULE ESB to a particular environment. Meanwhile,

7 See http://linux.die.net/man/1/strace
8 Because X-Tool and N-Tool are U.S. government-owned integration systems, we do not to use their actual names.

Figure 5: The developer hours required to add provenance reporting; the difference between “Backbone” and “Instance of Backbone”

reflects the up-front development cost of integrating with Mule ESB, versus the per-instance cost of configuring a new copy of Mule

to use provenance capture that is already developed.

0

20

40

60

80

100

120

140

160

180

200

Backbone Instance of
Backbone

Single App

Ti
m

e
 (

h
) MULE ESB

N-Tool

X-Tool

M-Tool

the Single Application category shows how long it took to add provenance capture to M-Tool. In other words, while it

took longer to add provenance capture to the backbone, configuring subsequent instances of that backbone in new

environments were trivial. Furthermore, adding provenance capture to the coordination backbone provides provenance for

the many applications running over the backbone, instead of just the one application singly modified.

Figure 6 shows a breakdown of the time required to integrate PLUS with each of the tools. The basic ESB provenance

capture was excluded from this analysis, since the nature of the work was fundamentally different. It consisted of finding

the appropriate places to put a provenance capture point, and how to get information out of the ESB and to PLUS. The

tasks shown here include modifying a single application (M-Tool) and standing up instances of the ESB in a new

environment (X-Tool and N-Tool).

M-Tool is written in C#, takes in unstructured data, parses it, extracts entities from it, looks up additional information

on those entities using tools such as MetaCarta
9
 and then integrates all information on those entities in a single location.

N-Tool is a set of services written in many different languages, but combined via an ESB; the goal of N-Tool is to pass a

series of messages amongst distributed services to generate a final product; LoanBroker
10

 is a similar open source version

of the N-Tool setup. Finally, X-Tool is comprised of two unconnected systems, with their own ESBs, and a message-

passer between them.

For each of these third-party systems, we provided a .jar file with PLUS code, a README file, and access to a PLUS

developer for basic questions. We then asked developers on each of the third-party systems to deploy PLUS, insert

appropriate capture points in their system, test the entire setup and report how long each step took.

Figure 6 shows how long it took to orchestrate a third-party tool with PLUS. M-Tool took the longest by far, 49hrs;

however, an interview with the third-party developer indicated that the bulk of this time was spent on the one-time cost of

converting PLUS’s .jar file to DLLs for use in the .NET/C# environment. This time investment would not be repeated,

even for subsequent deployments in a .NET environment. N-Tool and X-Tool, which are very similar environments, both

using an ESB, show the effect the system complexity has upon the orchestration time. While both use a basic ESB (or two

for X-Tool), N-Tool is more complex in terms of the number of flows and services than X-Tool. In the case of configuring

capture for the ESB, users can select to log provenance on a per-service basis to focus only on key chosen flows. Setup

can be more rapid if all services are selected, while it may take more time for a complex orchestration where only some

portions are selected for capture. However, none of these installations were undue burdens, and can be accomplished

within a week.

VI. CHOOSING CAPTURE POINTS

If an agile C2 system is designed such that data and applications can be pulled from anywhere and either used locally

or run remotely with results delivered locally, then we recommend exploiting the system coordination backbone. There

must be a coordination backbone to enable applications and data to be exchanged in these ways, and the backbone

provides a high-value provenance capture point.

Depending on the ways in which provenance information will be used (e.g., taint analysis, assessing the suitability of

data, forensics), the provenance provided by the backbone can be augmented by adding provenance reporting to the single

applications or to the legacy applications of greatest value to the user base.

Figure 7 shows an overview of our experience with different provenance capture techniques. Neither modifying a

coordination backbone nor modifying a single application is trivial, and each takes roughly the same amount of

9 See www.metacarta.com
10http://www.mulesoft.org/documentation/display/MULE2INTRO/Loan+Broker+ESB+Example

M-Tool: 49hrs

Install and Test PLUS

Test Calls in 3rdParty
Code

Debug 3rd Party Calls

Time for rest of code

N-Tool: 4.25hrs

Install and Test PLUS

Test Calls in 3rdParty
Code

Debug 3rd Party Calls

Time for rest of code

X-Tool: 1.3hrs Install and
Test PLUS

Test Calls in
3rdParty Code

Debug 3rd
Party Calls

Time for rest
of code

Figure 6: The effort required to orchestrate three third-party systems to work with PLUS

development effort. The detail of the provenance information obtained may be higher from a specifically modified single

application (because the user can pinpoint exactly what from that application is interesting); however, when multiplied

over the large number of applications available within an agile C2 environment, the backbone development is the better

bargain in terms of development hours and amount of provenance information. Our experience has also yielded

observations about a general trade-off between scope of provenance captured, and detail available; capturing provenance

in systems such as Mule ESB provides a wide scope of possible capture (many systems and organizations) with some

sacrifice in terms of how much technical detail can be obtained about any one piece of software in the distributed system.

On the other end of the spectrum, PASS integration provides an example of extremely detailed technical capture of

provenance, at the expense of a very narrow scope of capture (one Linux system). Individual application modification

resides between these two extremes, with its exact location in this trade space dependent on the specifics of the

application.

VII. RELATED WORK

Provenance, or the history of information, has garnered interest in government, commercial and scientific circles. Topics

of provenance study include capture [7, 14], storage [9], reasoning [5, 12], security [15, 24], usability [10, 17, 22], etc. In

particular, provenance has been touted as a tool to assist with scientific collaboration. A large number of scientific

applications [4, 7, 10, 13, 14, 16, 17, 22, 23] have been built to help scientists harness the power of provenance using

specific applications. These scientific collaborations have explored some of the capture methods we outline in this work.

For instance, in ES3 [13], the applications used by scientists for data analysis are modified to capture provenance; i.e.

single application modification. [7] uses a similar single application modification method. Many scientific provenance

systems require the user to operate solely within the confines of a system, PASS [19], or workflow manager [4, 16, 22]

which quietly collects provenance information. Each of these methods, single application modification and owning the

system, is limiting in terms of the applications and environments that scientists are constrained to use.

In addition to the PLUS system described in this work, Karma [23] and PreServ [14] allow more general capture by

positioning capture points anywhere of interest. Like PLUS, this open API can be used for all of the capture methods

discussed within this work.

Method

Developer

Work (Single

Application)

Developer

Work (Many

Applications)

Average

Coverage

of User’s

Actions

Depth of

Detailed

Provenance

Information

Insertion in a
Coordination
Backbone

Medium Low High Medium

Single
Application
Modification

Medium High
Dependent

upon usage of
application

High

Legacy
System
Capture

Low High
Dependent
upon usage of
legacy system

Dependent upon
what is logged

or passed

Owning the
System Medium Low High Low

Figure 7: An overview of the development time and the type of information typically available from

each capture method

[11] describes provenance-based techniques for assessing data trustworthiness using data and path similarity. The work

does not address provenance collection and could leverage PLUS’s “open world” collection techniques. In addition, their

trust assessment framework could be implemented on top of the PLUS annotation facility.

VIII. CONCLUSIONS

In this work, we describe how provenance contributes to the “shared understanding” needed for the “coherent and

effective response” [1] required of an operational agile C2 system. Provenance adds value in large-scale, multi-

organizational environments by helping users assess the suitability of unfamiliar data and by allowing users to manage the

downstream consequences of faulty data or process executions. We showcase PLUS, a working provenance system with

robust capture, storage and administrative capabilities. We discuss novel, minimally invasive provenance capture

strategies in distributed, heterogeneous systems, describe examples that we have implemented, and provide engineering

guidance for determining where to insert provenance capture points.

We have begun to consider how provenance capture and querying would operate across multiple security enclaves, but

more work needs to be done in this area. We also hope to investigate in more detail the ways in which data quality

annotations can be combined with basic provenance information to give users more nuanced understanding.

We would like to thank our colleagues Jared Mowery and Maggie Lonergan for their help with some of the systems

and integration software described in this paper.

BIBLIOGRAPHY

[1] D. S. Alberts, "The Agility Advantage: A Survival Guide for Complex Enterprises and Endeavors," DoD Command and

Control Research Program, 2011.

[2] M. D. Allen, A. Chapman, B. Blaustein, and L. Seligman, "Provenance Capture in the Wild," International Provenance and

Annotation Workshop (IPAW), 2010.

[3] M. D. Allen, A. Chapman, B. Blaustein, and L. Seligman, "Getting It Together: Enabling Multi-organization Provenance

Exchange," TaPP, 2011.

[4] I. Altintas, O. Barney, and E. Jaeger-Frank, "Provenance Collection Support in the Kepler Scientific Workflow System,"

IPAW, pp. 118-132, 2006.

[5] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom, "ULDBs: Databases with Uncertainty and Lineage," VLDB Seoul,

Korea, pp. 953-964, 2006.

[6] B. Blaustein, A. Chapman, L. Seligman, M. D. Allen, and A. Rosenthal, "Surrogate Parenthood: Protected and Informative

Graphs," PVLDB, 2010.

[7] P. Buneman, A. Chapman, and J. Cheney, "Provenance Management in Curated Databases," ACM SIGMOD, pp. 539-550,

2006.

[8] A. Chapman, M. D. Allen, B. Blaustein, and L. Seligman, "PLUS: A Provenance Manager for Integrated Information," IEEE

International Conference on Information Reuse and Integration (IRI ‘11), 2011.

[9] A. Chapman, H. V. Jagadish, and P. Ramanan, "Efficient Provenance Storage," SIGMOD, pp. 993-1006, 2008.

[10] S. Cohen-Boulakia, O. Biton, S. Cohen, and S. Davidson, "Addressing the provenance challenge using ZOOM," Concurrency

and Computation: Practice and Experience, vol. 20, pp. 497-506, 2008.

[11] C. Dai, D. Lin, E. Bertino, and M. Kantarcioglu, "An Approach to Evaluate Data Trustworthiness Based on Data

Provenance," Secure Data Management Workshop at VLDB, 2008.

[12] J. N. Foster, T. J. Green, and V. Tannen, "Annotated XML: Queries and Provenance," PODS, pp. 271-280, 2008.

[13] J. Frew, D. Metzger, and P. Slaughter, "Automatic capture and reconstruction of computational provenance," Concurr.

Comput. : Pract. Exper., vol. 20, pp. 485-496, 2008.

[14] P. Groth, S. Miles, and L. Moreau, "PReServ: Provenance Recording for Services," UK OST e-Science second AHM, 2005.

[15] R. Hasan, R. Sion, and M. Winslett, "The Case of the Fake Picasso: Preventing History Forgery with Secure Provenance," in

FAST. San Francisco, 2009, pp. 1-14.

[16] P. Missier, K. Belhajjame, J. Zhao, and C. Goble, "Data lineage model for Taverna workflows with lightweight anotation

requirements," in IPAW, 2008.

[17] P. Missier, S. M. Embury, M. Greenwood, A. Preece, and B. Jin, "Managing information quality in e-science: the qurator

workbench," SIGMOD, pp. 1150-1152, 2007.

[18] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and P. Paulson, "The Open Provenance Model," University of

Southampton 2007.

[19] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer, "Provenance-Aware Storage Systems," USENIX, pp.

43-56, 2006.

[20] A. Rosenthal, L. Seligman, A. Chapman, and B. Blaustein, "Scalable Access Controls for Lineage," First Workshop on

Theory and Practice of Provenance Systems (TaPP), 2009.

[21] J. D. Savage, "Composable Capability on Demand (CCOD®): A New Paradigm for the Design, Acquisition and Employment

of IT-Based C2," ICCRTS, 2010.

[22] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. Silva, "Querying and Re-Using Workflows with VisTrails,"

SIGMOD, 2008.

[23] Y. Simmhan, B. Plale, and D. Gannon, "Karma2: Provenance Management for Data Driven Workflows," Journal of Web

Services Research, vol. 5, 2008.

[24] J. Zhang, A. Chapman, and K. LeFevre, "Fine-Grained Tamper-Evident Data Pedigree," University of Michigan Technical

Report, 2009.

