
1 
 

17th ICCRTS 
Operationalizing C2 Agility 

 

 

 

Distributed Algorithms for Resource Allocation Problems 
 

Topic:  Networks and Networking 
 

Authors: 

Mr. Samuel W. Brett 
Dr. Jeffrey P. Ridder 

 

Point of Contact:  Mr. Samuel W. Brett 

Organization:  Evidence Based Research, Inc. 

1595 Spring Hill Road, Suite 250 
Vienna, VA  22182 

Telephone:  (703) 287-0371 

Email address:  brett@ebrinc.com 

  



2 
 

Title:    
 
Distributed Algorithms for Resource Allocation Problems 
 
 
Authors: Mr. Samuel W. Brett and Dr. Jeffrey P. Ridder 
 
Paper# XXXXX, Track XXXXX: Networks and Networking 
 
 
Abstract: 
Some of the most challenging problems for decision makers to solve are those that have to do 
with allocation of resources.  These problems are mathematically challenging, and because of the 
uncertain, uncooperative environments in which they must be solved, there is typically little 
choice but to resort to manual, ad hoc methods.  In this paper we discuss the mathematical nature 
of these problems and why they are so difficult.  We then discuss an emerging family of 
algorithms based on distributed processing that are particularly well suited for resource 
allocation in real-world environments.  We also discuss our own contribution, an algorithm 
called Anaconda, which has been applied to bandwidth allocation problems with over 100,000 
variables and produced useful solutions within 10 minutes on aging desktop computers. 



3 
 

Introduction 
 
Amongst the most challenging questions for decision makers to answer are these: What and how 
many resources do I need to accomplish my objectives? How do I ensure that these resources are 
available when I need them? How do I allocate or schedule my resources? Furthermore, the 
environments in which these questions must be answered are typically non-cooperative, with 
incomplete and uncertain information, as well as dynamic, such that the “right” answers are 
changing with time. Due to the complexity of the questions and the environments, algorithmic 
solutions are difficult to achieve and, therefore, decision makers commonly revert to manual 
solutions based on experience. Where algorithmic aids are available, they are typically simplistic 
in terms of their solution method, choosing instead to emphasize graphical presentations of 
information to aid sensemaking. 
 
In this paper, we begin by discussing the nature of the mathematical problems underlying each of 
these questions. The academic literature in mathematics and operations research has long 
recognized these problems, known as resource allocation problems, to be NP-hard, meaning that 
these problems are so difficult to solve that there is no existing method to compute an optimal 
solution in a reasonable amount of time for even modest sized problems. However, we are saved 
by the fact that in real world applications optimality is rarely needed, and instead we are willing 
to accept solutions that are better than those that are manually produced. Next, we review some 
of the traditional solution methods to these problems. Finally, we discuss an emerging class of 
algorithms using distributed solution methods which show great promise in solving the most 
challenging of these problems.  
 
Problems 
 
Examples of such problems include scheduling, supply chain management, network design, 
weapon targeting, sensor networking, and network routing, to name a few. Applications can 
often be overconstrained so that no global optimum even exists, and even feasible solutions may 
not be achievable. Whether there are global optimums in any case is not of the greatest concern. 
Useful descriptions of problems normally have more than one objective. Multiple objectives for 
a problem cause any solution to trade off in one dimension for one or more other dimensions. 
Related to this is the concept of a Pareto front as seen in Figure 1, where a solution is only 
superior to another if it is better in all dimensions. 
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Figure 1: Pareto front with two objectives 

 
The process of scheduling has a wide range of real world applications. In the context of a busy 
workplace, it can often be difficult to find a suitable work schedule for employees. Consider a 
hospital where specialists must be present, patients’ wait times should be minimized, and 
uncertainty inevitably arises. Recently, more advanced global optimization heuristics such as 
genetic algorithms have been applied to this problem. They can often find a good solution to 
increase coverage of specialists for planned appointments, but adding in the reality of drop-ins 
needing immediate medical attention quickly throws the system out of balance. What these 
solutions lack are robustness and flexibility. 
 
A similar example arises in production processes. The well known problem of job shop 
scheduling considers the optimal way to schedule jobs on a set of machines in a manufacturing 
plant. There are algorithms to create decent solutions for static assignments. However, the 
situation of rescheduling where new jobs come into the system while machines are running 
presents a problem. One choice is to reschedule the system as if it were  static every so often. 
This solution method is undesirable as it can be extremely disruptive to the system and produce 
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highly sub-optimal results. A dynamic element of the problem to consider is that machines will 
occasionally fail during production. One way to account for this situation is to build slack into 
the system, but it is often not clear how to build in this slack. Two sample schedules can be seen 
in Figure 2. 
 

 
Figure 2: Two sample schedules 

 
The problem of proper supply chain management has long been an extremely challenging 
problem. Not only do sites have to manage inventory in an uncertain environment but they must 
also plan how to best route their supply networks. Most inventory planning assumes that lead 
times from suppliers come from some known distribution. However, a rapid shift in availability 
of a product could significantly change the optimal strategy. Setting efficient delivery routes is 
often hard because of the number of possible routes available with differing costs and schedules. 
Add in any notion of unreliability of a route and these solution methods break down. One way of 
accounting for this would be to build redundancy into a supply network, but this is costly and 
where and why is not always clear. 
 
Algorithms 
 
In optimization problems, it is often useful to distribute the problem into smaller sub-problems. 
This is especially true when your solution space becomes large. There exist non-distributed 
algorithms that can efficiently compute global solutions to such problems. However, these 
algorithms will rarely scale well in terms of solution quality, and frequently have difficulty in 
producing consistently reasonable local solutions even though the global error is small. This is 
when decomposing a problem becomes useful. The overall solution as well as local areas of the 
solution are directly accounted for and likely to be reasonable. 
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This idea has a formal representation known as a distributed constraint optimization problem 
(DCOP). This problem is quite similar to any other multi-objective optimization problem as it 
optimizes variables while constraining the feasible region of the full solution. The main 
difference is that the problem is partitioned into agents. Each agent has a set of variables and 
constraints to manage as well as a local optimization criterion. The goal of DCOP is to find a 
feasible solution with the highest ranking by all agents determined by some solution ordering 
operator. 
 
DCOP has often been applied in the domain of scheduling. One such example is medical 
appointment scheduling1

 

. Here the problem intuitively decomposes into logical entities. For 
example, they create patient agents to represent patients, their appointments, and constraints and 
diagnostic unit agents to represent diagnostic units, their workplaces, and constraints. There exist 
two competing objectives in this domain, optimal resource usage and patient satisfaction. 
Certainly if every patient had an appointment exactly when they wanted, this would limit the 
amount of resources utilized. But if appointments were scheduled in a manner that would 
maximize resource usage for a diagnostic unit, then patients’ appointments would each be less 
convenient. 

Another area in which multi-agent distribution of problems becomes useful is in supply chain 
management. In a simple example, the problem is decomposed into two decision agents2

 

. One 
agent is the production and production inventory planner while the other is the transportation and 
customer inventory planner. They explore the idea of varying demand and its effects on qualities 
of solutions for both global and agent based optimization. In the second model, each agent has a 
built in optimization protocol. They found that when demand estimates were poor, agent based 
optimization was superior; otherwise, agent based optimization was comparable. So even in 
smaller examples, distributing optimization problems can yield noticeable benefits. 

There are many variations on distributed methods for solving these problems. Algorithms 
operating synchronously, so that each agent acts in succession, are often less useful than 
algorithms acting asynchronously due to the benefits of utilizing parallel computing. Some of 
these methods, referred to as complete, find some solution when one exists and reports 
nonexistence when present while others, referred to as incomplete, may never terminate3

                                                 
1 Markus Hannebauer and Sebastian M. Distributed constraint optimization for medical appointment scheduling. In 
Proceedings of the fifth international conference on Autonomous agents (AGENTS '01). ACM, New York, NY, 
USA, 139-140. DOI=10.1145/375735.376026 http://doi.acm.org/10.1145/375735.376026 

. For 
large problems, finding a global optimum is not computationally feasible. Different schemes 
exist to prevent getting trapped in local optima such as backtracking, breakout, and varying 
levels of value commitment. Often the problem can be broken up by use of techniques such as 
branch and bound. Following are some newer methods along with an algorithm we have 
developed. 

2 P. Davidsson, J. A. Persson, and J. Holmgren. On the integration of agent-based and mathematical optimization 
techniques. In Agents and Multi-Agent Systems: Technologies and Applications, volume 4496 of Lecture Notes in 
Artificial Intelligence, pages 1–10. Springer, 2007. 
3 Christopher Kiekintveld, Zhengyu Yin, Atul Kumar, and Milind Tambe. 2010. Asynchronous algorithms for 
approximate distributed constraint optimization with quality bounds. In Proceedings of the 9th International 
Conference on Autonomous Agents and Multiagent Systems: volume 1 - Volume 1 (AAMAS '10), Vol. 1. 
International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 133-140. 



7 
 

 
The Adopt4

 

 (Asynchronous Distributed OPTimization) algorithm is unusual in that it allows the 
user to find the global optimum or to specify what distance is desired from the optimum. This 
algorithm differs from standard backtracking algorithms in that it can change values when the 
possibility of a better solution exists, preventing the need for global information to enable 
backtracking. This construct allows it to be asynchronous. 

Another algorithm used for DCOP, although originally applied to distributed constraint 
satisfaction, is the distributed breakout algorithm5

 

. Distributed breakout allows communication 
only among neighboring agents. This reduces computation and allows asynchronous execution. 
Neighboring agents will communicate with one another to determine which agent should change 
its value. This prevents situations where two neighboring agents’ values will oscillate. Similar to 
Adopt, agents do not detect whether they have truly become trapped in a local minimum at any 
given point. Instead, they can detect if they are caught in what the authors refer to as a quasi-
local minimum. 

Distributed pseudotree optimization-procedure (DPOP)6 has been applied in the domains of 
sensor networks and scheduling with great success. It is an extension of the sum-product 
algorithm7

 

 for general DCOP problems. The algorithm first establishes a pseudotree structure for 
the problem with nodes representing variables. The reason the problem is structured as a 
pseudotree is that back edges exist. The solving of the problem starts from the leaves of the 
pseudotree upwards where parents are referred to as target variables. When back edges exist to 
disrupt this process of obtaining solutions for subtrees, the variables connected by back edges, 
called context variables, must be factored in to obtain a more consistent solution. DPOP ends up 
sending a small number of messages, despite some of them being large. They have successfully 
applied the problem to a large scheduling problem with 200 agents, 101 meetings, 270 variables, 
341 constraints. 

A recent algorithm based on branch and bound is named no commitment branch and bound 
(NCBB)8

                                                 
4 P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchronous distributed constraint optimization with 
quality guarantees. Artificial Intelligence, 161(1-2):149–180, 2005. 

. NCBB works by first partitioning the problem so as to enable asynchronous operation. 
This allows use of parallelism and significantly reduces the cost of agent communication 
compared to other DCOP algorithms. This algorithm initializes its values using a greedy search. 
Then it allows each agent to change values with a logical ordering as to prevent the need for 
backtracking. NCBB has been shown to outperform Adopt in several domains while being 
dominated by DPOP. However, NCBB’s main utility is its low memory footprint. 

5 Yokoo, M., and Hirayama, K. 1996. Distributed Breakout Algorithm for Solving Distributed Constraint 
Satisfaction. In Proceedings of the Second International Conference on Multiagent Systems. Menlo Park, CA: AAAI 
Press. 
6 Petcu, A., and Faltings, B. 2005. A scalable method for multiagent constraint optimization. In Proceedings of the 
19th International Joint Conference on Artificial Intelligence, IJCAI-05. 
7 Frank R. Kschischang, Bsrendan Frey, and Hans Andrea Loeliger. Factor graphs and the sum-product algorithm. 
IEEE Transactions On Information Theory, 47(2):498–519, FEBRUARY 2001. 
8 Anton Chechetka and Katia Sycara. 2006. No-commitment branch and bound search for distributed constraint 
optimization. In Proceedings of the fifth international joint conference on Autonomous agents and multiagent 
systems (AAMAS '06). ACM, New York, NY, USA, 1427-1429. DOI=10.1145/1160633.1160900 
http://doi.acm.org/10.1145/1160633.1160900 
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An algorithm of our own construction named Anaconda (AutoNomous Agent Constraint 
OptimizatioN Distribution Algorithm) has successfully been applied in bandwidth allocation9

 

. 
One notable difference in Anaconda is its ability to handle continuous as opposed to discrete 
variables. We represent each variable as an agent trying to locally minimize its errors based on 
different constraints. Compared to other DCOP algorithms it is computationally inexpensive. It 
requires memory proportional to the number of variables and constraints and sends messages of 
minimal size. This fact has allowed us to solve problems with an inordinate number of variables, 
often on the order of hundreds of thousands, in minutes as opposed to hours or days. Also, with 
constraints categorized by differing objectives, users can adjust the importance of a given 
objective in real time. This creates the ability to explore solutions along a Pareto front. 

Like other DCOP algorithms, Anaconda is iterative in nature. Variables are initialized to some 
trivially low value. During iteration, constraints first measure their error based on the values of 
variables which they constrain. Then each variable adjusts its value by an amount weighted for 
each class of constraints. In our example, the two classes of constraints are conservation and 
operational context. The idea is that the constraints indicate how much and in which direction a 
variable should adjust its value in order to reduce the error on a given type of constraint. The 
user specifies how much to weight each type of constraint and the limit on how much a given 
variable can change its variable in a given timestep. In our example, the value of a variable on a 
later timestep derives from these values: 
 

 
 
Here  represents the value of a variable (flow value in our example) at a timestep .  is the rate 
by which a variable can adjust itself, named the relaxation rate.  is the weight given to a 
particular class of constraints and  is the amount the flow value should change on the given 
timestep.  and  represent the two kinds of constraints conservation and operational context, 
respectively. Despite, or perhaps because ofhaving a simple update equation, the algorithm has 
been able to provide strong solutions. 
 
Concluding Remarks 
 
Here we have presented a few of the more common resource allocation problems. These 
problems have direct application to command and control. Most military solutions to resource 
allocation are done in an ad hoc fashion by human planning. However, finding ways to frame 
these problems in a more rigorous manner can yield enormous benefits. We have shown how 
distribution can allow normally intractable problems, due to their large size, to be solved in a 
reasonable amount of time.  
 
Distribution provides a new method of solving resource allocation problems. Many of these 
algorithms can be adapted to account for dynamic situations by their agent based nature. The 
presence of stochastic events, previously limiting the usefulness of classical optimization 
                                                 
9 Ridder, J., Brett, S., Burris, C., McEver, J., O’Donnell, J., Signori, D., and Schoenborn, H., “Models and 
algorithms for determining inter-unit network demand,” Proceedings of the SPIE Defense, Security, and 
Sensing Symposium (2012). 



9 
 

techniques, can now be accounted for in order to provide agile solutions. Anaconda allows one to 
specify tradeoffs among competing dimensions of a problem and view the solution in real time. 
Applications of these methods in command and control will empower analysts to obtain insights 
not previously possible. 


