

18
TH

 INTERNATIONAL COMMAND AND CONTROL RESEARCH AND TECHNOLOGY SYMPOSIUM

C2 IN UNDERDEVELOPED, DEGRADED AND DENIED OPERATIONAL ENVIRONMENTS

MULTI-ENTITY BAYESIAN NETWORKS LEARNING

IN PREDICTIVE SITUATION AWARENESS

Topic 3: Data, Information and Knowledge

Cheol Young Park* [STUDENT]

Kathryn Blackmond Laskey

Paulo Costa

Shou Matsumoto

The Sensor Fusion Lab & Center of Excellence in C4I

The Volgenau School of Engineering

George Mason University

4400 University Drive

Fairfax, VA 22030-4444

(703) 332-9921

cparkf@masonlive.gmu.edu, [klaskey, pcosta]@gmu.edu, smatsum2@masonlive.gmu.edu

Point of Contact: Cheol Young Park

cparkf@masonlive.gmu.edu and/or (703) 332-9921

ABSTRACT

Over the past two decades, machine learning has led to substantial changes in Data Fusion

Systems throughout the world. One of the most important application areas for data fusion is

situation awareness to support command and control. Situation Awareness is perception of

elements in the environment, comprehension of the current situation, and projection of future

status before decision making. Traditional fusion systems focus on lower levels of the JDL

hierarchy, leaving higher-level fusion and situation awareness largely to unaided human

judgment. This becomes untenable in today’s increasingly data-rich environments, characterized

by information and cognitive overload. Higher-level fusion to support situation awareness

requires semantically rich representations amenable to automated processing. Ontologies are an

essential tool for representing domain semantics and expressing information about entities and

relationships in the domain. Probabilistic ontologies augment standard ontologies with support

for uncertainty management, which is essential for higher-level fusion to support situation

awareness. PROGNOS is a prototype Predictive Situation Awareness (PSAW) System for the

maritime domain. The core logic for the PROGNOS probabilistic ontologies is Multi-Entity

Bayesian Networks (MEBN), which combines First-Order Logic with Bayesian Networks for

representing and reasoning about uncertainty in complex, knowledge-rich domains. MEBN goes

beyond standard Bayesian networks to enable reasoning about an unknown number of entities

interacting with each other in various types of relationships, a key requirement for PSAW. The

existing probabilistic ontology for PROGNOS was constructed manually by a domain expert.

However, manual MEBN modeling is labor-intensive and insufficiently agile. To address this

problem, we developed a learning algorithm for MEBN-based probabilistic ontologies. This

paper presents a bridge between MEBN and the Relational Model, and a parameter and structure

learning algorithm for MEBN. The methods are evaluated on a case study from PROGNOS.

1 INTRODUCTION

Over the past two decades, machine learning has led to substantial changes in Data Fusion

Systems throughout the world [White, 1988; Endsley, 1988; Steinberg et al., 1998; Endsley et

al., 2003; Llinas et al., 2004; Linggins et al., 2008]. One of the most important application areas

for data fusion is Situation Awareness (SAW) to support command and control (C2). Systems to

support SAW provide information regarding the present or future situation. This information

supports situation assessment (SA) and is exploited for C2 decision making.

According to the most common cited definition, SAW is composed of three processes;

perception of elements in the environment, comprehension of the current situation, and

projection of the future status [Endsley, 1988; Endsley et al., 2003]. Breton and Rousseau

classified 26 SAW definitions and identified a set of common elements of SAW. They identified

two distinct varieties, which they termed State- and Process-oriented SAW. In their definition,

Process-oriented SAW focuses on the link between the situation and the cognitive processes

generating SAW, while State-oriented SAW focuses on the link between the situation and an

internal representation of elements present in the situation [Breton & Rousseau, 2001].

 In contrast to traditional SAW, Predictive Situation Awareness (PSAW) emphasizes the

ability to make predictions about aspects of a temporally evolving situation [Costa et al., 2009;

Carvalho et al., 2010]. Traditionally, decision makers are responsible for the higher-level data

fusion in which they use the results of low-level fusion to estimate and predict the evolving

situation. PROGNOS is a prototype system intended to address the need for higher-level data

fusion [Costa et al., 2009; Carvalho et al., 2010]. PROGNOS provides higher-level fusion

through state-of-the-art knowledge representation and reasoning.

The PROGNOS probabilistic ontologies employ Multi-Entity Bayesian Networks

(MEBN) which combines First-Order Logic with Bayesian Network for representing and

reasoning about uncertainty in complex, knowledge-rich domains [Laskey, 2008]. MEBN goes

beyond standard Bayesian networks to enable reasoning about an unknown number of entities

interacting with each other in various types of relationships. A PSAW system must aggregate

state estimates provided by lower level information fusion (LLIF) systems to help users

understand key aspects of the aggregate situation and project its likely evolution. A semantically

rich representation is needed that can capture attributes of, relationships among, and processes

associated with various kinds of entities. Ontologies provide common semantics for expressing

information about entities and relationships in the domain. Probabilistic ontologies (PR-OWL)

augment standard ontologies with support for uncertainty management [Costa, 2005]. PR-OWL

2 extends PR-OWL to provide better integration with OWL ontologies [Carvalho, 2011]. MEBN

is the logical basis for the uncertainty representation in the PROGNOS Probabilistic ontologies.

1.1 MEBN for PSAW

Figure 1 shows a simplified illustrative example of a problem in PSAW. Our goal is to estimate a

vehicle type (e.g., tracked and wheeled) of a target object and a degree of danger (e.g., high and

low) of a specific region. Figure 1 depicts a specific situation of interest.

Figure 1. Vehicle Identification Context in PSAW

The rectangles in Figure 1 mean instances of entities. Figure 1 expresses two relations among

entities. An inner rectangle which is shown within an outer rectangle means a part entity of an

entity represented by the outer rectangle, so it means composition or aggregation. The rectangle

described by “Communicated = Y” specifies an interconnected relation.

Our system has been provided with the following evidence. At Time 1, a weather sensor

has reported clear weather for Region 1.1. A geographic information system has reported that

Region 1.1 is off-road terrain. Two vehicle objects, V1 and V2, have been detected by an

imaging system, which has reported that V2 is tracked and has failed to report a type for V1. An

MTI sensor indicates that both vehicles are traveling slowly. A COMINT report indicates

communications between V1 and V2. Given this evidence, we want to know the object type of

both vehicles and the danger level of the Region 1.1.

 We might consider using a Bayesian network (BN) [Pearl, 1988] to fuse these reports

from multiple sources and answer the queries of interest. Figure 2 shows a Bayesian network we

might use for this problem.

Figure 2. Bayesian Network for Vehicle Identification Context

Each box in the figure depicts a random variable (RV), or node. A label at the top of the box

gives a name for the RV, the labels inside the boxes indicate its possible states, and the numbers

indicate the probability of the state given our current evidence. For example, the RV

VehicleType_v2 denotes the type of vehicle 2. It can have value either Wheeled or Tracked. Arcs

represent direct dependence relationships. For example, ImageTypeReport_rpt1, the type

recorded on imaging sensor report rpt1, depends on VehicleType_v2, the actual type of v2, the

vehicle being observed by the sensor. RVs for which we have evidence are shown in gray and

probabilities are set to 100% for the value that was actually observed. For example, recall that

Region 1.1 was off-road terrain; thus, evidence for OffRoad is applied to the node Terrain-

Type_region1_1. Given all the evidence we have acquired, we assign 80% probability that V1 is

tracked, 94% probability that V2 is tracked, and 80% probability that the danger level in Region

1.1 is high.

 Manual construction of a BN like Figure 2 is feasible, but what about situations

containing hundreds of vehicles and reports? For such situations, MEBN allows us to build up a

complex BN out of modular pieces. Figure 3 shows a MEBN model, called an MTheory, that

expresses our domain knowledge using modular components, called MFrags, that can be

composed into larger models. For example, the ImageTypeReport MFrag expresses knowledge

the reported type from an imaging sensor. The green pentagons are context RVs that express

conditions under which the MEBN fragment is valid: obj is a vehicle located in region rgn, and

rpt is a report about obj. The gray trapezoid input RVs have their distributions defined in other

MFrags. The yellow oval resident RV, ImageTypeReport(rpt) in this case, has its distribution

defined in this MFrag, and its distribution depends on the vehicle type of obj and the weather of

rgn.

Figure 3. Vehicle Identification MTheory

In the Vehicle Identification MTheory in Figure 3, there are 7 MFrags such as Speed,

ImageTypeReport, VehicleObject, Danger, Weather, Region, and Reference MFrag. The

MTheory can generate many different BNs specialized to different situations, as depicted in

Figure 4 below. Case 1 is the BN of Figure 2, representing two vehicles with two reports in a

single region at a single time. Case 2 represents five vehicles with five reports in a single region

at a single time. Case 3 represents are five vehicles with five reports in a single region at 5 time

steps.

Figure 4. Generated SSBNs from Vehicle Identification MTheory

MEBN has been applied to situation assessment [Laskey, 2000; Wright et al., 2002; Costa et al.,

2005]. Its increased expressive power over ordinary BNs is an advantage for situation assessment:

“Military situation assessment requires reasoning about an unknown number of hierarchically

organized entities interacting with each other in varied ways [Wright et al., 2002].”

1.2 Problem Statement

In previous applications of MEBN to situation assessment, the MTheory was constructed

manually by a domain expert using the MEBN modeling process called Uncertainty Modeling

Process for Semantic Technologies (UMP-ST) [Carvalho, 2011]. Manual MEBN modeling is a

labor-intensive and insufficiently agile process. This paper addresses the question of how to

move beyond this manual process. In particular, we focus on machine learning methods in which

a MEBN theory is learned from observations on previous situations.
 We assume the availability of past data from similar situations. Typically, such data are

stored in relational databases. Therefore, we consider the problem of how to use data stored in a

relational database for learning an MTheory. We take the standard approach of decomposing the

learning problem into parameter and structure learning, treating each of these in turn.

1.3 Scope

This paper presents a basic structure and parameter learning algorithm for MEBN theories and

illustrates the method on synthetic data generated from the PROGNOS Simulaton. We assume:

1. The data for learning are stored in a relational database.

a. There is a single centralized database rather than multiple distributed databases.

b. We do not consider learning from unstructured data.

2. The database contains enough observations for accurate learning.

3. There is no missing data.

4. All RVs are discrete. Continuous RVs are not considered.

5. Learning is in batch mode. We do not consider online incremental learning.

6. We do not consider the problem of learning functions for aggregating influences from

multiple instances of the parents of an RV.

These assumptions will be relaxed in future work.

2 MULTI-ENTITY BAYESIAN NETWORK AND RELATIONAL MODEL

This section defines Multi-Entity Bayesian Networks (MEBN) and the Relational Model (RM). In

Section 3, we present the MEBN-RM Model, a bridge between MEBN and RM that will allow

data represented in RM to be used to learn a MEBN theory.

2.1 Multi-Entity Bayesian Network

MEBN represents domain knowledge as a collection of MFrags. An MFrag (see Figure 6) is a

fragment of a graphical model that is a template for probabilistic relationships among instances of

its random variables. Random variables in an MFrag can contain ordinary variables which can be

instantiated for different domain entities. We can think of an MFrag as a class which can generate

instances of BN fragments, which can then be assembled into a Bayesian network.

The following definition of MFrags is taken from [Laskey, 2008]. An MFrag can contain three

kinds of nodes: context nodes which represent conditions under which the distribution defined in

the MFrag is valid, input nodes which have their distributions defined elsewhere and condition the

distributions defined in the MFrag, and resident nodes with their distributions defined in the

MFrag. Each resident node has an associated local distribution, which defines its distribution as a

function of the values of its parents. The RVs in an MFrag can depend on ordinary variables. We

can substitute different domain entities for the ordinary variables to make instances of the RVs in

the MFrag.

 Figure 6 shows the Danger MFrag of the Vehicle Identification MTheory. The Danger

MFrag represents probabilistic knowledge of how the level of danger of a region is measured

depending on the vehicle type of detected objects. For example, if in a region there is a large

number of tracked vehicles (e.g., Tanks), the danger level of the region will be high. The context

nodes for this MFrag (shown as pentagons in the figure) show that this MFrag applies when a

Vehicle entity is substituted for the ordinary variable obj, a Region entity is substituted for the

ordinary variable rgn, and a vehicle obj is located in region rgn. The context node rgn =

Location(obj) constrains the values of obj and rgn from the possible instances of vehicle and

region. For example, suppose v1 and v2 are vehicles and r1 is a region in which only v1 is located.

The context node rgn = Location(obj) will allow only an instance of (v1, r1) to be selected, but

not (v2, r1), because r1 is not the location of v2. Next, we see the input node VehicleType(obj),

depicted as a trapezoid. Input nodes are nodes whose distribution is defined in another MFrag. In

Figure 6, the node Danger_Level(rgn) is a resident node, which means its distribution is defined

in the MFrag of the figure. This node Danger_Level(rgn) might be an input node of some other

MFrag, where it would appear as a trapezoid. Like the graph of a BN, the fragment graph shows

statistical dependencies. The local distribution for Danger_Level(rgn) describes its probability

distribution as a function of the input nodes given the instances that satisfy the context nodes. In

our example, the argument, rgn, is the region variable. If the situation involves two regions, r1

and r2, then Danger_Level(r1) and Danger_Level(r2) will be instantiated. The local distribution is

defined in a language called Local Probability Description (LPD) Language. In our example, the

probabilities of the states, high and low, of the Danger_Level(rgn) RV are defined as a function of

the values, high and low, of instances rgn = Location(obj) of the parent nodes that satisfy the

context constraints. For the high state in the first if-scope in the LPD Language, probability value

is assigned by the function described by “1 – 1 / CARDINALITY(obj)”. The CARDINALITY

function returns the number of instances of obj satisfying the if-condition. For example, in the

LPD expression of Figure 6, if the situation involves three vehicles and two of them are tracked,

then the CARDINALITY function will return 2. We see that as the number of tracked vehicles

becomes very large, the function, “1 – 1 / CARDINALITY (obj)”, will tend to 1.

Figure 6. Danger MFrag

Danger_MFrag

Context Node (C)

Input Node (I)

Resident Node (R)

if some obj have (VehicleType = Tracked) [

high = 1 – 1 / CARDINALITY(obj),

low = 1 – high

] else [

high = 0,
low = 1

]

Local Distributions (D)

Fragment Graph (G)

Figure 7. SSBN of Danger MFrag (given v1, v2, and v3 as vehicle, and region1_1 as region)

From this Danger MFrag, diverse situation-specific Bayesian Networks (SSBN) can be generated

depending on the specific entities involved in the situation. For example, a single region entity

called region1_1 and three vehicle entities called v1, v2, and v3 will give rise to the SSBN in

Figure 7, with the conditional probability table (CPT) for Danger_Level_region1_1 as shown.

An MTheory is a collection of MFrags that defines a consistent joint distribution over

random variables describing a domain. The MFrags forming an MTheory should be mutually

consistent. To ensure consistency, conditions must be satisfied such as no-cycle, bounded causal

depth, unique home MFrags, and recursive specification condition [Laskey, 2008]. No-cycle

means that the generated SSBN will contain no directed cycles. Bounded causal depth means that

depth from a root node to a leaf node of an instance SSBN should be finite. Unique home MFrags

means that each random variable has its distribution defined in a single MFrag, called its home

MFrag. Recursive specification means that MEBN provides a means for defining the distribution

for a RV depending on an ordered ordinary variable from previous instances of the RV. The

Vehicle Identification MTheory described above is a set of consistent MFrags defining a joint

distribution over situations involving instances of its RVs.

2.2 Relational Model

In 1969, Edgar F. Codd proposed the Relational Model (RM) as a database model based on first-

order predicate logic [Codd, 1969; Codd, 1970]. RM is the most popular database model. A

relational database (RDB) is a database that uses RM as its basic representation for data. In RM,

data are organized a collection of relations. A relation is an abstract definition of a class of entities

or a relationship that can hold between classes. An instance of a relation is depicted as a table in

which each column is an attribute of the relation and each row, called a tuple, contains the value

of each attribute for an individual entity in the domain. An entry in the table, called a cell, is the

value of the attribute associated with the column for the entity associated with the row. A key is

one or more attributes that uniquely identify a particular domain entity. A primary key for a

relation uniquely identifies the individual entities in the relation; a foreign key points to the

primary key in another relation. The cardinality of a relation is the number of rows in the table,

i.e., the number of entities of the type represented by the relation. The degree of the relation is the

number of columns in the table, i.e., the number of attributes of entities of the type represented by

the relation.

Figure 8. Example of Relational Model

Figure 8 shows a relational model for the vehicle identification example. There are four relations

in this model: VehicleObject, Region, Time and Location. We could imagine different situations,

each with different vehicles, regions, etc. Each particular situation, like the one depicted in Figure

8, corresponds to an instance of this relational model. The instance is represented as a table for

each of the relations, where the columns represent attributes of the relation and the rows represent

entities. For example the VehicleObject relation has two attributes: Key, which uniquely identifies

each individual vehicle, and VehicleType, which indicates whether the vehicle is tracked or

wheeled. The VehicleKey attribute in the Location relation is a foreign key pointing to the primary

key of the Vehicle relation. A row of Location represents a vehicle being located in a region at a

time.

3 MEBN-RM MODEL

As a bridge between MEBN and RM, we suggest the MEBN-RM Model, specifies how to match

elements of MEBN to elements of RM. We describe this from the MEBN perspective. We begin

by discussing the bridge between context RVs in MEBN and elements of RM. Next, we discuss

the bridge between resident RVs in MEBN and elements of RM.

Figure 9. Example Tables

Figure 9 is used as an example for the next sections. It extends the four tables of Figure 8 by

adding a fifth Report and sixth Communication relation. The tables VehicleObject, Region, Time,

and Report are called entity tables. Each of these represents a type of entity. Each primary key is

a single column, which uniquely identifies the entity. For example, the Key column in the

Vehicle table consists of identifiers for the six vehicles in our situation. The Location and

Communication table is called a relationship table. The primary key of a relationship table

consists of two or more foreign keys (in this case (VehicleKey, TimeKey) for the Location table).

The Location table represents the region in which an entity is located at a time. The relations and

their attributes – that is, a set of empty tables – is called the schema for the database. A

populated set of tables such as Figure 9 is called an instance of the schema. It is clear that many

different instances of this schema are possible, each corresponding to a different situation.

3.1 Context Node

In MFrags, context terms (or nodes) are used to specify constraints under which the local

distributions apply. Thus, it determines specific entities on an arbitrary situation of a context.

 In the MEBN-RM model, we define four types of data structure corresponding to context

nodes: Isa, Value-Constraint, Slot-filler, and Entity-Constraint type.

Type Name Example

1 Isa
Isa(VehicleObject, obj), Isa(Region, rgn),

Isa(Time, t), Isa(Report, rpt)

2 Value-Constraint VehicleType(obj) = Wheeled

3 Slot-Filler
obj = Reported Object(rpt)

4 Entity-Constraint Communication(obj1,obj2)
Table 1. Context Node Types on MEBN-RM Model

3.1.1 Isa Type

In MEBN, the Isa random variable (RV) represents the type of an entity. In a RM, an entity table

represents a collection of entities of a given type. Thus, an entity table corresponds to an Isa

random variable in MEBN. Note that a relationship table whose primary key is composed of

foreign keys does not correspond to an Isa RV. A relationship table will correspond to the Entity-

Constraint type of Context Node. In the example, the table of VehicleObject, Region, Time, and

Report are entity tables, so they correspond to Isa RVs such as Isa(VehicleObject, obj),

Isa(Region, rgn), Isa(Time, t), and Isa(Report, rpt). The primary key of an entity relation

consists of the entities of the given type in our situation. For example, v1, …, v6, the entries in the

Key attribute of the Vehicle relation, denote the six vehicles in the situation depicted by the RM of

Figure 9.

3.1.2 Value-Constraint Type

The value of an attribute can be used to select those keys which are related to the value. For

example, consider the VehicleObject table in which we have the Vehicle entity with the

VehicleType attribute. The instances of the Vehicle entity are denoted by the primary key (e.g., v1,

v2, v3, v4, v5, and v6). To focus on a case of the entity with “Wheeled” value of the attribute, we

will select the set {v1, v5}. In MEBN, this corresponds to the context RV VehicleType (obj) =

Wheeled. In this way, we can represent subsets of entities selected on the basis of the values of

given attributes.

3.1.3 Slot-Filler Type

Consider the Report table depicting the Report entity which has an attribute ReportedObject

referring to a foreign key, VehicleObject.Key. The VehicleObject.Key in the Report entity is an

attribute which domain is the key of the Vehicle entity in the VehicleObject table. In other words,

this attribute points to an entity of type Vehicle. This attribute represents the vehicle associated

with the corresponding report. For example, from the first row of the table, we see that v1 is the

ReportedObject for the report rpt1. That is, rpt1 is a report about the vehicle v1. We call this a slot

filler attribute, i.e., v1 fills the ReportedObject slot in the rpt1 report. In MEBN, this slot filler

relationship is expressed by v1 = ReportedObject(rpt1).

The foreign key, VehicleObject.Key, is not a primary key for the Report table. This means

it is allowed to have a “null” value, which means an empty cell (i.e. no report is available for the

vehicle). The intersection set of the Vehicle and Report entity will be {(v1, rpt1), (v1, rpt2), (v1,

rpt3), (v2, rpt4), (v2, rpt5), (v2, rpt6)}.

3.1.4 Entity-Constraint Type

A relationship table identifies a connection among entity tables by composing two or more keys

of the entity tables. For example, the primary keys of the Communication table are VehicleKey1

and VehicleKey2 from the VehicleObject table. Composing two keys expresses a relationship

between the entities. The connection between entities corresponds to the Entity-Constraint type in

MEBN-RM. The Entity-Constraint node Communication (obj1, obj2) in MEBN expresses a

relation on vehicle entities. From Figure 9, we see that this relation is{(v1, v2), (v2, v3), (v2, v4),

(v2, v5), (v1, v4), (v1, v5)}. This relation corresponds to the set of pairs of communicating

vehicles.

3.2 Resident Node

In MFrags, Resident Node can be described as Function, Predicate, or Formula of FOL. MEBN

allows the modeler to specify a probability distribution for the truth-value of a predicate or the

value of a function. Formulas are not probabilistic, and are defined by built-in MFrags [Laskey,

2008]. As noted above, RM is based on first-order predicate logic. In this section, we describe the

correspondence between functions and predicates in FOL and relations in RM.

 In FOL, a predicate represents a true/false statement about entities in the domain. It is

expressed by a predicate symbol followed by a list of arguments. For example,

Communication(x,y) is a predicate that expresses whether the entities indicated by the arguments x

and y are communicating. In MEBN, this predicate corresponds to a Boolean RV with possible

values True and False. In RM, we express a predicate as a table in which the primary key consists

of all the attributes. These attributes are the arguments of the predicate, and the rows of the table

represent the arguments for which the predicate is true. For example, the six rows of the

Communication relation of Figure 9 correspond to the six pairs of entities for which the predicate

Communication holds.

In FOL, a function is a mapping from domain entities called inputs to a value called the

output. For example, the function VehicleType(obj) is a function that maps its argument to

Wheeled if it is a wheeled vehicle and Tracked if it is a tracked vehicle; ReportedObject(rpt) is a

function that maps its argument to the object being reported upon. In RM, a function is

represented by a non-key attribute of a table. It maps its argument(s), the primary key(s) for the

relation, to the output, which is the value of the attribute. For example, in Figure 9, the argument

of the function VehicleType is the primary key of the VehicleObject relation, and the output is the

value (either Tracked or Wheeled) of the VehicleType attribute.

Table 2 defines the relationship between elements of RM and MEBN.

RM Resident Node

Attribute Function/ Predicate

Key Arguments

Cell of Attribute Output
Table 2. Function of MEBN-RM Model

4 THE BASIC PARAMETER AND STRUCTURE LEARNING FOR MEBN

This section presents a basic structure and parameter learning method for learning a MEBN

theory from a relational database.

4.1 Basic MEBN Parameter Learning

Parameter learning for MEBN is to estimate a parameter of the local distribution for a resident

node of an MTheory, given the structure of the MTheory and a dataset expressed in RM. By

structure, we mean the nodes, arcs and state spaces in each MFrag, and the parameters of the local

distributions for the resident nodes. For this basic algorithm, we use Maximum Likelihood

Estimation (MLE) to estimate the parameter. Furthermore, we do not address the problem of the

aggregating influences from multiple instances of the same parent. We assume that the test dataset

is well modeled by an MTheory with nodes and state spaces as given by the relational database,

and that the local distributions are well modeled by the chosen parametric family. In future

research, we will address the use of an informative prior distribution to represent a priori

information about the parameters.

The influence aggregation problem occurs when there are multiple instances of the parents

of a resident node that satisfy the context constraints in the MFrag. In this case, a domain expert

may provide knowledge about how random variables are aggregated, and an aggregator or

combining rule may be used for estimating the parameter [Getoor et al., 2000; Natarajan et al.,

2009]. We defer consideration of aggregators and combining rules to future work.

4.2 Basic MEBN Structure Learning

Structure learning for MEBN is to organize RVs into MFrags and identify parent-child

relationships between nodes, given a dataset expressed in RM. The MFrags, their nodes (context,

input, and resident nodes), and arcs between nodes are learned (See appendix A). The initial

ingredients of the algorithm are the dataset (DB) expressed in RM, any Bayesian Network

Structure searching algorithm (BNSL_alg), and maximum size of chain (Sc). We utilize a

common Bayesian Network Structure searching algorithm to generate a local BN from the joined

dataset of the RM.

The first step of the algorithm is to create the default MTheory. All keys in entity tables of

the DB are defined as entities of this default MTheory. One default reference MFrag is created,

which will include resident nodes used for context nodes. Because context nodes also are random

variables, they should be defined an MFrag such as the reference MFrag. Now, using both entity

and relationship tables, the MFrags, their nodes, and their connections are learned. There are three

For-Loop (#4, #10, and #23in appendix A). The first For-Loop treats all tables, while the second

For-Loop treats the joined tables. For all tables of the DB, the dataset for each table is retrieved

one by one and, by using any BN structure searching algorithm (BNSL_alg), a graph is generated

from the retrieved dataset. If the graph has a cycle and undirected edge, a domain expert sets the

arc direction manually. Based on the revised graph, an MFrag is created by using createMFrag

function in appendix A. In the second For-Loop, for the joined tables, data associated with

relationship tables is retrieved until the maximum size of chain (Sc) is reached. This iteration

continues until a user-specified maximum size of chain is reached. The MFrags, their nodes, and

their arcs are generated in the same way as described in the previous paragraph. One difference is

that the aggregating influence situation should be detected by an approach called Framework of

Function Searching for LPD (FFS-LPD) which will detect the situation and provide possible LPD

function in a heuristic approach. FFS-LPD can be realized by a domain expert or a program. In

our initial research, the domain expert detects the aggregating influence situation and provides a

reasonable LPD function having aggregating function in FFS-LPD context (An automatic

programmed approach is being researched). After checking the LPD function, if any nodes of the

new generated graph are not used in any MFrags, create a new resident node having the name of

the dataset of the graph on the default reference MFrag and a new MFrag for the dataset. If not,

add make edges between resident nodes corresponding to arcs found by the structure learning

algorithm. If there is an arc between nodes in different MFrags, add the parent node as an input

node to the MFrag of the child node. Lastly, in the third For-Loop, for all resident nodes in the

MTheory, LPDs are generated by MLE.

5 CASE STUDY

As noted in Section 1, the purpose of the learned MTheory generated by the presented algorithm

is to estimate and predict a situation in PSAW. In this case study, a learned MTheory is evaluated

by evaluating its ability to predict queries of interest.

Our case study uses PROGNOS (Probabilistic OntoloGies for Net-centric Operation

Systems) [Costa et al., 2009; Carvalho et al., 2010]. PROGNOS includes a simulation which

generates simulated ground truth information for the system. The simulation generates 85000

persons, 10000 ships, and 1000 organization entities with various values of attributes and relations

between entities. The data for these entities are stored in a relational database which includes

three entity tables (person, ship, and organization) and two relationship tables (ship_crews and

org_members). The ship_crews table has a paired key comprised of a ShipKey and PersonKey,

representing the persons serving as crew members on ships. The org_members table has a paired

key comprised of an OrganizationKey and PersonKey, representing membership of persons in

organizations. A ship may have many crew members, each of whom may be affiliated with

several organizations. The goal of PROGNOS is to classify ships as to whether they are ships of

interest. In our case, this means ship associated with terrorist activities. The classification is made

given evidence about the attributes of the entities. For example, if a ship had a crew member who

has communicated with a terrorist, the ship was on an unusual route, and it was unresponsive, it is

highly likely that the ship is likely to be a ship of interest. The database contains an attribute

IsShipOfInterest of the ship table representing the ground truth for whether it is a ship of interest.

To evaluate the algorithm, training and test datasets were generated by the simulation. The

algorithm was used to learn an MTheory from the training dataset as shown in Figure 11 (one of

SSBNs from the learned MTheory is shown in Figure 12). In the MTheory, a total of four MFrags

were generated. There is the default reference MFrag, the org_members MFrag from the

org_members relationship table, the person MFrag from the person entity table, and the ship

MFrag from the ship entity table. The org_members and ship_crews input nodes came from the

org_members and ship_crews relationship tables. After learning the MTheory, the test dataset was

used to evaluate the MTheory. First, a test case from the test dataset was retrieved. Because a state

of the IsShipOfInterest variable is our concern, data from a ship in the test dataset was retrieved.

Based on the ship data, other related data were retrieved. All of these were combined to make the

test data. For example, if a ship was connected to 3 persons and each of the 3 persons was

associated with 3 organizations, then 9 rows of a joined table were retrieved as one test case.

Using this test case, a SSBN was generated from the learned MTheory. The context of the SSBN

corresponds to the context of the test case. For example, using the previous test case example, 1

ship, 3 person, and 9 organization entities are used for generating a SSBN. After the SSBN is

generated, the IsShipOfInterest node which was Boolean was queried given several leaf nodes of

the SSBN with values of the leaf nodes retrieved from the test data. The queried probability result

was stored in an array. This retrieving and querying process continued until all ships were treated.

For each of the SSBNs generated from the test data, and for each instance of the

IsShipOfInterest RV in the SSBN, the probability of the IsShipOfInterest RV was computed given

the evidence for the leaf nodes. The accuracy of the queried probability results was measured

using the Receiver Operating Characteristic (ROC) Curve. The ROC for our case study is shown

in Figure 10. The area under the curve (AUC) is shown in Table 3. The learned MTheory

estimated the state of the IsShipOfInterest node with the AUC, 0.897206546.

Model AUC

Learned MTheory 0.897206546

Table 3. AUC of Learned MTheory

Figure 10. ROC of Learned MTheory

6 DISCUSSION AND FUTURE WORK

This paper discussed reasons why MEBN is a useful modeling tool for PSAW systems, providing
a semantically rich representation that also captures uncertainty. MEBN was the core logic for the
probabilistic ontologies used in the PROGNOS prototype PSAW system. The original
PROGNOS probabilistic ontologies were constructed manually with the help of domain experts.
This manual MEBN modeling was labor-intensive and insufficiently agile. To address this
problem, we developed a learning algorithm for MEBN-based probabilistic ontologies. To enable
learning from relational databases, we presented a bridge between MEBN and the Relational
Model, which we call the MEBN-RM model. We also presented a basic parameter and structure
learning algorithm for MEBN. Finally, the presented method was evaluated on a case study from
PROGNOS.

 Although we provided a basic MEBN learning, there are several issues. 1) Aggregating

influence problem; how to learn an aggregating function in an aggregating situation where an

instance child random variable depends on multiple instance parents which is generated from an

identical class random variable? 2) Optimization of learned MTheory; how to learn an optimized

structure of an MTheory without losing accuracy of query? 3) Unstructured data learning; how to

learn unstructured data which isn’t derived from a data model? 4) Continuous random variable

learning; how to learn an MTheory which includes continuous random variables? 5) Multiple

distributed data learning; how to learn an MTheory from data in multiple distributed databases? 6)

Incomplete data learning; how to approximate parameters of an MTheory from missing data? 7)

Learning in insufficient evidence; how to learn an MTheory from not enough observations? 8)

Incremental MEBN learning; how to learn parameters of an MTheory from updated observations?

There remain many open research issues in this domain. Recently, we are studying about the

aggregating influence problem and continuous random variable learning in PSAW.

Figure 11. Learned PROGNOS MTheory

Figure 12. Generated SSBN from Learned PROGNOS MTheory. (_1 and _0 in the state of the node means true

and false respectively. The letter S, O, and P in the title of the node means Ship, Organization, and Person

respectively.)

REFERENCES

Breton, R., & Reousseau, R. (2001). Situation Awareness: A Review of the Concept and its

Measurement. Technical Report No. 2001-220, Defense Research and Development

Canada, Valcartier.

Carvalho, R. N., Costa, P. C. G., Laskey, K. B., & Chang, K. C. (2010). PROGNOS: predictive

situational awareness with probabilistic ontologies. In Proceedings of the 13th

International Conference on Information Fusion. Edinburgh, UK.

Carvalho, R. N. (2011). Probabilistic Ontology: Representation and Modeling Methodology.

PhD Dissertation. George Mason University.

Codd, E. F. (1969). Derivability, Redundancy, and Consistency of Relations Stored in Large

Data Banks. IBM Research Report.

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Communications

of the ACM.

Costa, P. C. G. (2005). Bayesian Semantics for the Semantic Web. PhD Dissertation. George

Mason University.

Costa, P. C. G., Laskey, K. B., Takikawa, M., Pool, M., Fung, F., & Wright, E. J. (2005). MEBN

Logic: A Key Enabler for Network Centric Warfare. In Proceedings of the 178 Tenth

International Command and Control Research and Technology Symposium (10th

ICCRTS). Mclean, VA, USA: CCRP/DOD publications.

Costa, P. C. G., Laskey, K. B., & Chang, K. C. (2009). PROGNOS: Applying Probabilistic

Ontologies To Distributed Predictive Situation Assessment In Naval Operations.

Proceedings of the 14th Int. Command And Control Research and Technology

Symposium. Washington, D.C., USA.

Endsley, M. R. (1988). Design and evaluation for situation awareness enhancement. Paper

presented at the Human Factors Society 32nd Annual Meeting, Santa Monica, CA.

Endsley, M. R., Bolte, B., & Jones, D. G. (2003). Designing for situation awareness: An

approach to human-centered design. New York, NY: Talyor & Francis.

Getoor, L., Koller, D., Taskar, B., & Friedman, N. (2000). Learning Probabilistic Relational

Models with Structural Uncertainty. Paper presented at the ICML-2000 Workshop on

Attribute-Value and Relational Learning:Crossing the Boundaries. Stanford, CA, USA.

Laskey, K. B., D’Ambrosio, B., Levitt, T. S., & Mahoney, S. M. (2000). Limited Rationality in

Action: Decision Support for Military Situation Assessment. Minds and Machines, 10(1),

53-77.

Laskey, K. B. (2008). MEBN: A Language for First-Order Bayesian Knowledge Bases. Artificial

Intelligence, 172(2-3).

Linggins, M. E., Hall, D. L., & Llinas, J. (2008). Handbook of Multisensor Data Fusion: Theory

and Practice, Second Edition. Electrical Engineering & Applied Signal Processing Series.

CRC Press.

Llinas, J., Bowman, C., Rogova, G., & Steinberg, A. (2004). Revisiting the JDL data fusion

model II. In: Proc. of the 7th Int. Conf. on Information Fusion, Stockholm, Sweden, pp.

1218–1230.

Natarajan, S., Tadepalli, P., Dietterich, T. G. & Fern, A. (2009). Learning first-order

probabilistic models with combining rules. Special Issue on Probabilistic Relational

Learning, AMAI.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Mateo, CA, USA: Morgan Kaufmann Publishers.

Steinberg, A. N., Bowman, C. L., & White, Jr., F. E. (1998). Revisions to the JDL Data Fusion

Model. Proc. 3rd NATO/IRIS Conf. Quebec City, Canada.

White, Jr., F. E. (1988). A model for data fusion. Proc. 1st Natl. Symp. Sensor Fusion, vol. 2.

Wright, E., Mahoney, S. M., Laskey, K. B., Takikawa, M. & Levitt, T. (2002). Multi-Entity

Bayesian Networks for Situation Assessment. Proceedings of the Fifth International

Conference on Information Fusion.

APPENDIX A

Algorithm 1: Basic Structure Learning For MEBN

Procedure BSL_MEBN (DB, // Relational database
 BNSL_alg // BN Structure Search algorithm

 Sc // Maximum size of chain

)

1 Mtheory ← create a default MTheory

2 Mtheory ← add entities from the all keys in the tables of DB

3 MFref ← create a default reference MFrag
4 for i = 1, … until size of all tables in DB

5 Ti ← get table from DB
6 Gi ← search the graphs in Ti using BNSL_alg

7 Gi ← revise the graph to ensure no cycle and undirected edge

8 if Gi ≠ Ø then
9 MFi = createMFrag(Gi, Ti, Mtheory)

10 for c = 1, … until sc

11 JT ← joinTables(DB, c)
12 for i = 1, … until size of JT

13 Gi ← search the aggregating graphs using FFS-LPD

14 Gi ← search the graphs in JTi using BNSL_alg

15 Gi ← revise the graph to ensure no cycle and undirected edge

16 if Gi ≠ Ø then

17 for j = 1, … until size of Gi
18 if any nodes in Gij is not used for any MFrag then

19 MFref ← create the resident node with the name of JTi on MFref

20 createMFrag(Gi, JTi, Mtheory)
21 else

22 addEdges(Gi, JTi, Ø)

23 for i = 1, … until size of all resident nodes in the MTheory
24 Ti, ← get dataset related the resident node i

25 calculateLPD(Ri, Ti,)

26 return Mtheory

Procedure createMFrag (Gø // List of Resident Nodes

 Tø // dataset of table
 Mtheory // Mtheory

)

1 MF ← create MFrag using the name of Tø
2 N ← get the nodes of Gø which is not used for any Mfrags of Mtheory

3 R ← create the resident nodes corresponding to N

4 MF ← add R into MF with ordinary variables related with R
5 MF ← addEdges(Gø, Tø, MF)

6 Add MFrag into Mtheory

7 return MF

Procedure addEdges (Gø // List of Resident Nodes

 Tø // dataset of table
 MF // the target Mfrag

)

1 for i = 1, … until the size of the edges of Gø

2 Np ← get the resident node corresponding to the parent node of Ei

3 Nc ← get the resident node corresponding to the child node of Ei
4 MFp ← get the MFrag of Np

5 MFc ← get the MFrag of Nc

6 if MF = MFc = MFp then
7 MF ← add edges between Np and Nc using Ei

8 else

9 if MFp ≠ MF then
10 MFp ← create the input node which was the context node of MF and add it into MFp

11 if MFc ≠ MF then

12 MFc ← create the input node which was the context node of MF and add it into MFc
13 MFc ← create the input node from Np and add it into MFc

14 return MF

Procedure calculateLPD (R // List of Resident Nodes

 Tø // dataset of table

)

1 for i = 1, … until size of R

2 Ri. LPD ← calculate default probabilities of Ri using Tø

3 if Ri is in Many-to-One connection then
4 Ri.LPD ← assigned the LPD which is generated by FFS-LPD

5 else

6 Ri. LPD ← calculate the conditional probabilities of Ri

Procedure joinTables (DB, // Relational database

 c // range of the chain
)

1 RT ← get the relationship tables of DB
2 for i = 1, … until size of RT

3 jt ← join all related tables in the range, c, from RTi

4 JT ← add jt into JT except the jt already added
5 return JT

