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Abstract: We examine the communication time series of a fully-networked Army coalition
command and control organization. The network comprised two echelons of command at the
Division and Brigade levels over a two-week military scenario exercise. We used time series
analysis to predict the communications record based on an external work variable of the number
of important scenario events occurring across time. After taking into account structural features
of the time series we examined the remaining variability in email and phone communication. We
found that the exercise scenario events were not a significant predictor of the Divisional
communications, which were best fit by an auto-regressive model of order 1. The occurrence of
scenario events, however, did predict the Brigade communication time series, which were well
fit by a lag dependent variable model. These results demonstrate that Brigade communications
responded to and could be predicted by battlefield events, whereas the Division communications
were only predicted by their own past values. These results highlight the importance of modeling
environmental work events to predict organizational communication time series and suggest that
network communications are perhaps increasingly dependent upon battlefield events for lower
echelons of command closer to the tactical edge.
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Time Series Modeling of Army Mission Command Communication Networks: An Event-
Driven Analysis

1. Introduction

Advances in information and network technology continue to transform the way organizations
communicate and operate, so much so that the emergence of networked forms of organization
lies at the core of the economic, military, political, and social fabric of the 21% century (Castells,
1996). In a networked organization, the number of potential collaborations is virtually limitless,
as is the availability of information. While this can present a number of challenges, operating in
such a broadly collaborative and information-rich environment has the potential to confer
unprecedented advantages in directing and responding to work events (National Research
Council, 2005).

Networked organizations are increasingly dependent upon robust human interactions to enable
timely communication and decision-making, particularly in response to critical collaborative
work events. This is perhaps most evident in military command and control networks operating
in adversarial, time-stressed battlefield work environments, but also applies to critical event
responses within health care networks, emergency response networks, corporate networks, and
energy infrastructure networks, among others. As in Monge and Contractor (2001), we refer to
this type of network as a communication network, which defines the behavior of networked
organizations by the flow of messages among communicators across space and time. We take a
time series analysis approach to understanding patterns of communications in an organization
using data collected from a study of a real-world Army command and control (C2) mission
environment. Our goal is to determine how well communication may be predicted by the
number of important environmental events occurring over time (i.e., an external work variable).
Environmental events drive the work of the organization, which manifest as communications.
Understanding the diffusion of information is central to work-directed organizational
effectiveness (Wang et al. 2011) and constitutes a major research area that addresses timely real-
world challenges with important potential applications.

1.1. Communications Time Series — Approaches

Giving weight to discrete environmental events as predictors is a unique approach to the study
of communication time series. Barabasi and colleagues have examined the time series of inter-
message intervals at the individual level, showing that human communications are punctuated by
periodic bursts of rapidly occurring events followed by long periods of inactivity, which they
argue arises from an internal priority queuing process (Barabasi 2010; Vazquez et al. 2006). The
broad social science literature, however, is focused on network structures and how they facilitate
and constrain human dynamical behaviors (for a review, see Kilduff and Brass 2010). Structural
approaches use graph theoretic approaches to map patterns among complex human network
interactions. Social network analysis may be used to examine relational and structural patterns in
networks and is a widely-applied and increasingly influential technique. Monge and Contractor
(2001) identify as many as nine theories and a multitude of mechanisms that have been used to
explain the dynamics of organizational networks using social network analytic approaches.



Understanding how an organization functions, however, also requires examining the
environmental context of the organization (see Ancona and Caldwell 1992). This argument is not
new. In a seminal book, The Sciences of the Artificial, Nobel laureate Herb Simon (1969) offers
the parable of an “ant wandering on a pebbled beach” to suggest that the apparent complexity of
human behavior might be due to environmental factors:

“An ant, viewed as a behaving system, is quite simple. The apparent complexity of its behavior
over time is largely a reflection of the complexity of the environment in which it finds itself. |
should like to explore this hypothesis with the word ‘man’ substituted for ‘ant’.”

Theorists in the ‘grounded cognition’ movement (Clark 1997; see Barsalou 2010 for a review)
have recently adopted this argument by noting that much of the dynamics of human behavior
stem from reciprocal causation links to the environment as well as to other humans (e.g.,
economic systems), and thus the environmental context must be fully considered. We take this
perspective here. We use time series analysis technigues to examine the record of email and
phone communications in an Army command and control network to discover the extent to
which we can predict the organizational communications time series given a second time series
of significant work events.

1.2. Time Series Data and Regression Analysis

The general purpose of regression analysis, whether used in time series or cross-sectional data, is
to determine the existence and form of the relationships between variables. Regression analysis
typically shows how some dependent variable is affected by changes in one or more independent
variables.

In the field of marketing, this explanation of one variable in terms of others is known as an
empirical response model (Parson and Schultz 1976). The overwhelming majority of these
models use sales or market share as a dependent variable. Companies construct sales response
models to determine what factors (e.g. advertising) influence or drive their sales and to plan
marketing strategies accordingly. Sales is the most direct outcome measure of marketing
actions, so models with sales as the dependent variable are very common (see Assmus et al. 1981
for a meta-analysis).

In our examination of networked communications, we use the timing of work events as an
independent variable (analogous to advertising in the marketing example), and the
communications time series as the dependent variable (analogous to sales). A key consideration
is that the network communications reflect both the work process itself and the dissemination of
both intermediate and final work products as they occur across the communication network over
time.

There is some evidence to suggest that organizations increase communications in response to
critical events. In a detailed analysis of the email corpus of the Enron Corporation, Diesner and
Carley (2005; see also Murshed et al. 2007) found that during the crisis period of financial
insolvency, the volume of communications intensified among employees, becoming more
diverse with respect to established contacts and formal roles. The Enron crisis is instructive as a



network with a critical period of failure. Other researchers have also found dramatic changes in
email usage following major (typically singular) environmental events in organizational
networks, such as after a corporate merger (Danowski and Edison-Swift 1985) or after
downsizing (Shah 2000). Remaining unexamined is whether communications can be understood
in response to more routine and recurrent work events, as opposed to rare crisis events. In our
study, the work events are many and varied, and they are formally established as part of a
scenario in a military training event exercise. Social network analysis and time series analysis
techniques were used to determine the characteristics of communications in the hierarchical
network (i.e., a Division and subordinate Brigade staff) during the scenario-based training event.
We seek to determine whether the communication time series can be explained and/or predicted
on the basis of a time-line of work events.

2. Method

The communications and scenario-event data described in this paper were collected at a two-
week U.S. Army simulation-based training event. The Mission Command Battle Laboratory at
Fort Leavenworth, Kansas conducted a joint experiment/exercise— with aspects of both an
experiment and a training exercise— focused on the operations of the mission command staff
composed of a U.S. Division headquarters (n=51) and subordinate U.K. Brigade headquarters
(n=28). The network architecture and digitized nature of the event allowed examination of staff
communications in a distributed, network-enabled coalition environment. The participants were
active duty Soldiers and officers, organic to their military unit. Below we describe the defining
characteristics of this military ad-hoc organization, and of the tasks they were required to
complete.

2.1. Defining Characteristics of the Organization

a. Real organization: Several groups participated in the exercise, including a representative
command and control headquarters of a U.S. Division, a fully-staffed U.K Brigade, and
two partially-staffed U.S. Brigade Combat Teams. The participating organizations were
existing units, whose staff execute differentiated, well-specified, but also interdependent
roles. The units operated in a distributed-fashion over a communications network using
specialized military command and control hardware and software.

b. Convened to accomplish a particular training mission: The military organization was
staffed and convened specifically to execute and accomplish a particular two-week long
training mission.

c. Common mission: Members are interdependent in their work and decision-making about
how to proceed with the mission. The organization functions as a purposive social
system, where members are readily identifiable to each other by role and work
interdependently to accomplish one or more collective objectives (Hackman 2008;
Hackman and Katz 2010). The responsibility for performing the various tasks and sub-
tasks necessary for mission success is divided and assigned among the staff.



2.2. Defining Characteristics of the Tasks

The training scenario in a military exercise generates many overlapping series of event-driven
tasks, the resolution of which requires a high degree of coordination among the participating
command and control staff. The training scenario involved a coalition environment with a U.K.
Brigade operating under the command of a U.S. Division, focused on coalition interoperability.
Two U.S. Brigades also operated under the command of the U.S. Division, but neither was fully
staffed nor fully engaged by scenario events. The scenario focus was on the networked
organizational communications within and between the U.S. Division and U.K. Brigade.
Researchers have long pointed out that the nature of a task has a great influence on the steps and
processes a group uses to perform the work (e.g. McGrath and Kravitz 1982; Roby and Lanzetta
1958). The tasks of groups in the military domain considered here have four distinguishing
features:

a. Specific Presenting Problems: The military command and control staff is tasked with
addressing specific problems that occur in the unit’s area of operations (AO). The
military staff organization must monitor key events and successfully plan and coordinate
an effective response, given limited resources. The presenting problems may be kinetic
events, such as an improvised explosive device, or civil-military in nature, such as
responding to a civil demonstration. At other times, the presenting problem may be a
time-sensitive intelligence report of enemy activity that needs to be analyzed and
corroborated. At any given time, the organization must coordinate a response to many
such presenting problems.

b. Adherence to specific tactics, techniques, and procedures: The groups adhere to
formalized military work routines and processes that are known in advance, delegating
specific work responsibilities for the various sub-groups and individual members.

c. Addressed immediately: The group operates in an urgent, time-sensitive work
environment and is required to immediately coordinate responses to work events that may
have adverse cascading effects if not addressed in a timely manner.

d. Results in collaborative work products that need to be coordinated and disseminated:
The group is expected to construct specific, detailed material products that will exist
independently of the group process or the individual members themselves. For instance,
the Commander and his command elements require regular reports from the staff in order
to achieve situational awareness of the battlefield environment. The work process itself
and the dissemination of both intermediate and final work products occur across the
communication network over time.

2.3. Data Collected

Communications: Telephone (VolP) and email were the two primary methods of communication
between staff members during the exercise. For each phone call made and email message sent in
our dataset, three pieces of information were automatically electronically logged: the sender, the
receiver, and the time of the communication’s initiation.



Scenario Events: We also collected information about the various scenario events, including: the
time at which each scenario event occurred and the group that was affected by each event. The
specific timing of the significant events was known to the researchers ahead of time, but not to
the military units participating in the training exercise. Knowing the scenario event timeline is
advantageous to researchers interested in examining the correspondence between specific work
events (i.e. presenting problems) and the time series of communications.

2.4. Data Analysis — Social Network Analysis

The first step in analyzing this communications dataset was to construct and visualize it as a
directed network, shown in Figure 1. Each node in the network represents an individual, and
each link represents at least one communication event between two individuals during the
exercise. The individuals belonging to the U.S. Division are blue, and those belonging to the
U.K. brigade are red. There were 51 individuals in division roles and 28 in U.K. brigade roles,
comprising the total 79 nodes in the network.

@ Division
@ UK Brigade

Figure 1. Directed network of communications within and between the U.S. Division and U.K.
Brigade.

While each individual in this network was free to communicate with any other, an important
feature of the network is that it is composed of two groups differing in both echelon (the brigade
is a subordinate element of the division) and nationality (U.S. vs. U.K.). Thus we are interested
in both the overall number of links and whether those links connect individuals in the same or
different groups. In Figure 2, the network is broken out to depict the internal and external links.
The figure shows more internal than external communications and denser internal
communications in the Division group than in the U.K. brigade.



Internal Links @ External Links O

Figure 2. Internal links within the Division and Brigade, and external links between the two
groups.

2.5. Data Analysis — Time Series Analysis

The above analyses provide an interesting depiction of the overall distribution of
communications within and between groups in the U.S. Division and U.K. Brigade; however,
they do not address time. Analyzing the communication events and network statistics as time
series allows us to explain the changing dynamics of the collaboration and possibly forecast
future communication patterns.

The time series analysis first required aggregating the data into discrete temporal intervals. The
appropriate interval size over which to integrate depends on the overall time span and resolution
of the data in question. We chose one hour intervals to allow for both a sufficient amount of
variability between intervals and a large enough number of time points (t = 48) while avoiding
too many empty intervals. Thus, we aggregated three variables into intervals of one hour for each
of the two groups:

1) External Links In - the number of links directed from an individual outside of the
group to an individual within the group.

2) External Links Out - the number of links directed from an individual within the group
to an individual outside of the group.

3) Internal Links — the number of links directed from an individual within the group to
another individual within the group.

These three variables are plotted against time for the two groups in Figure 3. Also noted on this
figure is the time point that marks the start of the second week of the exercise, as well as the five
time points during which there was a planned crash in the computer network. One effect of this
crash was to prevent all electronic communication; however, phone communications were still



possible. Below these three communication variables, we plot the time series (aggregated by
hour intervals) of the number of scenario events that affected both groups.
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Figure 3. Time series of communications and scenario events for the U.S. Division and the U.K.
Brigade over 48 hours of the military exercise.

We are interested in predicting the fluctuations in volume of communication links using the
number and timing of the exercise events. However, time series data require additional
considerations than are typically necessary for a straightforward regression analysis with cross-
sectional data. Random sampling from the larger population is assumed in typical cross-sectional
data, such that each case is independent of the others. In time series data, sequential observations
of a single case are collected. Instead of each observation representing a random draw from a
larger population, the sequence of observations represents one possible realization of a stochastic
data generating process. The corresponding assumption to random sampling when using time
series data is stationarity: the expected value of the variable of interest must be constant over

time.

Assuming the variables are stationary, the sequential observations that are collected in time
series data are typically not independent, but are often serially correlated. One of the assumptions
required by Ordinary Least Squares (OLS) regression is that the residuals be independent of each
other (i.e., the magnitude of one error must not be predictable from the others). If there is serial
correlation in the dependent variable, and it is not accounted for by the explanatory variable(s),
this assumption will be violated. As a result, past values of the dependent variable are often

included as predictors in time series analysis models.




2.6. Stationarity: Trending and Structural Breaks

As described above, one of the key conditions of time series analysis is that the variables be
stationary. Figure 3 suggests that our time series data may meet this assumption. Many of the
sequences appear to display a downward trend with time. In addition, two features of the
exercise seem likely to exert an influence on the values of the dependent variables. The first is
the transition between Week 1 and Week 2 of the exercise. The second is a nearly five-hour time
period during which a planned computer network crash occurred. Both of these events might be
expected to shift the mean of the dependent variable (DV) to a different value at the times they
occurred, which is a violation of stationarity known as a structural break. Trending and
structural breaks can be included in a model along with exogenous variables; however, they can
artificially improve fit statistics, and so it is often more appropriate to remove their effects before
fitting a model. This is done by simply regressing the DV on these variables, and using the
residuals from this regression as the new DV of interest. This new DV will have a mean of zero,
and if there were no other factors causing nonstationarity, will be stationary.

Accordingly, we regressed our three communication variables on a linear time variable and two
dummy variables, one representing the transition between weeks and one representing the
network crash. The residuals from this regression (Figure 5) represent the variability in the
communications variables that are not explained by a linear trend with time or the two structural
variables.

3. Results
3.1. Time Series Models

There are many varieties of models to fit time series data. We were guided first by theory in
choosing among these options (i.e., what is expected to affect the volume of communications in
this exercise) and second by parsimony. Our goal in fitting time series models to the data was to
determine whether the volume of communications could be predicted based upon previous
communications and/or the dynamic volume of scenario events encountered, and whether
communications are predicted differently in the U.S. Division than in the U.K. Brigade. We
started by examining models that included up to two lags of the DV and the IV, as it is plausible
that events and communications from two hours previous could be predictive of communications
in the current hour. Terms that were not significant for any of the DVs were removed, and the
Akaike Information Criterion (AIC) was assessed as a measure of model fit. In the end, the
simplest model that provided the best fit for most of the DVs in the UK Brigade was a Lag
Dependent Variable model with one lag of the DV (communication) and only the contemporary
values of the 1\V(scenario events) included as predictors. In the Division, the best model was an
autoregressive model of order 1. These two types of models are described in detail below.

Lag Dependent Variable Model

The Lag Dependent Variable (LDV) model differs from simple linear regression in that it
includes one or more lags of the dependent variable in its set of predictors, meaning that previous



values of the dependent variable are used to predict the current value. With one independent
variable and a single lag of the dependent variable, it takes the following form:

Yi= 0o+ oY1 + Bxct &

The inclusion of the lagged terms also makes interpretation of the coefficients on the
independent variables somewhat more complicated than simple linear regression where the
interpretation of the slope parameter is straightforward; it is the immediate change in the value of
y predicted by a one-unit change in x.

An analogous understanding of the relationship between variables in the LDV can be obtained by
calculating the short and long run effects of the 1V upon the DV. The short run effect is the
immediate change in the DV caused by a temporary one-unit increase in the 1V. If x were to
increase by 1 for a single time point and then return to its prior value in the next, the short run
effect is the corresponding immediate change in y. It is equal to B, the coefficient on the
independent variable. The long run effect is the asymptotic or eventual change in the DV caused
by a permanent one-unit increase in the 1V. If x were to increase by 1 and stay at that new value
for all future time points, the long run effect is the corresponding eventual change iny. It is
calculated by dividing B by one minus oy, the coefficient on the lagged dependent variable.
Analogous to the intercept term in a simple regression, the equilibrium of the process is
calculated by dividing oo by one minus oy.

Figure 4 depicts the relationship between the two coefficients and the short and long run effects
in the LDV. The top panel is a plot of the independent variable over time, with one transient one-
unit increase and one permanent one-unit increase. In the middle panel, the corresponding
changes in the dependent variable over time are plotted, using a constant value for § and three
different values of oz, In the bottom panel, a4 is held constant, and f3 is allowed to vary. This
figure shows that  determines the amplitude of both the short and long run effects, while oy
determines the time course of the effects, as well as the amplitude of the long run effect.
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Figure 4. Short- and long-run effects in the Lag Dependent Variable model.

Autoregressive Moving Average Model:

We did not find significant contributions of the scenario events to the communication variables,
whether contemporary or lagged values were used in the U.S. Division data. There were,
however, significant autocorrelations in the dependent variables. As a result, we found that
fitting an autoregressive moving average (ARMA) model to the data provided a good
explanation of the dynamics. An ARMA(1,1) model takes the general form:

Yi =g+ D 0iYei T D Oii+ &



No external regressors are included, and so this model can be understood as only predicting
future values based upon internal dynamics.

We used the Box-Jenkins method for selecting the appropriate ARMA model, finding that the
Division data is best explained by an AR(1) model, meaning that it includes one lag of the
dependent variable and no moving average term. This takes the form:

Yi=0dg T oY1t &

In this model, the dependent variable is predicted only from its own previous behavior, and
because the model is AR of order 1, only the immediately previous value of y is used to predict
the current value. In contrast to the LDV model, the understanding of short and long run effects
of the independent variable upon the dependent variable does not apply in this model because
there are no external independent variables included as predictors. The process equilibrium is
calculated by dividing oo by one minus oy.

3.2. Model Predictions

The best model of the UK Brigade communications is the LDV, while the best model of the
Division communications is an AR(1) model. The de-trended communication time series and the
predictions of the best model for each group are plotted in Figure 5. The specific parameters
chosen for the two types of models depend on the specific communication variable being studied
and are shown in Table 1.

Division — AR(1) UK Brigade — LDV
Communication
Variable Uo 01 Uo 01 p
External Links In 0.11 0.31* -0.30 0.25* 2.53%**
External Links Out 0.34 0.34* 0.12 0.18 2.00**
Internal Links 0.60 0.43*** 0.08 -0.01 0.14

Table 1. Model parameters (* p <0.05, ** p <0.01, *** p <0.001)

The intercept (ap) values in both models are not particularly meaningful by themselves,
considering they reflect de-trended, rather than raw data. In the AR(1) model, the a; values
reflect the amount of influence the value of the previous time step has on the current one. These
values are significant and in the range of approximately 0.3 to 0.4 for all three of the
communication variables. The predicted volume of communication at any given point in time
resembles a memory growth/decay function that goes up or down depending on the immediately
prior communications volume with a step-size of roughly 30% to 40% of that prior value.

The a3 and B parameters of the LDV model are easier to interpret in terms of long and short run
effects. The computed values for these effects are reported in Table 2.



Communication

Variable Short Run Effects Long Run Effects
External Links In 253 *** 10.71 **
External Links Out 2.00 ** 8.85 **
Internal Links 0.14 0.05

Table 2. Short and long run effects in LDV model of U.K. Brigade communications

For external links in and external links out, the short run and long run effects are significant. The
interpretation of these effects is the following: a temporary increase of one additional scenario
event is expected to lead to 2.53 additional links directed into the U.K. Brigade at that time point,
and 2.00 additional links directed out of the Brigade. A permanent increase of one additional
scenario event is expected to lead to 10.71 additional links in and 8.85 additional links out.

In the AR(1) model of the Division communications data, the internal links show the largest AR
coefficient, meaning that the previous value of the volume of links exert a larger influence on the
current value. Conversely, in the LDV model of the U.K. Brigade data, the internal links variable
is the only one without a significant short or long run effect of scenario-events. The previous
value of the number of internal links also did not significantly predict the current value in the
U.K. Brigade. This is clearly seen in Figure 5, where the model predictions are capturing only
the mean and not the fluctuations over time.

Division — ARMA Model UK Brigade — LDV Model
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Figure 5. Detrended data (filled black circles) and model predictions (red lines)
4. Discussion

We found that the exercise scenario events were not a significant predictor of the Division
communications, which were best fit by an auto-regressive model of order 1, meaning that the
best predictor of the volume of communications at a given time point was the volume of
communications on the immediately preceding time point. The occurrence of scenario events,
however, did predict the external Brigade communication time series (links-in and links-out),




which were fit well by a lag dependent variable model. These results demonstrate that Brigade
communications responded to and could be predicted by battlefield events, whereas the Division
communications were only predicted by their own past values.

The ability to model and predict the volume of communications of the two groups with any
degree of success is in itself interesting, apart from the actual form and interpretation of the
models. The data were generated from a complex network of many individuals with distinct roles
and the potential to be affected by many different varying factors, both recorded (e.g., scenario
events) and unrecorded. There is no guarantee that the communications on one time point would
be a significant predictor of the next time point, but in both groups (Division and Brigade), the
best models include the number of communication links on the previous time point as a
predictor. The number of communication links at each time point was not independent of the
others, but were serially correlated (i.e., high numbers of communication links tended to be
followed by high numbers of communication links, and vice versa.

In addition, the Brigade data were well predicted by the number of scenario events occurring
within the same time period. This is also interesting because the scenario events varied greatly in
terms of severity and the nature of the response required, and it is not obvious that a simple
measure like the number of events could predict the communications. Using environmental
events to predict network dynamics is not a standard approach in the social network analysis
literature. Typical goals for time series analyses of network behavior are to identify and
visualize significant changes in a network. Models of change often focus on the node level,
where changing states of individual nodes leads to changes in the structure of the network over
time (e.g. Carley 2003; Snijders 2005). In contrast, we focus on understanding communication
networks in the aggregate, and our results suggest that this approach could be a valuable tool for
understanding network dynamics.

Prior to the analysis, the time series data were de-trended using a linear time variable and by
removing the effects of two structural breaks (the transition between scenario weeks and the
network crash period). This preprocessing step was performed to meet assumptions of
stationarity — a variable that trends is not stationary, as its mean is changing with time. Similarly,
stationarity is not met when the mean of a variable shifts to a new level at a particular time (e.g.,
the communication data during the network crash). From this perspective, the three variables that
we used to de-trend the data could be considered merely nuisance variables.

However, the significant effects of these three variables upon the communications time series
provide some interesting information about our data. For example, the communication variables
showed significant decreases with time. This suggests the possibility of a type of training effect,
where the participants initially established communication links with many different individuals,
but pruned these connections over time as they learned which links were most efficient for
accomplishing their goals. As a result, the number of internal and external links decreased over
time. Secondly, there was a significant increase in communications at the transition between
weeks, indicating a type of reset, where the steady decrease in links over time was temporarily
offset after a break and change in the mission of the exercise. Finally, there is a significant
decrease in communications during the period when the computer network crashed. This is an



expected effect and provides a good check that our time series analysis methods are sensitive to
the dynamics of this exercise.

5. Conclusion

One of the primary findings from our analyses is that scenario events can be used as a predictor
for the external communication time series from the U.K. Brigade but not for the communication
time series from Division headquarters. This finding suggests that as the focus of analysis moves
further down the hierarchy and closer to the tactical edge, the communication network exhibits a
stronger response to external events. The tactical edge is commonly understood to be the part of
the organization that interacts directly with the operating environment (Alberts & Hayes, 2003),
and so our findings align with the intuitive understanding of Army organization. The
correspondence between position in the hierarchy and sensitivity to external events can be
further tested by exploring similar scenario-based data in even lower echelons (battalion,
company, platoon...) to see how their communications are affected by exercise events.

Our results have considerable potential for application to military operations, for example in the
sphere of bandwidth usage and allocation. Relevant battlefield events are already currently
recorded and tracked through SIGACTSs (significant activity reports). Understanding the
different relationships at different echelons between these events and the resulting
communications within the Mission Command network would make it possible to use the
SIGACT record to make real-time predictions of communications volume. This could in turn
allow for more targeted dynamic bandwidth allocation and a more efficient and agile Mission
Command communications network.
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