Services to Support Experimentation for Operational Use of Simulations in Coalition Command and Control

Dr. Mark Pullen, Douglas Corner, Lisa Nicklas and Priscilla McAndrews
Presenter: Douglas Corner
George Mason University C4I Center
{mpullen,dcorner,lnicklas,pmcandre}@c4i.gmu.edu
Presentation Overview

• MSDL/C-BML background
• Experimentation in NATO MSG-048
• Architecture and functions of SBMLServer
• Converging MSDL with C-BML
• Expanding SBMLServer to support MSDL
• Role of Status Monitor and Control
• Early application of new capability
• Conclusions

NOTE: This is about a capability, not an experiment.
MSDL/C-BML Background
Vision

• We envision a day when the members of a coalition interconnect their networks, C2 systems, and simulations simply by turning everything on and authenticating, in a standards-based environment.

• A major step forward in C2 for coalition agility.
BML Purpose and Operation

• Facilitates C2-Simulation interoperation
 – Exchange of Orders and reports in standard format

• Current architecture uses a repository service to hold state submitted by client C2 and Simulation systems
 – Web service with XML input – Network Centric
 – Data stored in JC3IEDM and can be replicated

• Now using SISO draft Coalition BML (C-BML) standard
Practical Requirements for BML Operation

• Coordinated initialization
 – All participating systems must share common initialization data
 – This requires assembling and publishing data from the coalition C2 and simulation systems

• Mechanism to display and synchronize operations with the system-of-systems
 – All operators need to know status of all systems
 – Master Controller starts and stops the simulations
 – Preferred interface: automatic via Web service
Evolving BML Architecture

Command and Control Systems

BML Messages (Orders, Reports, etc.)

BML Web Services + Initialization and Synchronization

JC3IEDM and other databases

Simulation Systems
SBMLServer Architecture and Functions
Scripted BML Web Services

• Middleware functions don’t change
 – Mapping BML to JC3IEDM and push/pull to database
 – Program these once and get them right
• Interpreted WS offers flexibility
 – Rapid implementation of new BML constructs
 – Easy to modify underlying data model
 • MIP standard also continues to change
 – Reduces time and cost for prototyping
 – Scripting language provides a concise definition of BML-to-data model mappings
 – Although bugs still happen, the number of possible mistakes is far smaller
• Scripted operation may, however, be slower
 – Multithreading helps this
 – But a hard-coded implementation is likely to perform better
The Old Way: IDEF1x Mapping Definition

JBML mapping to JC3IEDM

Schema field <What>

Schema Reference:

```xml
<xsd:complexType name="CommandType">
    <xsd:sequence>
        <xsd:element name="What" type="GroundBMLWhatType"/>
        ...
    </xsd:sequence>
</xsd:complexType>
```

1. **action**
 - action-id
 - category-code

 Used as the <OrderId>

2. **action-task**
 - action-task-id (FK)
 - category-code
 - activity-code

 category-code is set to ‘ORDER’ (‘ORD’)

The Old Way: IDEF1x Mapping Definition

Not machine readable though highly structured

Script is a concise XML coding of this

Services to Support Experimentation

ICCRTS’12-085
Scripted BML WS Design

• Basic operations: *push* and *pull*
 – Currently, servers for SQL and RI databases
 – Scripts implement BML Orders and Reports

• Script defines implementation of Business Objects (constituents of the higher-level BML grammar) over the JC3IEDM data model
 – BO is an XML subtree rooted at a defined node in the XML file – can invoke other BO

• Interpreter uses two files plus WS input
 – Mapping file contains script
 – BML schema file provides necessary context
 – XML namespace capable
Scripted BML WS Configuration

Two implementations: MySQL and SIMCI RI
Publish/Subscribe in SBMLServer

- Using Publish/subscribe, clients identify the categories of information they need – they subscribe to Topics.
- Server sends them a copy of every update associated with each subscribe Topic.
- More timely updates and a dramatic reduction in overhead.
- Avoids inefficiencies:
 - Server must re-read information written to database.
 - Redundant polling.
 - Separate server cycle needed for each client.
- SBMLServer implements Dynamic Topics.
 - Can be changed during operation.
Publish/Subscribe Architecture
Message Selectors for Dynamic Topics

Services to Support Experimentation
ICCRTS’12-085
MSDL and C-BML
MSDL Enables Effective Initialization

• MSDL is a SISO standard that grew out of US Army OneSAF program
• Intended to reduce development time and cost by re-use of scenarios
• Information to initialize:
 – Task Organization Definition
 • Name and type of unit, parent and child relations
 – Tasking Definition
 • Who/What/When/Where/Why
 – Tactical graphics
 • US MIL STD 2525C / NATO APP-6C
Converging MSDL and C-BML

• MSDL has well-developed Task Organization
 – C-BML has only a placeholder
 – Conclusion: use MSDL TaskOrg format

• C-BML has well-developed Tasking Definition
 – MSDL has only a placeholder
 – Conclusion: use C-BML Tasking

• Standards for tactical graphics well established
 – Conclusion: use MIL STD 2525C / NATO APP-6C
 – NOTE: May not be completely consistent with JC3IEMD
Expanding SBMLServer to Support MSDL
expanding SBMLServer to support initialization and synchronization
MSDL Scenario File Contents

- Force/Sides
- Units
- Equipment
- Installations
- Overlays
- Graphics
SBMLServer Support for MSDL

- Coalition C2 and simulation systems derive from different nations
 - And reflect different doctrines
- Ideally, each nation will employ its own C2 and simulation with its own forces
 - All interoperation through BML
- Each system contributes to the overall initialization MSDL file
 - SBML accepts individual files and aggregates them
- On command of Master Controller, the aggregated file is published to all systems
SBMLServer Architecture with MSDL
Aggregating MSDL Scenario Files

Diagram:

Administrator - Initialize → Master Controller

Client - Add Units and Relations → SBML Server

Client - Add Units and Relations

Client - Add Equipment and Relations

Administrator - Publish

Publish

MSDL
Status Monitor and Control
Why Status Monitor and Control?

- Operators of C2 and Simulation systems maybe distributed
 - Unable to coordinate by voice
- Even when co-located, in NATO MSG-048 six national C2 systems and five national simulations were difficult or impossible to coordinate
- Our solution to this is a webpage to display status
 - With inputs from each participating system and from Master Controller
How Status Monitor and Control Works

- Each system, and the Master Controller, has a separate input webpage
 - Input by dropdown containing all possible expected states of that system
 - Plus comment field for unexpected situations
- Master Controller inputs go-to-states
- Systems input state to which they have gone
- Current status displays to all pages
 - Color-coded for easy detection
- Automated interface possible through Web service
MSG-085 Status Monitor

MASTER CONTROLLER STATUS

Scenario: scenario1
Scenario MSDL status: not started
Current Order: off-line
Number of observers: 2

CLIENT STATUS

C2IS1-rpt1 Current Status: stopped
Change status:
Add/change comment: power down

<table>
<thead>
<tr>
<th>Client</th>
<th>Status</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2IS1</td>
<td>stopped</td>
<td>power down</td>
</tr>
<tr>
<td>C2IS2</td>
<td>setting-up</td>
<td>delay</td>
</tr>
<tr>
<td>C2IS3</td>
<td>setting-up</td>
<td></td>
</tr>
<tr>
<td>C2IS4</td>
<td>MSDL Pushed</td>
<td>all OK</td>
</tr>
<tr>
<td>C2IS5</td>
<td>setting-up</td>
<td>waiting</td>
</tr>
<tr>
<td>C2IS6</td>
<td>MSDL Pushed</td>
<td></td>
</tr>
<tr>
<td>C2IS7</td>
<td>off-line</td>
<td></td>
</tr>
</tbody>
</table>
Early Experience

• Services described here were used in prototype form for InterService/Industry Training Simulation and Education Conference (I/ITSEC) 2011
 – Demo in NATO booth

• Part of overall effort to deploy effective operational experimentation by MSG-085

• Results were good:
 – Interoperated initialization and orders for UK, Norway, USA systems operating over Internet
MSG-085 I/ITSEC 2011 DEMONSTRATION

MSDL for initialization, C-BML for execution

COALITION TRAINING CAPABILITIES
Combined C2-Simulation Initialization
Automated Order Execution
Automated Reporting

DISTRIBUTED TRAINING
- Simulation Node
- C2 Node
- Coalition Services

TRAINING VIGNETTES
- Air Reconnaissance
- Combined Ops with Logistics
- Ground Maneuver
System Architecture for I/ITSEC 2011

USA - I/ITSEC & GMU
- ICC/JADOCS Clients
- JSAF GUI
- OneSAF
- GMU WS 2.5 Status Server VPN server

Router

Internet
- VPN Tunnel

UK
- ICC/JADOCS Servers
- JSAF
- UK C-BML Translators

Norway
- NorTAC

C4i Center

Merged MSDL

MSDL

George Mason University
Coalition Services Process I/ITSEC’11

• The overall process was coordinated using SMCS.
• Master Controller started MSDL service from GMU (VA)
• C2 system in Norway entered MSDL for basic scenario.
• Air systems in England added their MSDL inputs.
• SBMLServer published consolidated MSDL initialization.
• C2 systems in Norway (NorTAC) and England (ICC/JADOCS) submitted BML orders.
• JSAF simulation carried out the orders.
• Tactical Reports were generated by JSAF and returned to the C2 systems via the SBMLServer.
Conclusions

• Early experience successful
• More experience and convergence needed
• No evident technical barriers
• We hold to our vision:
 – When a future military coalition is formed, its components simply interconnect their networks, C2 systems, and simulation; authenticate, and start operations.
• Our open source software is intended to support progress toward that future.

http://c4i.gmu.edu/OpenBML