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Abstract 
 

Autonomic approaches enable large, complex systems to exhibit self-adaptation in 
response to attack or rapid degradation of the environment. This paper applies one such 
autonomics approach, the Rainbow autonomics framework, to naval command and 
control systems. Rainbow employs an abstraction language that models a managed 
system, probes that read data from the managed system, gauges that interpret data from 
probes, strategies that adapt the managed system to changes, and actuators that effect the 
desired strategic changes on the managed system. Because Rainbow represents managed 
systems as architectural abstractions, varied systems can be modeled, including such 
naval systems as the Command and Control Rapid Prototyping Continuum (C2RPC), 
simulated groups of operational forces that include autonomous vehicles [1], and navy 
data centers. All three can be described in the abstraction models of Rainbow and all can 
be managed by an autonomics framework.  The focus of this paper is on the effects of 
Disconnected, Intermittent, and Limited (DIL) connectivity environments on the 
capability of autonomics to manage a system in such environments.  The results show 
that DIL environments have a negative effect on centralized autonomics’ capability, such 
as Rainbow, in managing target systems. 
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1. Introduction 
 

A critical research focus in the design of cyber-physical systems is autonomic 
computing, that is, software that allows such systems to self-heal, self-adapt, self-
optimize, or self-defend [2, 3, 4].  This autonomics research is necessitated by the 
growing reliance on cyber-physical systems whose scale and complexity make it both 
difficult and costly for humans to manage. Autonomic algorithms typically include 
monitoring mechanisms that allow the managing software to observe the state of the 
managed system and the environment that contains the system, detection and analysis to 
understand the running behavior, and then effectors that effect required actions on the 
managed system when problems are detected.  Disconnected, Intermittent, and Limited 
(DIL) connectivity network environments may present both an ideal and challenging 
domain to apply autonomics.  In such domains, the changing environment (e.g. 
connecting/disconnecting components) requires that systems adapt and re-optimize in the 
face of environment changes.  Furthermore, intermittency could mean windows of 
opportunity so short that a human is incapable of responding.  In contrast, autonomic 
approaches can effectively exploit these short communication windows.  Similarly, 
limited bandwidth could constrain how often data and commands can be sent, also 
resulting in reduced opportunities to effect changes in the managed system.  

Autonomic approaches manage complex systems such that they exhibit self-
adaptation in response to demands on the system or degradation of performance. This 
paper applies one such autonomics approach, the Rainbow autonomics framework [5], to 
naval command and control systems. Rainbow employs an architecture-based self-
adaptation approach that models the managed system through an architecture description 
language (ADL), receives information system through gauges from probes that read data 
from the managed system, and strategies defined in the Stitch language that provide 
instruction on how the managed system should adapt to changes. Naval systems currently 
being researched include the Command and Control Rapid Prototyping Continuum 
(C2RPC), simulated groups of operational forces that include autonomous vehicles [1], 
and navy data centers. All three can be described in the abstraction models of Rainbow 
and managed by such autonomics frameworks.  The focus of this paper is on virtualized 
server environments, such as those found in modern data centers or embodying future C2 
systems like C2RPC.  The effect of intermittent communications is demonstrated in the 
autonomic managements of virtualized resources in a server cluster.  The overall effect of 
degraded communications is shown to be degraded performance in managing the system, 
with the more intermittent the communication, the greater the effect on management 
performance.   
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2. Background 
 

Beginning with the initial research from IBM [4], the core capabilities of 
autonomic systems have included: self-configuration, self-healing, self-optimization, and 
self-protection.  Self-configuration is the capability for a system to setup and manage 
settings for running in the deployed environment without manual intervention.  Self-
healing is the ability of the system to recover from errors, faults, damage, etc, to software 
or hardware.  Self-optimization focuses on allowing a system to change its configuration 
to improve performance.  Self-protection allows a system to respond to attacks, such as 
denial-of-service, that could damage or disrupt the system if allowed to occur.  While 
having all of these components are necessary in autonomic systems, each can have a role 
to play.  Active research in the field of autonomics has produced varied approaches that 
address these self-* capabilities.  One popular approach is rules-based systems that allow 
managed systems to adapt based upon a priori defined rules [6].  Other self-healing 
research has investigated software that modifies its own architecture during execution, 
known as runtime dynamism [7].   Another approach, inspired from research in artificial 
intelligence, is modeling systems in state-action pairs.  In this way, the autonomic 
framework explicitly understands the transition between specified system states and the 
actions that cause such transition.  Such approaches often model system in formal logic 
or predicate calculus [8, 9, 10]. Finally, significant research has investigated autonomics 
through formal modeling of system architecture [11, 12, 13]. A survey of the approaches 
is given in [14]. 

 

 

Image 1: The Rainbow Framework (from [18]) consists of four primary components: The 
Model Manager, the Architecture Evaluator, the Adaptation Manager, and the Strategy
Executor.  In addition, for each target system being managed, there is a Translation 
Infrastructure that provides the means to send data to the Rainbow framework and for
Rainbow to effect changes in the target system.   
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3. Approach 

A major problem with many autonomics approaches is they are tied to particular 
system implementations making scalability an issue for complex systems. For example, 
being tied to a particular architecture means a lack of flexibility to express new additions 
that may have not been designed for.  Rainbow [5], the method in this paper, addresses 
this problem through abstraction of architecture into a formal architecture description 
language, ACME.  The ACME language allows Rainbow to express any system that can 
be expressed formally.  The Rainbow framework maintains the ACME model description 
in its Model Manager (see Image ).  The Architecture Evaluator then analyzes the model 
to determine violations of constraints that were defined for the target system.  If 
constraints are violated, then the Adaptation Manager is triggered, which evaluates 
various strategies defined in the Stitch language to determine the best approach to solving 
the problem that triggered the need for adaptation.  The Adaptation Manager sends the 
chosen strategy to the Strategy Executor that is tasked with programmatically carrying 
out the strategy and effecting changes to the target system (see Figure 1).  The Rainbow 
framework interacts with the target system through Probes, which send data to Rainbow, 
Gauges, which receive data from Probes, and Effectors, which are actionable items that 
cause changes on the target system.  This paper builds upon the successful Rainbow 
framework, as described in the next section. 

 

Figure 1: This example demonstrates the effect of Rainbow’s autonomic management on 
the system.  Based upon demand on the system, response time for services begin to 
increase.  Eventually, the measured response time violates the constraints defined in the 
ACME model managed by rainbow.  The Adaptation Manager then activates a particular 
strategy that addresses the increased demand and the Strategy Executor effects the 
desired changed in the target system, leading to a decrease in response time. 
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3.1 Rainbow Discovery Extension 
 
 This paper introduces an addition to the Rainbow framework.  This extension is a 
key enabling approach for large-scale and dynamically changing systems, such as those 
that operate in DIL environments.  This technology is the ability to add new components 
dynamically through a process of discovery for Rainbow to monitor.  Many systems are 
designed with a particular, a priori specified architecture, or, must be manually updated 
[15].  However, discovery is an important abstraction technique that allows systems to 
dynamically reconfigure by providing metadata about individual components, such as in 
service oriented architectures [16]. 

To add this capability to Rainbow, a special Gauge-Probe pair is created (see 
Image 2).  When a new component is going to start reporting data about itself to 
Rainbow, the Discovery Probes send metadata about the new component to the 
Discovery Gauges.  This metadata includes the component’s architecture description, 
gauges that will be needed to receive data, and other pertinent information to create the 
necessary Rainbow infrastructure for the system component.  The Rainbow Discovery 
Gauges then process the received metadata and issue commands to the appropriate 
Rainbow framework sub-components for the creation of the necessary framework 
infrastructure to manage the discovered component. 

Image 2: Two components were added to the Rainbow framework to facilitate discovery.
The first item is Discovery Gauges that directly interact with the ACME model to
generate   necessary model components to represent the discovered elements of the target
system.  The information for the creation of architectural elements comes from Discovery
Probes, which are responsible for initializing the Probes that report data about the target
system.  In this way, whenever any component begins to report data, it first registers 
through discovery to generate matching architecture in the ACME model.   
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4. Experimental Setup 
 
 The experiments in this paper are designed to investigate the effect of degraded 
environments on the performance of autonomic systems in the management of their target 
systems.  In particular, the effect of intermittent communication of the performance of the 
Rainbow framework is examined, that is, if the autonomic system can only probe data 
and effect the system infrequently, then how does performance of the managed system 
change.  To this end, the experiments described in this paper look at the performance of 
Rainbow on a simulated managed system where the interval between updates from the 
simulated system to the Rainbow autonomics framework is gradually increased thus 
simulating an increasingly degraded communication situation. 

4.1 Degraded Environments 
 
 In these experiments, the simulated system is a set of servers with virtualized 
services in a service oriented architecture, representative of future C2 systems, such as 
C2RPC.  These virtual machines service a workload that varies over time.  In this 
simulation, the time varying workload reaches its peak at 1200 hours each day and its 
minimum at 0000 hours, a gross simplification of a normal workday.  The Rainbow 
autonomics framework is tasked with managing the number of active virtual machines 
and servers to balance the ability of the system to respond with the energy usage.  Thus 
Rainbow will activate resources as they are required and deactivate resources when they 
are no longer needed.  The interval of time between probe data updates is varied between 
small and large intervals to examine the effect of degraded communication.  These time 
intervals are five, ten, fifteen, thirty, and sixty minutes. 

5. Results 
 
 This section presents the results of the degraded communication Rainbow 
framework experiments.  Figure 2-6 shows the operation of Rainbow in managing the 
target system in increasingly DIL environments.  The least intermittent environment 
(shown in Figure 2) has a five minute interval between communications.  In this 
environment, Rainbow receives data and can effect required changes in a timely fashion. 
Figure 3 shows the environment where Rainbow’s communication is limited to every ten 
minutes.  Minor effects can be seen in the lag between when resources are needed and 
when they are activated.   Extending to fifteen minute intervals (seen in Figure 4) causes 
Rainbow to not only lag in addressing resource needs, but causes its actions to overlap 
from day-to-day.  Thus actions Rainbow takes on the first day effects how it behaves on 
the second day, even though the pattern of demand on the target system is the same on 



 

 Page 7  

day one and day two.  The destabilizing effect increases as the interval between 
communications larger (Figures 5-6).  

 The DIL environments cause not only qualitative differences in Rainbow’s 
behavior, but quantitative differences in performance.  In Figure 7 the performance is 
measured for each of the environments by average power usage and average response 
time for the virtualized services per simulated time step is shown.  Rainbow causes the 
target system to have the minimal response time, but the most power usage under than 
least degraded communication, the five minute intervals, having an average power usage 
of 2926 watt-hours and average response time of 407 milliseconds. The power usage 
decreases and response time increases going from to ten and fifteen minutes intervals 
with power usage of 2817 and 2347 watt-hours respectively and response time of 415 and 
428 milliseconds respectively.  Interestingly, this pattern does not continue to the thirty 
and sixty minute intervals. The thirty minute interval increases power usage and response 
time to 2778 watt-hours and the sixty minute intervals further increases both power usage 
and response time to 2877 watt-hours and 484 milliseconds. 

 

 

Figure 2: The performance of the Rainbow framework with five minute intervals 
between communications.  In this environment with short intervals between 
communication, Rainbow can effectively activate and deactivate resources, such as 
virtual machines (VMs) and servers, as needed and in a timely fashion.  
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Figure 3: The performance of the Rainbow framework with ten minute intervals between 
communications.  The slightly longer intervals between communication causes Rainbow 
to lag slightly behind in adding needed resources. 

 

Figure 4:  The performance of the Rainbow framework with fifteen minute intervals 
between communications.  The fifteen minute intervals begin to cause an overlap 
between day-to-day cycles, causing variation in each day’s performance. 

0

2

4

6

8

10

12

14

16

18

20

0

1000

2000

3000

4000

5000

6000

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00

VM Response Time (Milliseconds) Total Energy Usage (Watt-Hours)

Active VMs Active Servers

0

2

4

6

8

10

12

14

16

18

20

0

1000

2000

3000

4000

5000

6000

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00

VM Response Time (Milliseconds) Total Energy Usage

Active VMs Active Servers



 

 Page 9  

 
Figure 5: The performance of the Rainbow framework with thirty minute intervals 
between communications.  Increasingly, the DIL environment causes destabilization in 
Rainbow’s management of the target system. 

 
Figure 6: The performance of the Rainbow framework with sixty minute intervals 
between communications.  The most degraded communications causes Rainbow to 
request resources much later than required and keep them activate longer than necessary.  
The overlapping interaction causes Rainbow to have too many resources online for 
periods of low activity. 
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Figure 7: Average power and response time performance of the Rainbow framework 
across DIL conditions.  Under the least degraded environment, the average power usage 
is 2926 watt-hours and average response time is 407 milliseconds.  Increasing the 
intermittency to ten minutes reduces power usage to 2817 watt-hours, but increases 
response time to 415 milliseconds.  Similarly, the fifteen minute interval decrease power 
usage and increases response time to 2347 watt-hours and 428 milliseconds respectively.  
Interestingly, the thirty minute and sixty minute intervals increase both power usage and 
response time, up to 2877 watt-hours and 484 milliseconds. 

6.  Discussion & Future Work 
 

Autonomic computing is an increasingly critical part of cyber-physical 
infrastructures.  This importance is due, in part, to the growing complexity of systems 
that requires significant labor investments for management.  Therefore, systems that can 
manage themselves, through self-healing, self-adaptation, self-optimization, or self-
defense, provide a pathway to more effective and efficient systems.  However, autonomic 
algorithms typically rely on mechanisms that monitor the managed system and its 
environment to enable the self-* capabilities through detection and analysis.  
Disconnected, Intermittent, and Limited connectivity network environments present a 
challenge to autonomics, in that the ability of the system to be managed is hindered 
because of limited data and capability to effect changes in the system. In contrast, 
autonomic systems may also be the ideal approach to DIL environments because they can 
act quickly within the limited communication windows. 

The results in this paper demonstrate that autonomic systems may suffer 
performance loss in DIL environments.  This result is not surprising because the 
degrading ability to interact with the target system (both monitoring state and effecting 
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changes), the autonomic system’s ability to heal, adapt, optimize, and defend the system 
similarly degrades.   In particular, for centralized autonomics systems, such as the 
Rainbow autonomics framework, the loss of communication with target systems directly 
influences the ability to manage them because they are dependent on the communication 
to receive updates and issue commands.   

One way to address this limitation is with distributed autonomics systems wherein 
each distributed component manages itself.  In this way, no matter how disconnected the 
systems become, the autonomics will still be able the function.  The challenge to such 
approaches is the limitation on globally optimizing the systems to holistically address 
performance degradation.  Interestingly, this distributed approach may even prevent the 
autonomics system from solving the problem causing DIL communication because of 
conflicts that arise through distributed management.  Alternatively, the field of machine 
learning (ML) can be exploited to make decisions in the brief windows of opportunity in 
DIL environments. Machine learning is an increasingly important component of 
autonomics because the size and complexity of system is beginning to outstrip the ability 
of humans to understand and control the maintenance, and because, the speed required 
for effective optimization is ever increasing[17].  In particular, one ability of machine 
learning to address this degradation of performance is predicting the future state of the 
system.    Future work will focus on expanding Rainbow’s capabilities through Machine 
Learning Gauges.  Rather than simply gathering and processing data, these gauges will 
analyze the data to improve Rainbow’s decision making ability.  To address the effects of 
a degraded communication, ML predictors are queried to predict the future state of the 
system.  The constraints in the modeled system are then evaluated not on the current state 
values, but on future state values.  In this way, Rainbow can anticipate events that would 
require adaptation and issue commands before they are needed.  This pre-emptive 
strategy allows autonomic frameworks to operate in degraded environments by issuing 
adaptive strategies in communication windows before they are needed. Such learning 
approaches can also be applied to make decisions based upon system state and can be 
used to detect anomalous operation, among other capabilities. 

7. Conclusion
 
 In summary, autonomics are playing an increasingly important role in the 
management of cyber-physical systems.  One reason why they are becoming important is 
the cost of human oversight over our increasingly complex computational resources.  
However, a more relevant reason to DIL environments is the capability to respond faster 
and more optimally than a human can accomplish.  This paper demonstrated that 
centralized autonomics approaches, such as Rainbow, can be limited by the DIL 
environments.  This limitation is due to the inability to constantly observe and effect 



 

 Page 12  

changes to the system.  The primary problem comes from the latency in detecting 
problems.  Proposed future work will look at machine learning predictors that can 
enhance Rainbow in making decisions based upon future state of the system. 
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