
1

17th ICCRTS
Operationalizing C2 Agility

Distributed Algorithms for Resource Allocation Problems

Topic: Networks and Networking

Authors:

Mr. Samuel W. Brett
Dr. Jeffrey P. Ridder

Point of Contact: Mr. Samuel W. Brett

Organization: Evidence Based Research, Inc.

1595 Spring Hill Road, Suite 250
Vienna, VA 22182

Telephone: (703) 287-0371

Email address: brett@ebrinc.com

2

Title:

Distributed Algorithms for Resource Allocation Problems

Authors: Mr. Samuel W. Brett and Dr. Jeffrey P. Ridder

Paper# XXXXX, Track XXXXX: Networks and Networking

Abstract:
Some of the most challenging problems for decision makers to solve are those that have to do
with allocation of resources. These problems are mathematically challenging, and because of the
uncertain, uncooperative environments in which they must be solved, there is typically little
choice but to resort to manual, ad hoc methods. In this paper we discuss the mathematical nature
of these problems and why they are so difficult. We then discuss an emerging family of
algorithms based on distributed processing that are particularly well suited for resource
allocation in real-world environments. We also discuss our own contribution, an algorithm
called Anaconda, which has been applied to bandwidth allocation problems with over 100,000
variables and produced useful solutions within 10 minutes on aging desktop computers.

3

Introduction

Amongst the most challenging questions for decision makers to answer are these: What and how
many resources do I need to accomplish my objectives? How do I ensure that these resources are
available when I need them? How do I allocate or schedule my resources? Furthermore, the
environments in which these questions must be answered are typically non-cooperative, with
incomplete and uncertain information, as well as dynamic, such that the “right” answers are
changing with time. Due to the complexity of the questions and the environments, algorithmic
solutions are difficult to achieve and, therefore, decision makers commonly revert to manual
solutions based on experience. Where algorithmic aids are available, they are typically simplistic
in terms of their solution method, choosing instead to emphasize graphical presentations of
information to aid sensemaking.

In this paper, we begin by discussing the nature of the mathematical problems underlying each of
these questions. The academic literature in mathematics and operations research has long
recognized these problems, known as resource allocation problems, to be NP-hard, meaning that
these problems are so difficult to solve that there is no existing method to compute an optimal
solution in a reasonable amount of time for even modest sized problems. However, we are saved
by the fact that in real world applications optimality is rarely needed, and instead we are willing
to accept solutions that are better than those that are manually produced. Next, we review some
of the traditional solution methods to these problems. Finally, we discuss an emerging class of
algorithms using distributed solution methods which show great promise in solving the most
challenging of these problems.

Problems

Examples of such problems include scheduling, supply chain management, network design,
weapon targeting, sensor networking, and network routing, to name a few. Applications can
often be overconstrained so that no global optimum even exists, and even feasible solutions may
not be achievable. Whether there are global optimums in any case is not of the greatest concern.
Useful descriptions of problems normally have more than one objective. Multiple objectives for
a problem cause any solution to trade off in one dimension for one or more other dimensions.
Related to this is the concept of a Pareto front as seen in Figure 1, where a solution is only
superior to another if it is better in all dimensions.

4

Figure 1: Pareto front with two objectives

The process of scheduling has a wide range of real world applications. In the context of a busy
workplace, it can often be difficult to find a suitable work schedule for employees. Consider a
hospital where specialists must be present, patients’ wait times should be minimized, and
uncertainty inevitably arises. Recently, more advanced global optimization heuristics such as
genetic algorithms have been applied to this problem. They can often find a good solution to
increase coverage of specialists for planned appointments, but adding in the reality of drop-ins
needing immediate medical attention quickly throws the system out of balance. What these
solutions lack are robustness and flexibility.

A similar example arises in production processes. The well known problem of job shop
scheduling considers the optimal way to schedule jobs on a set of machines in a manufacturing
plant. There are algorithms to create decent solutions for static assignments. However, the
situation of rescheduling where new jobs come into the system while machines are running
presents a problem. One choice is to reschedule the system as if it were static every so often.
This solution method is undesirable as it can be extremely disruptive to the system and produce

5

highly sub-optimal results. A dynamic element of the problem to consider is that machines will
occasionally fail during production. One way to account for this situation is to build slack into
the system, but it is often not clear how to build in this slack. Two sample schedules can be seen
in Figure 2.

Figure 2: Two sample schedules

The problem of proper supply chain management has long been an extremely challenging
problem. Not only do sites have to manage inventory in an uncertain environment but they must
also plan how to best route their supply networks. Most inventory planning assumes that lead
times from suppliers come from some known distribution. However, a rapid shift in availability
of a product could significantly change the optimal strategy. Setting efficient delivery routes is
often hard because of the number of possible routes available with differing costs and schedules.
Add in any notion of unreliability of a route and these solution methods break down. One way of
accounting for this would be to build redundancy into a supply network, but this is costly and
where and why is not always clear.

Algorithms

In optimization problems, it is often useful to distribute the problem into smaller sub-problems.
This is especially true when your solution space becomes large. There exist non-distributed
algorithms that can efficiently compute global solutions to such problems. However, these
algorithms will rarely scale well in terms of solution quality, and frequently have difficulty in
producing consistently reasonable local solutions even though the global error is small. This is
when decomposing a problem becomes useful. The overall solution as well as local areas of the
solution are directly accounted for and likely to be reasonable.

6

This idea has a formal representation known as a distributed constraint optimization problem
(DCOP). This problem is quite similar to any other multi-objective optimization problem as it
optimizes variables while constraining the feasible region of the full solution. The main
difference is that the problem is partitioned into agents. Each agent has a set of variables and
constraints to manage as well as a local optimization criterion. The goal of DCOP is to find a
feasible solution with the highest ranking by all agents determined by some solution ordering
operator.

DCOP has often been applied in the domain of scheduling. One such example is medical
appointment scheduling1

. Here the problem intuitively decomposes into logical entities. For
example, they create patient agents to represent patients, their appointments, and constraints and
diagnostic unit agents to represent diagnostic units, their workplaces, and constraints. There exist
two competing objectives in this domain, optimal resource usage and patient satisfaction.
Certainly if every patient had an appointment exactly when they wanted, this would limit the
amount of resources utilized. But if appointments were scheduled in a manner that would
maximize resource usage for a diagnostic unit, then patients’ appointments would each be less
convenient.

Another area in which multi-agent distribution of problems becomes useful is in supply chain
management. In a simple example, the problem is decomposed into two decision agents2

. One
agent is the production and production inventory planner while the other is the transportation and
customer inventory planner. They explore the idea of varying demand and its effects on qualities
of solutions for both global and agent based optimization. In the second model, each agent has a
built in optimization protocol. They found that when demand estimates were poor, agent based
optimization was superior; otherwise, agent based optimization was comparable. So even in
smaller examples, distributing optimization problems can yield noticeable benefits.

There are many variations on distributed methods for solving these problems. Algorithms
operating synchronously, so that each agent acts in succession, are often less useful than
algorithms acting asynchronously due to the benefits of utilizing parallel computing. Some of
these methods, referred to as complete, find some solution when one exists and reports
nonexistence when present while others, referred to as incomplete, may never terminate3

1 Markus Hannebauer and Sebastian M. Distributed constraint optimization for medical appointment scheduling. In
Proceedings of the fifth international conference on Autonomous agents (AGENTS '01). ACM, New York, NY,
USA, 139-140. DOI=10.1145/375735.376026 http://doi.acm.org/10.1145/375735.376026

. For
large problems, finding a global optimum is not computationally feasible. Different schemes
exist to prevent getting trapped in local optima such as backtracking, breakout, and varying
levels of value commitment. Often the problem can be broken up by use of techniques such as
branch and bound. Following are some newer methods along with an algorithm we have
developed.

2 P. Davidsson, J. A. Persson, and J. Holmgren. On the integration of agent-based and mathematical optimization
techniques. In Agents and Multi-Agent Systems: Technologies and Applications, volume 4496 of Lecture Notes in
Artificial Intelligence, pages 1–10. Springer, 2007.
3 Christopher Kiekintveld, Zhengyu Yin, Atul Kumar, and Milind Tambe. 2010. Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems: volume 1 - Volume 1 (AAMAS '10), Vol. 1.
International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 133-140.

7

The Adopt4

 (Asynchronous Distributed OPTimization) algorithm is unusual in that it allows the
user to find the global optimum or to specify what distance is desired from the optimum. This
algorithm differs from standard backtracking algorithms in that it can change values when the
possibility of a better solution exists, preventing the need for global information to enable
backtracking. This construct allows it to be asynchronous.

Another algorithm used for DCOP, although originally applied to distributed constraint
satisfaction, is the distributed breakout algorithm5

. Distributed breakout allows communication
only among neighboring agents. This reduces computation and allows asynchronous execution.
Neighboring agents will communicate with one another to determine which agent should change
its value. This prevents situations where two neighboring agents’ values will oscillate. Similar to
Adopt, agents do not detect whether they have truly become trapped in a local minimum at any
given point. Instead, they can detect if they are caught in what the authors refer to as a quasi-
local minimum.

Distributed pseudotree optimization-procedure (DPOP)6 has been applied in the domains of
sensor networks and scheduling with great success. It is an extension of the sum-product
algorithm7

 for general DCOP problems. The algorithm first establishes a pseudotree structure for
the problem with nodes representing variables. The reason the problem is structured as a
pseudotree is that back edges exist. The solving of the problem starts from the leaves of the
pseudotree upwards where parents are referred to as target variables. When back edges exist to
disrupt this process of obtaining solutions for subtrees, the variables connected by back edges,
called context variables, must be factored in to obtain a more consistent solution. DPOP ends up
sending a small number of messages, despite some of them being large. They have successfully
applied the problem to a large scheduling problem with 200 agents, 101 meetings, 270 variables,
341 constraints.

A recent algorithm based on branch and bound is named no commitment branch and bound
(NCBB)8

4 P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 161(1-2):149–180, 2005.

. NCBB works by first partitioning the problem so as to enable asynchronous operation.
This allows use of parallelism and significantly reduces the cost of agent communication
compared to other DCOP algorithms. This algorithm initializes its values using a greedy search.
Then it allows each agent to change values with a logical ordering as to prevent the need for
backtracking. NCBB has been shown to outperform Adopt in several domains while being
dominated by DPOP. However, NCBB’s main utility is its low memory footprint.

5 Yokoo, M., and Hirayama, K. 1996. Distributed Breakout Algorithm for Solving Distributed Constraint
Satisfaction. In Proceedings of the Second International Conference on Multiagent Systems. Menlo Park, CA: AAAI
Press.
6 Petcu, A., and Faltings, B. 2005. A scalable method for multiagent constraint optimization. In Proceedings of the
19th International Joint Conference on Artificial Intelligence, IJCAI-05.
7 Frank R. Kschischang, Bsrendan Frey, and Hans Andrea Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions On Information Theory, 47(2):498–519, FEBRUARY 2001.
8 Anton Chechetka and Katia Sycara. 2006. No-commitment branch and bound search for distributed constraint
optimization. In Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems (AAMAS '06). ACM, New York, NY, USA, 1427-1429. DOI=10.1145/1160633.1160900
http://doi.acm.org/10.1145/1160633.1160900

8

An algorithm of our own construction named Anaconda (AutoNomous Agent Constraint
OptimizatioN Distribution Algorithm) has successfully been applied in bandwidth allocation9

.
One notable difference in Anaconda is its ability to handle continuous as opposed to discrete
variables. We represent each variable as an agent trying to locally minimize its errors based on
different constraints. Compared to other DCOP algorithms it is computationally inexpensive. It
requires memory proportional to the number of variables and constraints and sends messages of
minimal size. This fact has allowed us to solve problems with an inordinate number of variables,
often on the order of hundreds of thousands, in minutes as opposed to hours or days. Also, with
constraints categorized by differing objectives, users can adjust the importance of a given
objective in real time. This creates the ability to explore solutions along a Pareto front.

Like other DCOP algorithms, Anaconda is iterative in nature. Variables are initialized to some
trivially low value. During iteration, constraints first measure their error based on the values of
variables which they constrain. Then each variable adjusts its value by an amount weighted for
each class of constraints. In our example, the two classes of constraints are conservation and
operational context. The idea is that the constraints indicate how much and in which direction a
variable should adjust its value in order to reduce the error on a given type of constraint. The
user specifies how much to weight each type of constraint and the limit on how much a given
variable can change its variable in a given timestep. In our example, the value of a variable on a
later timestep derives from these values:

Here represents the value of a variable (flow value in our example) at a timestep . is the rate
by which a variable can adjust itself, named the relaxation rate. is the weight given to a
particular class of constraints and is the amount the flow value should change on the given
timestep. and represent the two kinds of constraints conservation and operational context,
respectively. Despite, or perhaps because ofhaving a simple update equation, the algorithm has
been able to provide strong solutions.

Concluding Remarks

Here we have presented a few of the more common resource allocation problems. These
problems have direct application to command and control. Most military solutions to resource
allocation are done in an ad hoc fashion by human planning. However, finding ways to frame
these problems in a more rigorous manner can yield enormous benefits. We have shown how
distribution can allow normally intractable problems, due to their large size, to be solved in a
reasonable amount of time.

Distribution provides a new method of solving resource allocation problems. Many of these
algorithms can be adapted to account for dynamic situations by their agent based nature. The
presence of stochastic events, previously limiting the usefulness of classical optimization

9 Ridder, J., Brett, S., Burris, C., McEver, J., O’Donnell, J., Signori, D., and Schoenborn, H., “Models and
algorithms for determining inter-unit network demand,” Proceedings of the SPIE Defense, Security, and
Sensing Symposium (2012).

9

techniques, can now be accounted for in order to provide agile solutions. Anaconda allows one to
specify tradeoffs among competing dimensions of a problem and view the solution in real time.
Applications of these methods in command and control will empower analysts to obtain insights
not previously possible.

