
18th ICCRTS

Using Autonomics to Exercise
Command and Control of Networks in

Degraded Environments

Topics
Topic 10: Cyberspace Management

Topic 7: Architectures, Technologies, and Tools
Topic 8: Networks and Networking

Authors
Phillip Verbancsics
Douglas S. Lange

Space and Naval Warfare Systems Center – Pacific
San Diego, CA 92152

Point of Contact
Douglas S. Lange

Space and Naval Warfare Systems Center – Pacific
(619)553-6534

doug.lange@navy.mil

 Page 1

Using Autonomics to Exercise Command and Control of
Networks in Degraded Environments

Phillip Verbancsics
Douglas S. Lange

Space and Naval Warfare Systems Center – Pacific

Abstract

Autonomic approaches enable large, complex systems to exhibit self-adaptation in
response to attack or rapid degradation of the environment. This paper applies one such
autonomics approach, the Rainbow autonomics framework, to naval command and
control systems. Rainbow employs an abstraction language that models a managed
system, probes that read data from the managed system, gauges that interpret data from
probes, strategies that adapt the managed system to changes, and actuators that effect the
desired strategic changes on the managed system. Because Rainbow represents managed
systems as architectural abstractions, varied systems can be modeled, including such
naval systems as the Command and Control Rapid Prototyping Continuum (C2RPC),
simulated groups of operational forces that include autonomous vehicles [1], and navy
data centers. All three can be described in the abstraction models of Rainbow and all can
be managed by an autonomics framework. The focus of this paper is on the effects of
Disconnected, Intermittent, and Limited (DIL) connectivity environments on the
capability of autonomics to manage a system in such environments. The results show
that DIL environments have a negative effect on centralized autonomics’ capability, such
as Rainbow, in managing target systems.

 Page 2

1. Introduction

A critical research focus in the design of cyber-physical systems is autonomic
computing, that is, software that allows such systems to self-heal, self-adapt, self-
optimize, or self-defend [2, 3, 4]. This autonomics research is necessitated by the
growing reliance on cyber-physical systems whose scale and complexity make it both
difficult and costly for humans to manage. Autonomic algorithms typically include
monitoring mechanisms that allow the managing software to observe the state of the
managed system and the environment that contains the system, detection and analysis to
understand the running behavior, and then effectors that effect required actions on the
managed system when problems are detected. Disconnected, Intermittent, and Limited
(DIL) connectivity network environments may present both an ideal and challenging
domain to apply autonomics. In such domains, the changing environment (e.g.
connecting/disconnecting components) requires that systems adapt and re-optimize in the
face of environment changes. Furthermore, intermittency could mean windows of
opportunity so short that a human is incapable of responding. In contrast, autonomic
approaches can effectively exploit these short communication windows. Similarly,
limited bandwidth could constrain how often data and commands can be sent, also
resulting in reduced opportunities to effect changes in the managed system.

Autonomic approaches manage complex systems such that they exhibit self-
adaptation in response to demands on the system or degradation of performance. This
paper applies one such autonomics approach, the Rainbow autonomics framework [5], to
naval command and control systems. Rainbow employs an architecture-based self-
adaptation approach that models the managed system through an architecture description
language (ADL), receives information system through gauges from probes that read data
from the managed system, and strategies defined in the Stitch language that provide
instruction on how the managed system should adapt to changes. Naval systems currently
being researched include the Command and Control Rapid Prototyping Continuum
(C2RPC), simulated groups of operational forces that include autonomous vehicles [1],
and navy data centers. All three can be described in the abstraction models of Rainbow
and managed by such autonomics frameworks. The focus of this paper is on virtualized
server environments, such as those found in modern data centers or embodying future C2
systems like C2RPC. The effect of intermittent communications is demonstrated in the
autonomic managements of virtualized resources in a server cluster. The overall effect of
degraded communications is shown to be degraded performance in managing the system,
with the more intermittent the communication, the greater the effect on management
performance.

 Page 3

2. Background

Beginning with the initial research from IBM [4], the core capabilities of
autonomic systems have included: self-configuration, self-healing, self-optimization, and
self-protection. Self-configuration is the capability for a system to setup and manage
settings for running in the deployed environment without manual intervention. Self-
healing is the ability of the system to recover from errors, faults, damage, etc, to software
or hardware. Self-optimization focuses on allowing a system to change its configuration
to improve performance. Self-protection allows a system to respond to attacks, such as
denial-of-service, that could damage or disrupt the system if allowed to occur. While
having all of these components are necessary in autonomic systems, each can have a role
to play. Active research in the field of autonomics has produced varied approaches that
address these self-* capabilities. One popular approach is rules-based systems that allow
managed systems to adapt based upon a priori defined rules [6]. Other self-healing
research has investigated software that modifies its own architecture during execution,
known as runtime dynamism [7]. Another approach, inspired from research in artificial
intelligence, is modeling systems in state-action pairs. In this way, the autonomic
framework explicitly understands the transition between specified system states and the
actions that cause such transition. Such approaches often model system in formal logic
or predicate calculus [8, 9, 10]. Finally, significant research has investigated autonomics
through formal modeling of system architecture [11, 12, 13]. A survey of the approaches
is given in [14].

Image 1: The Rainbow Framework (from [18]) consists of four primary components: The
Model Manager, the Architecture Evaluator, the Adaptation Manager, and the Strategy
Executor. In addition, for each target system being managed, there is a Translation
Infrastructure that provides the means to send data to the Rainbow framework and for
Rainbow to effect changes in the target system.

 Page 4

3. Approach

A major problem with many autonomics approaches is they are tied to particular
system implementations making scalability an issue for complex systems. For example,
being tied to a particular architecture means a lack of flexibility to express new additions
that may have not been designed for. Rainbow [5], the method in this paper, addresses
this problem through abstraction of architecture into a formal architecture description
language, ACME. The ACME language allows Rainbow to express any system that can
be expressed formally. The Rainbow framework maintains the ACME model description
in its Model Manager (see Image). The Architecture Evaluator then analyzes the model
to determine violations of constraints that were defined for the target system. If
constraints are violated, then the Adaptation Manager is triggered, which evaluates
various strategies defined in the Stitch language to determine the best approach to solving
the problem that triggered the need for adaptation. The Adaptation Manager sends the
chosen strategy to the Strategy Executor that is tasked with programmatically carrying
out the strategy and effecting changes to the target system (see Figure 1). The Rainbow
framework interacts with the target system through Probes, which send data to Rainbow,
Gauges, which receive data from Probes, and Effectors, which are actionable items that
cause changes on the target system. This paper builds upon the successful Rainbow
framework, as described in the next section.

Figure 1: This example demonstrates the effect of Rainbow’s autonomic management on
the system. Based upon demand on the system, response time for services begin to
increase. Eventually, the measured response time violates the constraints defined in the
ACME model managed by rainbow. The Adaptation Manager then activates a particular
strategy that addresses the increased demand and the Strategy Executor effects the
desired changed in the target system, leading to a decrease in response time.

0

0.2

0.4

0.6

0.8

1

0

500

1000

1500

2000

2500

3000

3500

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

S
y
s
t
e
m

U
t
i
l
i
t
y

R
e
s
p
o
n
s
e

T
i

m
e

Time Steps (in 100s)

Maximum Response Time System Utility

Increasing
Demand

Constraint
Triggered

Strategy
Executed

 Page 5

3.1 Rainbow Discovery Extension

 This paper introduces an addition to the Rainbow framework. This extension is a
key enabling approach for large-scale and dynamically changing systems, such as those
that operate in DIL environments. This technology is the ability to add new components
dynamically through a process of discovery for Rainbow to monitor. Many systems are
designed with a particular, a priori specified architecture, or, must be manually updated
[15]. However, discovery is an important abstraction technique that allows systems to
dynamically reconfigure by providing metadata about individual components, such as in
service oriented architectures [16].

To add this capability to Rainbow, a special Gauge-Probe pair is created (see
Image 2). When a new component is going to start reporting data about itself to
Rainbow, the Discovery Probes send metadata about the new component to the
Discovery Gauges. This metadata includes the component’s architecture description,
gauges that will be needed to receive data, and other pertinent information to create the
necessary Rainbow infrastructure for the system component. The Rainbow Discovery
Gauges then process the received metadata and issue commands to the appropriate
Rainbow framework sub-components for the creation of the necessary framework
infrastructure to manage the discovered component.

Image 2: Two components were added to the Rainbow framework to facilitate discovery.
The first item is Discovery Gauges that directly interact with the ACME model to
generate necessary model components to represent the discovered elements of the target
system. The information for the creation of architectural elements comes from Discovery
Probes, which are responsible for initializing the Probes that report data about the target
system. In this way, whenever any component begins to report data, it first registers
through discovery to generate matching architecture in the ACME model.

 Page 6

4. Experimental Setup

 The experiments in this paper are designed to investigate the effect of degraded
environments on the performance of autonomic systems in the management of their target
systems. In particular, the effect of intermittent communication of the performance of the
Rainbow framework is examined, that is, if the autonomic system can only probe data
and effect the system infrequently, then how does performance of the managed system
change. To this end, the experiments described in this paper look at the performance of
Rainbow on a simulated managed system where the interval between updates from the
simulated system to the Rainbow autonomics framework is gradually increased thus
simulating an increasingly degraded communication situation.

4.1 Degraded Environments

 In these experiments, the simulated system is a set of servers with virtualized
services in a service oriented architecture, representative of future C2 systems, such as
C2RPC. These virtual machines service a workload that varies over time. In this
simulation, the time varying workload reaches its peak at 1200 hours each day and its
minimum at 0000 hours, a gross simplification of a normal workday. The Rainbow
autonomics framework is tasked with managing the number of active virtual machines
and servers to balance the ability of the system to respond with the energy usage. Thus
Rainbow will activate resources as they are required and deactivate resources when they
are no longer needed. The interval of time between probe data updates is varied between
small and large intervals to examine the effect of degraded communication. These time
intervals are five, ten, fifteen, thirty, and sixty minutes.

5. Results

 This section presents the results of the degraded communication Rainbow
framework experiments. Figure 2-6 shows the operation of Rainbow in managing the
target system in increasingly DIL environments. The least intermittent environment
(shown in Figure 2) has a five minute interval between communications. In this
environment, Rainbow receives data and can effect required changes in a timely fashion.
Figure 3 shows the environment where Rainbow’s communication is limited to every ten
minutes. Minor effects can be seen in the lag between when resources are needed and
when they are activated. Extending to fifteen minute intervals (seen in Figure 4) causes
Rainbow to not only lag in addressing resource needs, but causes its actions to overlap
from day-to-day. Thus actions Rainbow takes on the first day effects how it behaves on
the second day, even though the pattern of demand on the target system is the same on

 Page 7

day one and day two. The destabilizing effect increases as the interval between
communications larger (Figures 5-6).

 The DIL environments cause not only qualitative differences in Rainbow’s
behavior, but quantitative differences in performance. In Figure 7 the performance is
measured for each of the environments by average power usage and average response
time for the virtualized services per simulated time step is shown. Rainbow causes the
target system to have the minimal response time, but the most power usage under than
least degraded communication, the five minute intervals, having an average power usage
of 2926 watt-hours and average response time of 407 milliseconds. The power usage
decreases and response time increases going from to ten and fifteen minutes intervals
with power usage of 2817 and 2347 watt-hours respectively and response time of 415 and
428 milliseconds respectively. Interestingly, this pattern does not continue to the thirty
and sixty minute intervals. The thirty minute interval increases power usage and response
time to 2778 watt-hours and the sixty minute intervals further increases both power usage
and response time to 2877 watt-hours and 484 milliseconds.

Figure 2: The performance of the Rainbow framework with five minute intervals
between communications. In this environment with short intervals between
communication, Rainbow can effectively activate and deactivate resources, such as
virtual machines (VMs) and servers, as needed and in a timely fashion.

0

2

4

6

8

10

12

14

16

18

20

0

1000

2000

3000

4000

5000

6000

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00

VM Response Time (Milliseconds) Total Energy Usage (Watt-Hours)

Active VMs Active Servers

 Page 8

Figure 3: The performance of the Rainbow framework with ten minute intervals between
communications. The slightly longer intervals between communication causes Rainbow
to lag slightly behind in adding needed resources.

Figure 4: The performance of the Rainbow framework with fifteen minute intervals
between communications. The fifteen minute intervals begin to cause an overlap
between day-to-day cycles, causing variation in each day’s performance.

0

2

4

6

8

10

12

14

16

18

20

0

1000

2000

3000

4000

5000

6000

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00

VM Response Time (Milliseconds) Total Energy Usage (Watt-Hours)

Active VMs Active Servers

0

2

4

6

8

10

12

14

16

18

20

0

1000

2000

3000

4000

5000

6000

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00

VM Response Time (Milliseconds) Total Energy Usage

Active VMs Active Servers

 Page 9

Figure 5: The performance of the Rainbow framework with thirty minute intervals
between communications. Increasingly, the DIL environment causes destabilization in
Rainbow’s management of the target system.

Figure 6: The performance of the Rainbow framework with sixty minute intervals
between communications. The most degraded communications causes Rainbow to
request resources much later than required and keep them activate longer than necessary.
The overlapping interaction causes Rainbow to have too many resources online for
periods of low activity.

0

2

4

6

8

10

12

14

16

18

20

0

1000

2000

3000

4000

5000

6000

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00

VM Response Time (Milliseconds) Total Energy Usage

Active VMs Active Servers

0

2

4

6

8

10

12

14

16

18

20

0

1000

2000

3000

4000

5000

6000

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00

VM Response Time (Milliseconds) Total Energy Usage

Active VMs Active Servers

 Page 10

Figure 7: Average power and response time performance of the Rainbow framework
across DIL conditions. Under the least degraded environment, the average power usage
is 2926 watt-hours and average response time is 407 milliseconds. Increasing the
intermittency to ten minutes reduces power usage to 2817 watt-hours, but increases
response time to 415 milliseconds. Similarly, the fifteen minute interval decrease power
usage and increases response time to 2347 watt-hours and 428 milliseconds respectively.
Interestingly, the thirty minute and sixty minute intervals increase both power usage and
response time, up to 2877 watt-hours and 484 milliseconds.

6. Discussion & Future Work

Autonomic computing is an increasingly critical part of cyber-physical
infrastructures. This importance is due, in part, to the growing complexity of systems
that requires significant labor investments for management. Therefore, systems that can
manage themselves, through self-healing, self-adaptation, self-optimization, or self-
defense, provide a pathway to more effective and efficient systems. However, autonomic
algorithms typically rely on mechanisms that monitor the managed system and its
environment to enable the self-* capabilities through detection and analysis.
Disconnected, Intermittent, and Limited connectivity network environments present a
challenge to autonomics, in that the ability of the system to be managed is hindered
because of limited data and capability to effect changes in the system. In contrast,
autonomic systems may also be the ideal approach to DIL environments because they can
act quickly within the limited communication windows.

The results in this paper demonstrate that autonomic systems may suffer
performance loss in DIL environments. This result is not surprising because the
degrading ability to interact with the target system (both monitoring state and effecting

360

380

400

420

440

460

480

500

0

500

1000

1500

2000

2500

3000

3500

5 min. 10 min. 15 min. 30 min. 60 min.

M
il

li
se

co
n

d
s

W
at

t-
H

ou
rs

Average Power Usage Average Response Time

 Page 11

changes), the autonomic system’s ability to heal, adapt, optimize, and defend the system
similarly degrades. In particular, for centralized autonomics systems, such as the
Rainbow autonomics framework, the loss of communication with target systems directly
influences the ability to manage them because they are dependent on the communication
to receive updates and issue commands.

One way to address this limitation is with distributed autonomics systems wherein
each distributed component manages itself. In this way, no matter how disconnected the
systems become, the autonomics will still be able the function. The challenge to such
approaches is the limitation on globally optimizing the systems to holistically address
performance degradation. Interestingly, this distributed approach may even prevent the
autonomics system from solving the problem causing DIL communication because of
conflicts that arise through distributed management. Alternatively, the field of machine
learning (ML) can be exploited to make decisions in the brief windows of opportunity in
DIL environments. Machine learning is an increasingly important component of
autonomics because the size and complexity of system is beginning to outstrip the ability
of humans to understand and control the maintenance, and because, the speed required
for effective optimization is ever increasing[17]. In particular, one ability of machine
learning to address this degradation of performance is predicting the future state of the
system. Future work will focus on expanding Rainbow’s capabilities through Machine
Learning Gauges. Rather than simply gathering and processing data, these gauges will
analyze the data to improve Rainbow’s decision making ability. To address the effects of
a degraded communication, ML predictors are queried to predict the future state of the
system. The constraints in the modeled system are then evaluated not on the current state
values, but on future state values. In this way, Rainbow can anticipate events that would
require adaptation and issue commands before they are needed. This pre-emptive
strategy allows autonomic frameworks to operate in degraded environments by issuing
adaptive strategies in communication windows before they are needed. Such learning
approaches can also be applied to make decisions based upon system state and can be
used to detect anomalous operation, among other capabilities.

7. Conclusion

 In summary, autonomics are playing an increasingly important role in the
management of cyber-physical systems. One reason why they are becoming important is
the cost of human oversight over our increasingly complex computational resources.
However, a more relevant reason to DIL environments is the capability to respond faster
and more optimally than a human can accomplish. This paper demonstrated that
centralized autonomics approaches, such as Rainbow, can be limited by the DIL
environments. This limitation is due to the inability to constantly observe and effect

 Page 12

changes to the system. The primary problem comes from the latency in detecting
problems. Proposed future work will look at machine learning predictors that can
enhance Rainbow in making decisions based upon future state of the system.

Bibliography

[1] D. Lange, P. Verbancsics, R. Gutzwiller and J. Reeder, "Command and Control of
Teams of Autonomous Units," in 17th International Command and Control
Research and Technology Symposium, Fairfax, VA, 2012.

[2] D. Cohn, "Autonomic Computing," in Proceedings of the Sixth International
Symposium on Autonomous Decentralized Systems (ISAD'03), Pisa, Italy, 2003.

[3] A. Ganek and T. Corbi, "The Dawning of Autonomic Computing," IBM Systems
Journal, vol. 42, no. 1, pp. 5-18, 2003.

[4] R. Murch, Autonomic Computing, Indianapolis, IN: IBM Press, 2004.

[5] D. Garlan, S.-W. Cheng, H. An-Cheng, B. Schmerl and P. Steenkiste, "Rainbow:
Architecture-Based Self Adaptation with Reusable Infrastructure," IEEE Computer,
vol. 37, no. 10, pp. 46-54, October 2004.

[6] H. Liu and M. Parashar, "DIOS++: A Framework for Rule-Based Autonomic
Management of Distributed Scientific Applications," in Proceedings of the 9th
International Euro-Par Conference (Euro-Par 2003), Klagenfurt, Austria, 2003.

[7] D. Li and R. Muntz, "Runtime Dynamics in Collaborative," Department of
Computer Science University of California, Los Angeles, CA, 1999.

[8] H. Levesque, F. Pirri and R. Reiter, "Foundations for the situation calculus,"
Linköping Electronic Articles in Computer and Information Science, vol. 3, no. 18,
1998.

[9] J. F. Allen, "Towards a general theory of action and time’.," Artificial Intelligence,
vol. 23, pp. 123-154, 1984.

[10] M. Thielscher, "Introduction to the fluent calculus," Linköping Electronic Articles in
Computer and Information Science, vol. 3, no. 14, 1998.

[11] D. Hirsch, P. Inverardi and U. Montanari, "Graph grammars and constraint solving
for software architecture styles," in Proceedings of the International Software

 Page 13

Architecture Workshop, Orlando, FL, 1998.

[12] D. L. M´etayer, "Software architecture styles as graph grammars," in Proceedings of
the ACM SIGSOFT Symposium on Foundations of Software Engineering, Lake
Buena Vista, FL, 1996.

[13] M. Wermelinger, A. Lopes and J. L. Fiadeiro, "A graph based architectural
(re)configuration language," in Preceedings of the Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering.

[14] J. Bradbury, J. Cordy, J. Dingel and M. Wermelinger, "Supporting Self-Management
in Dynamic Software Architecture Specifications," in Proceedings of WOSS'04 -
ACM SIGSOFT 2004 Workshop on Self-Managed Systems, New York, NY, 2004.

[15] B. S. a. J. A. a. D. G. a. R. K. a. H. Yan, IEEE Transactions on Software
Engineering, vol. 32, no. 7, p. 13, 2006.

[16] B. Schmerl, A. Jonathan, D. Garlan, R. Kazman and H. Yan, "Discovering
Architectures from Running Systems," IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, vol. 32, no. 7, pp. 454-465, 2006.

[17] G. Tesauro, "Reinforcement Learning in Autonomic Computing: A Manifesto and
Case Studies," IEEE Internet Computing, vol. 11, no. 1, pp. 22-30, 2007.

[18] S.-W. C. a. D. Garlan, "Stitch: A Language for Architecture-Based Self-Adaptation,"
Journal of Systems and Software, Special Issue on State of the Art in Self-Adaptive
Systems, vol. 85, no. 12, p. 38, 2012.

