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ABSTRACT

Over the past two decades, machine learning has led to substantial changes in Data Fusion
Systems throughout the world. One of the most important application areas for data fusion is
situation awareness to support command and control. Situation Awareness is perception of
elements in the environment, comprehension of the current situation, and projection of future
status before decision making. Traditional fusion systems focus on lower levels of the JDL
hierarchy, leaving higher-level fusion and situation awareness largely to unaided human
judgment. This becomes untenable int 0 d anyréasingly data-rich environments, characterized
by information and cognitive overload. Higher-level fusion to support situation awareness
requires semantically rich representations amenable to automated processing. Ontologies are an
essential tool for representing domain semantics and expressing information about entities and
relationships in the domain. Probabilistic ontologies augment standard ontologies with support
for uncertainty management, which is essential for higher-level fusion to support situation
awareness. PROGNOS is a prototype Predictive Situation Awareness (PSAW) System for the
maritime domain. The core logic for the PROGNOS probabilistic ontologies is Multi-Entity
Bayesian Networks (MEBN), which combines First-Order Logic with Bayesian Networks for
representing and reasoning about uncertainty in complex, knowledge-rich domains. MEBN goes
beyond standard Bayesian networks to enable reasoning about an unknown number of entities
interacting with each other in various types of relationships, a key requirement for PSAW. The
existing probabilistic ontology for PROGNOS was constructed manually by a domain expert.
However, manual MEBN modeling is labor-intensive and insufficiently agile. To address this
problem, we developed a learning algorithm for MEBN-based probabilistic ontologies. This
paper presents a bridge between MEBN and the Relational Model, and a parameter and structure
learning algorithm for MEBN. The methods are evaluated on a case study from PROGNOS.

1 INTRODUCTION

Over the past two decades, machine learning has led to substantial changes in Data Fusion
Systems throughout the world [White, 1988; Endsley, 1988; Steinberg et al., 1998; Endsley et
al., 2003; Llinas et al., 2004; Linggins et al., 2008]. One of the most important application areas
for data fusion is Situation Awareness (SAW) to support command and control (C2). Systems to
support SAW provide information regarding the present or future situation. This information
supports situation assessment (SA) and is exploited for C2 decision making.

According to the most common cited definition, SAW is composed of three processes;
perception of elements in the environment, comprehension of the current situation, and
projection of the future status [Endsley, 1988; Endsley et al., 2003]. Breton and Rousseau
classified 26 SAW definitions and identified a set of common elements of SAW. They identified
two distinct varieties, which they termed State- and Process-oriented SAW. In their definition,
Process-oriented SAW focuses on the link between the situation and the cognitive processes
generating SAW, while State-oriented SAW focuses on the link between the situation and an
internal representation of elements present in the situation [Breton & Rousseau, 2001].

In contrast to traditional SAW, Predictive Situation Awareness (PSAW) emphasizes the
ability to make predictions about aspects of a temporally evolving situation [Costa et al., 2009;



Carvalho et al., 2010]. Traditionally, decision makers are responsible for the higher-level data
fusion in which they use the results of low-level fusion to estimate and predict the evolving
situation. PROGNOS is a prototype system intended to address the need for higher-level data
fusion [Costa et al., 2009; Carvalho et al., 2010]. PROGNOS provides higher-level fusion
through state-of-the-art knowledge representation and reasoning.

The PROGNOS probabilistic ontologies employ Multi-Entity Bayesian Networks
(MEBN) which combines First-Order Logic with Bayesian Network for representing and
reasoning about uncertainty in complex, knowledge-rich domains [Laskey, 2008]. MEBN goes
beyond standard Bayesian networks to enable reasoning about an unknown number of entities
interacting with each other in various types of relationships. A PSAW system must aggregate
state estimates provided by lower level information fusion (LLIF) systems to help users
understand key aspects of the aggregate situation and project its likely evolution. A semantically
rich representation is needed that can capture attributes of, relationships among, and processes
associated with various kinds of entities. Ontologies provide common semantics for expressing
information about entities and relationships in the domain. Probabilistic ontologies (PR-OWL)
augment standard ontologies with support for uncertainty management [Costa, 2005]. PR-OWL
2 extends PR-OWL to provide better integration with OWL ontologies [Carvalho, 2011]. MEBN
is the logical basis for the uncertainty representation in the PROGNOS Probabilistic ontologies.

11 MEBN for PSAW

Figure 1 shows a simplified illustrative example of a problem in PSAW. Our goal is to estimate a
vehicle type (e.g., tracked and wheeled) of a target object and a degree of danger (e.g., high and
low) of a specific region. Figure 1 depicts a specific situation of interest.

Time=1
Region=1
Region=1.1
Vehicle=V2 .
-‘-—MI
Weather F -@
= Clear .
Vehicle=V1 ‘) ked

ImageTypeReport = ?

Speed =20 Communicated =Y
DangerLevel = ?

Figure 1. Vehicle Identification Context in PSAW



The rectangles in Figure 1 mean instances of entities. Figure 1 expresses two relations among
entities. An inner rectangle which is shown within an outer rectangle means a part entity of an
entity represented by the outer rectangle, so it means composition or aggregation. The rectangle
described by ACommunicated = Y O specifies an interconnected relation.

Our system has been provided with the following evidence. At Time 1, a weather sensor
has reported clear weather for Region 1.1. A geographic information system has reported that
Region 1.1 is off-road terrain. Two vehicle objects, V1 and V2, have been detected by an
imaging system, which has reported that V2 is tracked and has failed to report a type for V1. An
MTI sensor indicates that both vehicles are traveling slowly. A COMINT report indicates
communications between V1 and V2. Given this evidence, we want to know the object type of
both vehicles and the danger level of the Region 1.1.

We might consider using a Bayesian network (BN) [Pearl, 1988] to fuse these reports
from multiple sources and answer the queries of interest. Figure 2 shows a Bayesian network we
might use for this problem.

TerrainType__regiond_1 WieatherType_ regiond_1
Road 0% Cloudy ucﬂ
OffRoad 1 00 %) Clear 1 00%| -_\‘
ImageTypeRepart__rpt2
Wheeled 0%,
¥ /_J'Tracked 100%, -
YWehicleType_ vl WehicleType_ w2
Wheeled 20%)| ‘Wheeled 5.88%,|
Tracked a0% .:E—___‘“Tracked \
Speed_ w1 _t1
Fast 0%|
¥ v Slaw 100%
Danger_Level__regioni_1 ImageTypeReport__rptl
High 80% | Wheeled 32%{
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Speed_ w2
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Figure 2. Bayesian Network for Vehicle Identification Context

Each box in the figure depicts a random variable (RV), or node. A label at the top of the box
gives a name for the RV, the labels inside the boxes indicate its possible states, and the numbers
indicate the probability of the state given our current evidence. For example, the RV
VehicleType_vdenotes the type of vehicle 2. It can have value either Wheeledr Tracked Arcs
represent direct dependence relationships. For example, ImageTypeReport_rptlthe type
recorded on imaging sensor report rptl, depends on VehicleType_v2the actual type of V2, the
vehicle being observed by the sensor. RVs for which we have evidence are shown in gray and
probabilities are set to 100% for the value that was actually observed. For example, recall that
Region 1.1 was off-road terrain; thus, evidence for OffRoadis applied to the node Terrain-
Type_regionl_1Given all the evidence we have acquired, we assign 80% probability that V1 is
tracked, 94% probability that V2 is tracked, and 80% probability that the danger level in Region
1.1 is high.



Manual construction of a BN like Figure 2 is feasible, but what about situations
containing hundreds of vehicles and reports? For such situations, MEBN allows us to build up a
complex BN out of modular pieces. Figure 3 shows a MEBN model, called an MTheory, that
expresses our domain knowledge using modular components, called MFrags, that can be
composed into larger models. For example, the ImageTypeRepomFrag expresses knowledge
the reported type from an imaging sensor. The green pentagons are contextRVsthat express
conditions under which the MEBN fragment is valid: obj is a vehicle located in region rgn, and
rpt is a report about obj. The gray trapezoid input RVshave their distributions defined in other
MFrags. The yellow oval resident RYImageTypeR®ort(rpt) in this case, has its distribution
defined in this MFrag, and its distribution depends on the vehicle type of obj and the weather of
rgn.
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Figure 3. Vehicle IdentificationMTheory
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In the Vehicle IdentificationMTheory in Figure 3, there are 7 MFrags such as Speed
ImageTypeRepartVehicleObject Danger Weathey Region and Reference MFrag. The
MTheory can generate many different BNs specialized to different situations, as depicted in
Figure 4 below. Case 1 is the BN of Figure 2, representing two vehicles with two reports in a
single region at a single time. Case 2 represents five vehicles with five reports in a single region
at a single time. Case 3 represents are five vehicles with five reports in a single region at 5 time
steps.
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Figure 4. Generated SSBNs from Vehicleldentification MTheory
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MEBN has been applied to situation assessment [Laskey, 2000; Wright et al., 2002; Costa et al.,

2005]. Its increased expressive power over ordinary BNs is an advantage for situation assessment:

AMIi | itary situation assessment r
organized entities interacting with each other in varied ways [Wegld.,

equires
2002] .0

1.2 Problem Statement

In previous applications of MEBN to situation assessment, the MTheory was constructed
manually by a domain expert using the MEBN modeling process called Uncertainty Modeling
Process for Semantic Technologies (UMP-ST) [Carvalho, 2011]. Manual MEBN modeling is a
labor-intensive and insufficiently agile process. This paper addresses the question of how to
move beyond this manual process. In particular, we focus on machine learning methods in which
a MEBN theory is learned from observations on previous situations.

We assume the availability of past data from similar situations. Typically, such data are
stored in relational databases. Therefore, we consider the problem of how to use data stored in a
relational database for learning an MTheory. We take the standard approach of decomposing the
learning problem into parameter and structure learning, treating each of these in turn.

reasao



13 Scope

This paper presents a basic structure and parameter learning algorithm for MEBN theories and
illustrates the method on synthetic data generated from the PROGNOSimulaton. We assume:
1. The data for learning are stored in a relational database.
a. There is a single centralized database rather than multiple distributed databases.
b. We do not consider learning from unstructured data.
The database contains enough observations for accurate learning.
There is no missing data.
All RVs are discrete. Continuous RVs are not considered.
Learning is in batch mode. We do not consider online incremental learning.
We do not consider the problem of learning functions for aggregating influences from
multiple instances of the parents of an RV.

SARNANE I el

These assumptions will be relaxed in future work.

2 MULTI-ENTITY BAYESIAN NETWORK AND RELATIONAL MODEL

This section defines Multi-Entity Bayesian Networks (MEBN) and the Relational Model (RM). In
Section 3, we present the MEBN-RM Model, a bridge between MEBN and RM that will allow
data represented in RM to be used to learn a MEBN theory.

2.1 Multi-Entity Bayesian Network

MEBN represents domain knowledge as a collection of MFrags. An MFrag (see Figure 6) is a
fragment of a graphical model that is a template for probabilistic relationships among instances of
its random variables. Random variables in an MFrag can contain ordinary variables which can be
instantiated for different domain entities. We can think of an MFrag as a class which can generate
instances of BN fragments, which can then be assembled into a Bayesian network.

The following definition of MFrags is taken from [Laskey, 2008]. An MFrag can contain three
kinds of nodes: context nodes which represent conditions under which the distribution defined in
the MFrag is valid, input nodes which have their distributions defined elsewhere and condition the
distributions defined in the MFrag, and resident nodes with their distributions defined in the
MFrag. Each resident node has an associated local distribution, which defines its distribution as a
function of the values of its parents. The RVs in an MFrag can depend on ordinary variablesWe
can substitute different domain entities for the ordinary variables to make instances of the RVs in
the MFrag.

Figure 6 shows the Danger MFrag of the Vehicle ldentificationrMTheory. The Danger
MFrag represents probabilistic knowledge of how the level of danger of a region is measured
depending on the vehicle type of detected objects. For example, if in a region there is a large
number of tracked vehicles (e.g., Tanks), the danger level of the region will be high. The context
nodes for this MFrag (shown as pentagons in the figure) show that this MFrag applies when a
Vehicle entity is substituted for the ordinary variable 0obj, a Region entity is substituted for the
ordinary variable rgn, and a vehicle obj is located in region rgn. The context node rgn =
Locationobj) constrains the values of obj and rgn from the possible instances of vehicle and



region. For example, suppose v1 and v2 are vehicles and r1 is a region in which only v1 is located.
The context node rgn = Locationobj) will allow only an instance of (v1, rl) to be selected, but
not (v2, rl), because rl is not the location of v2. Next, we see the input node VehicleTyp@bj),
depicted as a trapezoid. Input nodes are nodes whose distribution is defined in another MFrag. In
Figure 6, the node Danger_Levekgn) is a resident node, which means its distribution is defined
in the MFrag of the figure. This node Danger_Levedlgn) might be an input node of some other
MFrag, where it would appear as a trapezoid. Like the graph of a BN, the fragment graph shows
statistical dependencies. The local distribution for Danger_Levedlkgn) describes its probability
distribution as a function of the input nodes given the instances that satisfy the context nodes. In
our example, the argument, rgn, is the region variable. If the situation involves two regions, rl
and r2, then Danger_Levedl1) and Danger_Level2) will be instantiated. The local distribution is
defined in a language called Local Probability Description (LPD) Language. In our example, the
probabilities of the states, high and low, of the Danger_Levelgn) RV are defined as a function of
the values, high and low, of instances rgn = Locationobj) of the parent nodes that satisfy the
context constraints. For the high state in the first if-scope in the LPD Language, probability value
is assigned by the function described by il T 1 / CARDINALITY(0bj) .0T'he CARDINALITY
function returns the number of instances of 0bj satisfying the if-condition. For example, in the
LPD expression of Figure 6, if the situation involves three vehicles and two of them are tracked,
then the CARDINALITY function will return 2. We see that as the number of tracked vehicles
becomes very large, the function, il i 1/ CARDINALITY (obj) ,owill tend to 1.
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A

/s N

{rgn = Location({ohj) )
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Resident Node (R) { Danger_Level{ran)

Context Node (C)

Fragment Graph (G)

if some obj have (VehicleType = Tracked) [

high=17 1/ CARDINALITY( obj),
low=1T high

Jelse[
high=0,

low=1
1

Local Distributions (D)

Figure 6. DangerMFrag
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Figure 7. SSBN of Danger MFrag (given v1, v2, and v3 as vehicle, and regionl 1 as region)

From this DangerMFrag, diverse situation-specific Bayesian Networks (SSBN) can be generated
depending on the specific entities involved in the situation. For example, a single region entity
called regionl 1 and three vehicle entities called v1, v2, and v3 will give rise to the SSBN in
Figure 7, with the conditional probability table (CPT) for Danger_Level_regionl_ds shown.

An MTheory is a collection of MFrags that defines a consistent joint distribution over
random variables describing a domain. The MFrags forming an MTheory should be mutually
consistent. To ensure consistency, conditions must be satisfied such as no-cycle, bounded causal
depth, unique home MFrags, and recursive specification condition [Laskey, 2008]. No-cycle
means that the generated SSBN will contain no directed cycles. Bounded causal depth means that
depth from a root node to a leaf node of an instance SSBN should be finite. Unique home MFrags
means that each random variable has its distribution defined in a single MFrag, called its home
MFrag. Recursive specification means that MEBN provides a means for defining the distribution
for a RV depending on an ordered ordinary variable from previous instances of the RV. The
Vehicle IdentificationMTheory described above is a set of consistent MFrags defining a joint
distribution over situations involving instances of its RVs.

2.2 Relational Model

In 1969, Edgar F. Codd proposed the Relational Model (RM) as a database model based on first-
order predicate logic [Codd, 1969; Codd, 1970]. RM is the most popular database model. A
relational database (RDB) is a database that uses RM as its basic representation for data. In RM,
data are organized a collection of relations A relation is an abstract definition of a class of entities
or a relationship that can hold between classes. An instanceof a relation is depicted as a table in
which each column is an attribute of the relation and each row, called a tuple contains the value
of each attribute for an individual entity in the domain. An entry in the table, called a cell, is the
value of the attribute associated with the column for the entity associated with the row. A keyis
one or more attributes that uniquely identify a particular domain entity. A primary keyfor a
relation uniquely identifies the individual entities in the relation; a foreign keypoints to the
primary key in another relation. The cardinality of a relation is the number of rows in the table,
i.e., the number of entities of the type represented by the relation. The degreeof the relation is the
number of columns in the table, i.e., the number of attributes of entities of the type represented by
the relation.



Attributes : Primary Key: Foreign Key:
Key, TerrainType, UpperRegion VehicleKey, TimeKey Region

Tuple:
/\ \\ Firstrow

VehicleObject / \ Region Time \ \ﬁau‘m
Key | VehicleType Key | TerrainType | UpperRegion Key | PreviousTime VehicleKey | TimeKey | Region
vl Wheeled rl OffRoad null tl null vl 1 11 7
v2 Tracked rl_1 Road rl 2 tl vl 2 rl
v3 Tracked rl 2 OffRoad 1l 3 2 vl 3 rl Cardinality:
v4 Tracked 2 OffRoad null t4 t3 v2 1 r2_1 6
V5 Wheeled 2_1 OffRoad 12 t5 t4 v2 2 r2_1
v6 Tracked 211 Road 21 té t5 v2 3 21
-
/ \ J
. Y
Domain: Wheeled, Tracked Degree: 3
\ J
Y

Relation: VehicleObject, Region, Time, Location

Figure 8. Example of Relational Model

Figure 8 shows a relational model for the vehicle identification example. There are four relations
in this model: VehicleObjectRegion Timeand Location We could imagine different situations,
each with different vehicles, regions, etc. Each particular situation, like the one depicted in Figure
8, corresponds to an instanceof this relational model. The instance is represented as a table for
each of the relations, where the columns represent attributes of the relation and the rows represent
entities. For example the VehicleObjectelation has two attributes: Key, which uniquely identifies
each individual vehicle, and VehicleType which indicates whether the vehicle is tracked or
wheeled. The VehicleKeyattribute in the Locationrelation is a foreign key pointing to the primary
key of the Vehiclerelation. A row of Locationrepresents a vehicle being located in a region at a
time.

3 MEBN-RM MODEL

As a bridge between MEBN and RM, we suggest the MEBN-RM Model, specifies how to match
elements of MEBN to elements of RM. We describe this from the MEBN perspective. We begin
by discussing the bridge between context RVs in MEBN and elements of RM. Next, we discuss
the bridge between resident RVs in MEBN and elements of RM.



VehicleObject Region Time Report Location ‘Communication

Key | VehicleType Key | TerramType | UpperRegion Key | PreviousTime Key | ImageTypeReort |ReportedObject VehicleKey | TimeKey | Region VehicleKeyl | VehicleKey2
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Figure 9. Example Tables

Figure 9 is used as an example for the next sections. It extends the four tables of Figure 8 by
adding a fifth Reportand sixth Communicatiorrelation. The tables VehicleObjectRegion Time
and Reportare called entity tables. Each of these represents a type of entity. Each primary key is
a single column, which uniquely identifies the entity. For example, the Key column in the
Vehicle table consists of identifiers for the six vehicles in our situation. The Location and
Communicationtable is called a relationship table. The primary key of a relationship table
consists of two or more foreign keys (in this case (VehicleKeyTimeKey for the Locationtable).
The Locationtable represents the region in which an entity is located at a time. The relations and
their attributes T that is, a set of empty tables T is called the schemafor the database. A
populated set of tables such as Figure 9 is called an instanceof the schema. It is clear that many
different instances of this schema are possible, each corresponding to a different situation.

3.1 Context Node

In MFrags, context terms (or nodes) are used to specify constraints under which the local
distributions apply. Thus, it determines specific entities on an arbitrary situation of a context.

In the MEBN-RM model, we define four types of data structure corresponding to context
nodes: Isa, Value-Constraint, Slot-filler, and Entity-Constraint type.

Type Name Example
1 Isa Isa( VehicleObject, obj ), Isa( Region, rgn ),
Isa( Time, t), Isa( Report, rpt )
2 Value-Constraint VehicleType( obj ) = Wheeled
3 Slot-Filler obj = Reported Object( rpt )
4 Entity-Constraint Communication( obj1,0bj2)

Table 1. Context Node Types on MEBN-RM Model

3.1.1 lIsaType

In MEBN, the Isa random variable (RV) represents the type of an entity. In a RM, an entity table
represents a collection of entities of a given type. Thus, an entity table corresponds to an Isa
random variable in MEBN. Note that a relationship table whose primary key is composed of




foreign keys does not correspond to an Isa RV. A relationship table will correspond to the Entity-

Constraint type of Context Node. In the example, the table of VehicleObjectRegion Time and

Reportare entity tables, so they correspond to Isa RVs such as Isa VehicleObject obj ),

Isa( Region rgn ), Isa( Time t ), and Isa( Report rpt ). The primary key of an entity relation

consists of the entities of the given type in our situation. F O r exampl e, v, e, v 6,
Keyattribute of the Vehiclerelation, denote the six vehicles in the situation depicted by the RM of

Figure .

3.1.2 Value-Constraint Type

The value of an attribute can be used to select those keys which are related to the value. For

example, consider the VehicleObjecttable in which we have the Vehicle entity with the
VehicleType attribute. The instances of the Vehicle entity are denoted by the primary key (e.g., v1,
v2,v3,v4,v5,andv6). Tof ocus on a c as Wheaefid0 tvhafitheesnitiute, vey wi t h
will select the set {vl, v5}. In MEBN, this corresponds to the context RV VehicleTypgobj) =

Wheeled In this way, we can represent subsets of entities selected on the basis of the values of

given attributes.

3.1.3 Slot-Filler Type

Consider the Report table depicting the Report entity which has an attribute ReportedObject
referring to a foreign key, VehicleObject.KeyThe VehicleObject.Keyn the Report entity is an
attribute which domain is the key of the Vehicle entity in the VehicleObjectable. In other words,
this attribute points to an entity of type Vehicle. This attribute represents the vehicle associated
with the corresponding report. For example, from the first row of the table, we see that v1 is the
ReportedObjecfor the report rptl. That is, rptl is a report about the vehicle vl We call this a slot
filler attribute, i.e., v1 fills the ReportedObjectlot in the rptl report. In MEBN, this slot filler
relationship is expressed by v1= ReportedObje¢tptl).

The foreign key, VehicleObjecKey, is not a primary key for the Reporttable. This means
it is allowed to have a i n u | | Owhich an¢ans &n empty cell (i.e. no report is available for the
vehicle). The intersection set of the Vehicle and Report entity will be {(v1, rptl), (v1, rpt2), (v1,

pt3), (v2, rpt4), (v2, rpt5), (v2, rptbd)}.

3.1.4 Entity-Constraint Type

A relationship table identifies a connection among entity tables by composing two or more keys
of the entity tables. For example, the primary keys of the Communication table are VehicleKeyl
and VehicleKey2from the VehicleObjecttable. Composing two keys expresses a relationship
between the entities. The connection between entities corresponds to the Entity-Constraint type in
MEBN-RM. The Entity-Constraint node Communication(objl, obj2) in MEBN expresses a
relation on vehicle entities. From Figure 9, we see that this relation is{(v1, v2), (v2, v3), (v2, v4),
(v2, v5), (vl, v4), (v1, v5)}. This relation corresponds to the set of pairs of communicating
vehicles.



3.2 Resident Node

In MFrags, Resident Node can be described as Function, Predicate, or Formula of FOL. MEBN
allows the modeler to specify a probability distribution for the truth-value of a predicate or the
value of a function. Formulas are not probabilistic, and are defined by built-in MFrags [Laskey,
2008]. As noted above, RM is based on first-order predicate logic. In this section, we describe the
correspondence between functions and predicates in FOL and relations in RM.

In FOL, a predicate represents a true/false statement about entities in the domain. It is
expressed by a predicate symbol followed by a list of arguments. For example,
Communicatio(x,y) is a predicate that expresses whether the entities indicated by the arguments X
and y are communicating. In MEBN, this predicate corresponds to a Boolean RV with possible
values Trueand False In RM, we express a predicate as a table in which the primary key consists
of all the attributes. These attributes are the arguments of the predicate, and the rows of the table
represent the arguments for which the predicate is true. For example, the six rows of the
Communicationrelation of Figure 9 correspond to the six pairs of entities for which the predicate
Communicatiorholds.

In FOL, a function is a mapping from domain entities called inputsto a value called the
output For example, the function VehicleTypéobj) is a function that maps its argument to
Wheeledf it is a wheeled vehicle and Trackedif it is a tracked vehicle; ReportedOfect(rpt) is a
function that maps its argument to the object being reported upon. In RM, a function is
represented by a non-key attribute of a table. It maps its argument(s), the primary key(s) for the
relation, to the output, which is the value of the attribute. For example, in Figure 9, the argument
of the function VehicleTypés the primary key of the VehicleObjectelation, and the output is the
value (either Trackedor Wheeleglof the VehicleType attribute.

Table 2 defines the relationship between elements of RM and MEBN.

RM Resident Node
Attribute Function/ Predicate
Key Arguments
Cell of Attribute Output

Table 2. Function of MEBN-RM Model

4 THE BASIC PARAMETER AND STRUCTURE LEARNING FOR MEBN

This section presents a basic structure and parameter learning method for learning a MEBN
theory from a relational database.

4.1  Basic MEBN Parameter Learning

Parameter learning for MEBN is to estimate a parameter of the local distribution for a resident
node of an MTheory, given the structure of the MTheory and a dataset expressed in RM. By
structure, we mean the nodes, arcs and state spaces in each MFrag, and the parameters of the local
distributions for the resident nodes. For this basic algorithm, we use Maximum Likelihood
Estimation (MLE) to estimate the parameter. Furthermore, we do not address the problem of the
aggregating influences from multiple instances of the same parent. We assume that the test dataset



is well modeled by an MTheory with nodes and state spaces as given by the relational database,
and that the local distributions are well modeled by the chosen parametric family. In future
research, we will address the use of an informative prior distribution to represent a priori
information about the parameters.

The influence aggregation problem occurs when there are multiple instances of the parents
of a resident node that satisfy the context constraints in the MFrag. In this case, a domain expert
may provide knowledge about how random variables are aggregated, and an aggregator or
combining rule may be used for estimating the parameter [Getoor et al., 2000; Natarajan et al.,
2009]. We defer consideration of aggregators and combining rules to future work.

4.2  Basic MEBN Structure Learning

Structure learning for MEBN is to organize RVs into MFrags and identify parent-child
relationships between nodes, given a dataset expressed in RM. The MFrags, their nodes (context,
input, and resident nodes), and arcs between nodes are learned (See appendix A). The initial
ingredients of the algorithm are the dataset (DB) expressed in RM, any Bayesian Network
Structure searching algorithm (BNSL alg), and maximum size of chain (Sc). We utilize a
common Bayesian Network Structure searching algorithm to generate a local BN from the joined
dataset of the RM.

The first step of the algorithm is to create the default MTheory. All keys in entity tables of
the DB are defined as entities of this default MTheory. One default reference MFrag is created,
which will include resident nodes used for context nodes. Because context nodes also are random
variables, they should be defined an MFrag such as the reference MFrag. Now, using both entity
and relationship tables, the MFrags, their nodes, and their connections are learned. There are three
For-Loop (#4, #10, and #23in appendix A). The first For-Loop treats all tables, while the second
For-Loop treats the joined tables. For all tables of the DB, the dataset for each table is retrieved
one by one and, by using any BN structure searching algorithm (BNSL alg), a graph is generated
from the retrieved dataset. If the graph has a cycle and undirected edge, a domain expert sets the
arc direction manually. Based on the revised graph, an MFrag is created by using createMFrag
function in appendix A. In the second For-Loop, for the joined tables, data associated with
relationship tables is retrieved until the maximum size of chain (Sc) is reached. This iteration
continues until a user-specified maximum size of chain is reached. The MFrags, their nodes, and
their arcs are generated in the same way as described in the previous paragraph. One difference is
that the aggregating influence situation should be detected by an approach called Framework of
Function Searching for LPD (FFS-LPD) which will detect the situation and provide possible LPD
function in a heuristic approach. FFS-LPD can be realized by a domain expert or a program. In
our initial research, the domain expert detects the aggregating influence situation and provides a
reasonable LPD function having aggregating function in FFS-LPD context (An automatic
programmed approach is being researched). After checking the LPD function, if any nodes of the
new generated graph are not used in any MFrags, create a new resident node having the name of
the dataset of the graph on the default reference MFrag and a new MFrag for the dataset. If not,
add make edges between resident nodes corresponding to arcs found by the structure learning
algorithm. If there is an arc between nodes in different MFrags, add the parent node as an input
node to the MFrag of the child node. Lastly, in the third For-Loop, for all resident nodes in the
MTheory, LPDs are generated by MLE.



5 CASE STUDY

As noted in Section 1, the purpose of the learned MTheory generated by the presented algorithm
is to estimate and predict a situation in PSAW. In this case study, a learned MTheory is evaluated
by evaluating its ability to predict queries of interest.

Our case study uses PROGNOS (Probabilistic OntoloGies for Net-centric Operation
Systems) [Costa et al., 2009; Carvalho et al., 2010]. PROGNOS includes a simulation which
generates simulated ground truth information for the system. The simulation generates 85000
persons, 10000 ships, and 1000 organization entities with various values of attributes and relations
between entities. The data for these entities are stored in a relational database which includes
three entity tables (person ship and organization and two relationship tables (ship_crewsand
org_members The ship_crevs table has a paired key comprised of a Shipkey and PersonKey
representing the persons serving as crew members on ships. The org_membersable has a paired
key comprised of an OrganizatiorKey and PersonKey representing membership of persons in
organizations. A ship may have many crew members, each of whom may be affiliated with
several organizations. The goal of PROGNOS is to classify ships as to whether they are ships of
interest. In our case, this means ship associated with terrorist activities. The classification is made
given evidence about the attributes of the entities. For example, if a ship had a crew member who
has communicated with a terrorist, the ship was on an unusual route, and it was unresponsive, it is
highly likely that the ship is likely to be a ship of interest. The database contains an attribute
IsShipOfinteresdf the shiptable representing the ground truth for whether it is a ship of interest.

To evaluate the algorithm, training and test datasets were generated by the simulation. The
algorithm was used to learn an MTheory from the training dataset as shown in Figure 11 (one of
SSBNs from the learned MTheory is shown in Figure 12). In the MTheory, a total of four MFrags
were generated. There is the default reference MFrag, the org_membersMFrag from the
org_membergelationship table, the personMFrag from the personentity table, and the ship
MFrag from the ship entity table. The org_memberand ship_crewsinput nodes came from the
org_memberand ship_crewselationship tables. After learning the MTheory, the test dataset was
used to evaluate the MTheory. First, a test case from the test dataset was retrieved. Because a state
of the IsShipOfinterestariable is our concern, data from a ship in the test dataset was retrieved.
Based on the ship data, other related data were retrieved. All of these were combined to make the
test data. For example, if a ship was connected to 3 persons and each of the 3 persons was
associated with 3 organizations, then 9 rows of a joined table were retrieved as one test case.
Using this test case, a SSBN was generated from the learned MTheory. The context of the SSBN
corresponds to the context of the test case. For example, using the previous test case example, 1
ship, 3 person, and 9 organization entities are used for generating a SSBN. After the SSBN is
generated, the ISShipOfintereshode which was Boolean was queried given several leaf nodes of
the SSBN with values of the leaf nodes retrieved from the test data. The queried probability result
was stored in an array. This retrieving and querying process continued until all ships were treated.

For each of the SSBNs generated from the test data, and for each instance of the
IsShipOfinteresRV in the SSBN, the probability of the IsShipOfinteresRV was computed given
the evidence for the leaf nodes. The accuracy of the queried probability results was measured
using the Receiver Operating Characteristic (ROC) Curve. The ROC for our case study is shown
in Figure 10. The area under the curve (AUC) is shown in Table 3. The learned MTheory
estimated the state of the ISShipOfintereshode with the AUC, 0.897206546.



Model AUC
Learned MTheory 0.897206546
Table 3. AUC of Learned MTheory
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Figure 10. ROC of Learned MTheory

6 DISCUSSION AND FUTURE WORK

This paper discussed reasons why MEBN is a useful modeling tool for PSAW systems, providing
a semantically rich representation that also captures uncertainty. MEBN was the core logic for the
probabilistic ontologies used in the PROGNOS prototype PSAW system. The original
PROGNOS probabilistic ontologies were constructed manually with the help of domain experts.
This manual MEBN modeling was labor-intensive and insufficiently agile. To address this
problem, we developed a learning algorithm for MEBN-based probabilistic ontologies. To enable
learning from relational databases, we presented a bridge between MEBN and the Relational
Model, which we call the MEBN-RM model. We also presented a basic parameter and structure
learning algorithm for MEBN. Finally, the presented method was evaluated on a case study from
PROGNOS.

Although we provided a basic MEBN learning, there are several issues. 1) Aggregating
influence problem; how to learn an aggregating function in an aggregating situation where an
instance child random variable depends on multiple instance parents which is generated from an
identical class random variable? 2) Optimization of learned MTheory; how to learn an optimized
structure of an MTheory without losing accuracy of query? 3) Unstructured data learning; how to
learn unstructured data which isn@ derived from a data model? 4) Continuous random variable
learning; how to learn an MTheory which includes continuous random variables? 5) Multiple
distributed data learning; how to learn an MTheory from data in multiple distributed databases? 6)
Incomplete data learning; how to approximate parameters of an MTheory from missing data? 7)
Learning in insufficient evidence; how to learn an MTheory from not enough observations? 8)
Incremental MEBN learning; how to learn parameters of an MTheory from updated observations?
There remain many open research issues in this domain. Recently, we are studying about the
aggregating influence problem and continuous random variable learning in PSAW.
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APPENDIX A

Algorithm 1: Basic Structure Learning For MEBN
Procedure BSL MEBN ( DB, // Relational database

BNSL_alg // BN Structure Search algorithm

Sc // Maximum size of chain

)

1 MnoyY create a default MTheory
2 Mmemy? dal entities from the all keys in the tables of DB
3 MFsY create a default reference MFrag
4 fori= 1, €é wuntil BB ze of all tables in
5 TY get t®&Ble from
6 GY search tThuengBNSaplds i n
7 GY revise the graph to ensure no cycle and undirected edge
8 ifGi T then
9 MF; = createMFrag(G;, Ti, Mineory)
10 forc= 1, & until
11 JTY joi nDBadh | es (
12 fori= 1, é wudmh il size of
13 GY search the aggFFSEGP®ti ng graphs using
14 GY search tJRwingBNSLpalys i n
15 GY revise the graph to ensure no cycle and undirected edge
16 ifGIi 1T then
17 forj= 1, é uBGtil size of
18 if any nodes in Gj is not used for any MFrag then
19 MF«Y create the resi dé&lmiMFirode with the name of
20 createMFrag(Gi, JTi, Mineory)
21 else
22 addEdges(G;, JT, 9)
23 fori= 1, é until si

= ze of all resident nodes in the MTheory
24 T,Y get dataset related the resident node i
25 calculateLPD(R, Ti,)

26 return Mneory

Procedure createMFrag ( Gg // List of Resident Nodes
To // dataset of table
Mineory // Mtheory
)
1 MFY create MFragTasing the name of
2 NY get t h @gwhich & sotsusedfér any Mfrags of Mineary
3 RY create the resideint nodes corresponding to
4 MFY add R into MF with oRdinary variables related with
5 MFY addEwgie, My
6 Add MFrag into Mineory
7 return MF
Procedure addEdges (Gg // List of Resident Nodes
Te // dataset of table
MF // the target Mfrag
)

1 fori= 1, é wuntil thG size of the edges of



t
to the child node

NoY get the resi denthepatentdodeofEor r espond
N.Y get the resident node Eorrespond
MF,Y get the, MFrag of
MF.Y get theé&l MFrag of
if MF = MF; = MF, then

MFY add edg dyandNesingme e n
else

if MF, | MF then

MF,Y create the input nodeFmbadditintoMBs t he context node of
if MF. | MF then

MECV create the input nodeMFabadddtintoMEs t he context node of

MF.Y creat e t he NiamlpddiitintotM&.d e fr om
return MF

ing
ing

Procedure calculateLPD (R // List of Resident Nodes

(o R I N O I S

To  // dataset of table

)
fori= 1, é UuRtil size of

R.LPDY cal cul ate defRagingTe probabilities of

if R isin Many—to—One connection then

R.LPDY assigned the LPDFSfDch is generated by

else

R.LPDY calcul ate the cofmiditional probabilities of

Procedure joinTables (DB, // Relational database

O O R

c // range of the chain

)
RTY get the relBBionship tables of

fori= 1, é UuRTil size of

tY join all relaté&mRTables in the range,
JTY a jtlidto JT except the jt already added

return JT

of



