DEFENCE

DÉFENSE

Automated Workflow Reconstruction for C2 Experimentation

Dave Allen Defence Research and Development Canada Presentation to the 17th ICCRTS Fairfax, VA, June 2012

Defence Research and Recherche et développement Development Canada pour la défense Canada

Outline

- 1. Command and Control Assessment Framework
- 2. Process Assessment Limitations/Issues
- 3. Automated Tool to Process Reconstruction
- 4. Evolution of C2 Assessment and Experimentation Methodology
- 5. Conclusion

Key Elements to C2 Assessment

- C2 assessment needs to include team and cannot be limited to a single individual.
 - "C2 deals with distributed teams of humans operating under stress and in a variety of other operating conditions." D. Albert, COBP for C2 assessment. CCRP, 2002.
- Need to incorporate people, process, and technology and their interfaces:
 - Interfaces: People-people, people-technology, peopleprocess, process-technology, etc.
- Assessment needs to go beyond controlled experiments and include observation studies where room is provided for agile behaviour.

Relevant Models to Assess C2

- NATO SAS-065: C2 Maturity Model

 Rough C2 classification based on distribution of information (outcome), patterns of interaction (process), and allocation of decision rights (condition).
- Decision-Making:
 - OODA Loop (Boyd)
 - Klein's Recognition Prime Decision
 - Gigerenzer's Fast&Frugal
- Group/Team Dynamic:
 - Ajzen's Theory of Planned Behavior (Capability, Authority, Responsibility – CAR)
 - Webb's factor for ineffective collaboration
 - Weick's Contextual Rationality

Process Analysis Issues

- Missing information flow data:
 - Direct information exchange through email, chat logs, phone easier to capture than indirect exchange.
- Increase used of complex C2 systems to transfer information.
 - Some with limited logs.
 - Acquired through FMS Case with limited access to modify.
 - Limited capability to interfere with database when in Secure mode.
- Various processes or instances of the same process occurring simultaneously.

Type of Processes Investigated

- C2 process in support of missions such as:
 - Fire support request
 - Troops in contact
 - Medical Evacuation
 - Close Air Support (including GCAS, XCAS)
 - -Close Combat Attack

Process Capture and Mining Requirements

- Capture the processes performed by a <u>distributed</u> team of operators performing their <u>work on</u> <u>computers</u>.
- Capture context in which actions are performed (information available to the operators performing a given action).
- Allow replay of captured data in a synchronous manner.
- Support the search and mining of captured data.
- Support an autonomous identification of specific actions and the computation of statistics of sequence of actions.
- Support the comparison of expected vs. observed processes.

9

Terminology Used

- Action: Complete observable movement performed by an operator (e.g., striking a key, a set of continuous eyes saccade).
- **Task**: Activity that is accomplished by a single operator or performed simultaneously by a group of operators and which leads to a single output (e.g., producing a brief).
- Approach: Attitude or manner (modus operandi) to perform some task.
- Method: Way of accomplishing specific tasks.
- **Procedure**: Series of actions specifying a precise way of accomplishing a task.
- **Process**: Collection of causally related tasks, which solve a particular issue. It includes: the set of interrelated tasks; resources assigned to the tasks; the set of expected outputs or goals; the set of possible triggers (WorkFlow Net).

Data Capture

- The content of the audit trail includes:
 - Logs from communication tools (chat, email, phone, etc.)
 - All keytrokes time tagged
 - All mouse click time tagged + location in screens
 - Capture of screen snapshots at user specified intervals (~5 Hz).

Data Mining and Analysis Overview

Data Mining and Analysis Components

- An <u>audit trail browsing</u> component to review and vet the captured data;
- A <u>text extraction</u> component to identify the information content within the operators displays (from the screen snapshots);
- A <u>search functionality</u> to mine all extracted data;
- A <u>tagging functionality</u> to cluster and label particular actions;
- An <u>association functionality</u> to associate a set of actions with a given task;
- ¹³• A results <u>visualization module</u>.

User Interface Components

Search Panel

Data Visualization Panel

DEFENCE

System Particularities

- Text Extraction: An Optical Character Recognition identifies screen snapshot contents (uses various transformation: Hough, Huesaturation, etc.).
- Data Mining: Levenshtein distance used for including incorrect entries.
- Tagging: Both manual and automated tags. Leads to the clustering of associated events.
- Visualization: Gantt charts, Graphs, Networks
 - SNA based on communication logs
 - Time sequenced SNA
 - Operators statistical data
 - Comparison expected vs. observed processes

Visualization Examples

TIC at ruins (Soft) COI#127 (Hard) down helo (Soft) mortar attack (Hard) INS (Hard) Statistics

Process Capture and Mining Benefits

• Benefits will include:

17

- Improved investigation of team synergy and synchronicity (not always obvious to operators)
- Testing of established Tactics, Techniques, and Procedures (TTPs).
- Review of context leading to human errors.
- Operators ability to review own actions and learn.
- Support the expansion of the Canadian Forces Warfare Centre role from experimentation into organizational learning role.

Broadening the Experimentation **EFENCE DEFENSE** Approaches

• Equivalence between software testing and experimentation methodologies:

Software Testing	Experimentation	Particularities
Manual testing	Table-top experiment	Abstract Case Studies
Script-based testing	Simulation-driven experiment	Detailed script encapsulated in M&S
Keyword-driven	Adaptive simulation-	Script driven testing
testing	driven experiment	with human adaptation
Model-based testing	Model-based	Models are used to
	experiment	guide the testing

Conclusion

- C2 is a complex socio-technical entity requiring a broad (people, process, technology) and careful assessment.
- Process assessment is difficult due to the distribution of the process, non-direct communication, and often lack of data.
- Contextual data is required for adequate interpretation and review of activities.
- Detailed manual analysis is possible for a small team of operator and short experiments but automation is needed in other situations.
- The automated process mining and analysis tool allows the testing of TTPs and the development of model driven experiments leveraging architecture
 ²⁰ framework models.

Questions?

Defence Research and Recherche et développement Development Canada pour la défense Canada