
18th ICCRTS

Learned Tactics for Asset Allocation

Topics

Topic 5: Experimentation, Metrics, and Analysis
Topic 6: Modeling and Simulation

Topic 3: Data, Information and Knowledge

Authors

David B. D’Ambrosio
Douglas S. Lange

Space and Naval Warfare Systems Center - Pacific
San Diego, CA 92152

Point of Contact

Douglas S. Lange
Space and Naval Warfare Systems Center - Pacific

(619)553-6534
doug.lange@navy.mil

Abstract

Tactics can be developed in a number of different
ways. Rules can be created based on a theory of
operations as has been done in the development of
tactical decision aids for a considerable time. But
these tools can behave poorly in unanticipated sce-
narios and can require significant design effort. In
this paper, an existing machine learning approach
for training geographically based agents learns tac-
tics for the placement of surveillance assets. These
results serve as a potential benchmark to compare
against other methods. While there are many ap-
proaches possible, there are currently few ways of
directly comparing these methods for the military
environment. It would be advantageous to have a
common set of benchmark scenarios that could eval-
uate different strategies with respect to each other.
This paper presents such a problem, simulated data,
and solution. In this domain a limited number of
surveillance assets must autonomously coordinate to
detect several types of vessels, so that they can be
intercepted. The results show that a machine learn-
ing approach is able to consistently locate opposing
vessels, even in the presence of noise, but more im-
portantly provides a performance baseline and guide
for developing future benchmark problems.

1 Introduction

Determining tactics and plans for command and con-
trol (C2) is a common problem. Traditionally, these
tactics were devised by human experts after care-
ful consideration of available intelligence. However,
the increase of available information and demand for
more complex tactics necessitates the use of compu-
tational resources in the process. Such approaches
typically rely on defined rules and conditions that can
automatically determine the appropriate response to
a situation or provide guidance for humans. But the
process of defining these criteria is time consuming
and can have poor results when applied to unantic-
ipated scenarios. Thus, machine learning (ML), an
artificial intelligence approach that builds systems by
examining data, is a rapidly growing and effective

means of generating robust tactics to a variety of C2
problems.

While there are many benefits of applying ML
to C2, there are also many possible ways to do so.
Therefore a common question is “What is the best
machine learning approach for this problem?” Un-
fortunately, there is currently no simple means of
easily determining the best approach without resort-
ing to implementing and trying out several methods,
which can require significant time and monetary in-
vestment. Thus, it would be advantageous to have
benchmark tasks that could give a general idea of the
effectiveness of various machine learning approaches
across various classes of domains.

In this paper, such a benchmark task is presented
in the form of a surveillance domain in which two
aerial surveillance planes must detect drug runners
operating in the waters around central America. This
problem provides an interesting test bed for machine
learning because the optimal solution is not neces-
sarily known, and, in fact, may change with different
circumstances. Additionally, these planes may need
to operate with degraded or limited communication,
which can be challenging to many machine learning
algorithms. However, it is easy to judge the qual-
ity of solutions based on how many drug runners are
spotted. To solve this problem, the machine learning
technique multiagent HyperNEAT is employed to de-
termine the tactics for the two planes, with the as-
sumption that there is no communication between
them. The results show that the planes are able
to detect significantly more boats than hand-coded
heuristics, and provides the opportunity for compar-
ison with other machine learning approaches.

2 Background

This section reviews relevant benchmarking ap-
proaches, C2 for asset allocation (including multia-
gent approaches), and the NEAT and HyperNEAT
methods that form the backbone of the multiagent
HyperNEAT approach.

1

2.1 Benchmarking

Ranking things is an almost fundamental human de-
sire and it can be very important when trying to se-
lect among a group of competing approaches for a
particular application. However, it has been noto-
riously difficult to measure the effectiveness of C2
systems [53] and there are currently few effective
means to do so. Interestingly, the increase of ma-
chine learning and other computational approaches
to C2 bring with them a number of benchmarking
techniques from those fields. For example, there are a
number of benchmark problems in the machine learn-
ing community where all approaches try and learn the
most information from the same set of data [33] such
as handwriting recognition [20] or diagnosing diseases
from patient data [35]. Such benchmarks allow the
demonstration of improvement upon or against an
existing algorithm. There are dangers of over-fitting
to the benchmark, so it is important that the bench-
mark problem shares a relationship with (or even bet-
ter, actually is) a real-world problem to be solved. It
is also true that techniques will do better on some
benchmarks than others, but that can actually be
helpful in determining which types of problems that
technique is best suited to solve. The benchmark
domain proposed in this paper is such a real-world
problem and should improve the ability to judge the
effectiveness of a C2 approach.

2.2 C2 for Asset Allocation

Aside from human-determined strategies, there are
a number of algorithm and machine learning ap-
proaches to C2 of assets. One popular technique is
the application of game theory [43]. In these cases,
the scenario requiring C2 is modeled as an adversar-
ial game and Nash equilibrium states (i.e. all players
cannot do anything differently without one of them
losing points) can be solved for. However, the rules
for different games are very strict and thus may not
represent real-world scenarios accurately. Other ap-
proaches involve defining sets of states and transi-
tions known as finite state automata [36], but when
unanticipated states are encountered, there may not
be an adequate response defined. Multiagent Learn-

ing, discussed in the next section, is a promising ap-
proach to asset allocation and control that is applied
in this paper.

2.3 Cooperative Multiagent Learning

When multiple assets must be commanded, it can be
beneficial to model the problem as a multiagent sys-
tem. That is, assets and other important elements of
the domain are modeled as interacting agents, which
allows for complex simulations and experiments that
can model various outcomes. Multiagent systems
confront a broad range of domains, creating the op-
portunity for real-world applications such as room
clearing, pursuit [15], and synchronized motion [45].
In cooperative multiagent learning, which is reviewed
in this section, agents are trained to work together to
accomplish a task, usually by one of several alterna-
tive methods. Teams can sometimes share a homo-
geneous control scheme, which means that all agents
have the same control policy and thus only one policy
is learned.

There are two primary traditional approaches to
multiagent learning. The first, multiagent reinforce-
ment learning (MARL), encompasses several specific
techniques based on off-policy and on-policy tempo-
ral difference learning [6, 31, 47]. The basic prin-
ciple that unifies MARL techniques is to identify
and reward promising cooperative states and actions
among a team of agents [7, 40]. The other ma-
jor approach, cooperative coevolutionary algorithms
(CCEAs), is an established evolutionary method for
training teams of agents that must work together
[18, 40, 41]. The main idea is to maintain one or
more populations of candidate agents, evaluate them
in groups, and guide the creation of new candidate
solutions based on their joint performance.

While reinforcement learning and evolution are
mainly the focus of separate communities, Panait,
Tuyls, and Luke [42] showed recently that they share
a significant common theoretical foundation. One key
commonality is that they break the learning prob-
lem into separate roles that are semi-independent and
thereby learned separately through interaction with
each other. Although this idea of separating multi-
agent problems into parts is appealing, one problem

2

is that when individual roles are learned separately,
there is no representation of how roles relate to the
team structure and therefore no principle for exploit-
ing regularities that might be shared across all or
part of the team. Thus in cases where learning has
been applied to real-world applications, it usually ex-
ploits inherent homogeneity in the task [13, 44]. The
approach in this paper, multiagent HyperNEAT ad-
dresses many of these issues.

2.4 Evolution and Indirect Encodings

In the context of reinforcement learning problems
(such as in multiagent learning), an interesting prop-
erty of evolutionary computation (EC) is that it is
guided by a fitness function rather than from an error
computation derived from a reward prediction. The
independence of the fitness function from direct error
computation has encouraged much experimentation
with alternative representations because representa-
tions in EC do not need to support an algorithm for
optimizing error. Such freedom has led to the advent
of innovative representations for neural networks and
also to novel methods for encoding complex struc-
tures, as described in this section.

The specific subfield of EC that is implemented in
this paper is called neuroevolution (NE), which em-
ploys EC to create artificial neural networks (ANNs)
[19, 67]. In this approach, the phenotype is an ANN
and the genotype is an implementation-dependent
representation of the ANN. Assuming that the rep-
resentation is sufficiently robust, NE can evolve any
type of ANN, including recurrent and adaptive net-
works [46, 52]. Early attempts at NE used fixed-
topology models that were designed by the exper-
imenter [39]. In the fixed-topology approach, the
genotype is simply an array of numbers that repre-
sented the weights of each connection in the network.
However, this approach is also restrictive because the
solution may be difficult to discover or may not ex-
ist at all in the chosen topology. Thus new tech-
niques that allowed evolving both connection weights
and network topology were developed [30, 32, 55].
One such method, NeuroEvolution of Augmenting
Topologies or NEAT, which is described next, has
proven successful and serves as the foundation for

the multiagent learning approach introduced in this
paper.

2.4.1 NeuroEvolution of Augmenting
Topologies (NEAT)

The NEAT method was originally developed to evolve
ANNs to solve difficult control and sequential deci-
sion tasks [55, 57, 59], the basic principles of NEAT
are reviewed in this section.

Traditionally, ANNs evolved by NEAT control
agents that select actions based on their sensory
inputs. NEAT is unlike many previous methods
that evolved neural networks, that is, neuroevolu-
tion methods, which historically evolved either fixed-
topology networks [25, 48], or arbitrary random-
topology networks [3, 26, 67]. Instead, NEAT begins
evolution with a population of small, simple networks
and increases the complexity of the network topology
into diverse species over generations, leading to in-
creasingly sophisticated behavior. A similar process
of gradually adding new genes has been confirmed in
natural evolution [37, 65] and shown to improve adap-
tation in a few prior evolutionary [2] and neuroevolu-
tionary [28] approaches. However, a key feature that
distinguishes NEAT from prior work in evolving in-
creasingly complex structures is its unique approach
to maintaining a healthy diversity of structures of dif-
ferent complexity simultaneously, as this section re-
views. This approach has proven effective in a wide
variety of domains [1, 58, 60, 62]. Complete descrip-
tions of the NEAT method, including experiments
confirming the contributions of its components, are
available in Stanley and Miikkulainen [55, 57] and
Stanley et al. [59].

The NEAT method is based on three key ideas.
First, to allow network structures to increase in com-
plexity over generations, a method is needed to keep
track of which gene is which. Otherwise, it is not
clear in later generations which individual is compat-
ible with which in a population of diverse structures,
or how their genes should be combined to produce
offspring. NEAT solves this problem by assigning a
unique historical marking to every new piece of net-
work structure that appears through a structural mu-
tation. The historical marking is a number assigned

3

to each gene corresponding to its order of appearance
over the course of evolution. The numbers are inher-
ited during crossover unchanged, and allow NEAT to
perform crossover among diverse topologies without
the need for expensive topological analysis.

Second, NEAT speciates the population so that in-
dividuals compete primarily within their own niches
instead of with the population at large. Because
adding new structure is often initially disadvanta-
geous, this separation means that unique topologi-
cal innovations are protected and therefore have the
opportunity to optimize their structure without di-
rect competition from other niches in the population.
NEAT uses the historical markings on genes to deter-
mine to which species different individuals belong.

Third, many approaches that evolve network
topologies and weights begin evolution with a popula-
tion of random topologies [26, 67]. In contrast, NEAT
begins with a uniform population of simple networks
with no hidden nodes, differing only in their initial
random weights. Because of speciation, novel topolo-
gies gradually accumulate over evolution, thereby al-
lowing diverse and complex phenotype topologies to
be represented. No limit is placed on the size to
which topologies can grow. New nodes and connec-
tions are introduced incrementally as structural mu-
tations occur, and only those structures survive that
are found to be useful through fitness evaluations. In
effect, then, NEAT searches for a compact, appropri-
ate topology by incrementally adding complexity to
existing structure.

2.4.2 CPPNs and HyperNEAT

A key similarity among many neuroevolution meth-
ods, including NEAT, is that they employ a direct
encoding, that is, each part of the solution’s repre-
sentation maps to a single piece of structure in the
final solution. For example, in NEAT, the genome is
a list of connections and nodes in the neural network
in which each item corresponds to exactly one compo-
nent in the phenotype. Yet direct encodings impose
the significant disadvantage that even when different
parts of the solution are similar, they must be en-
coded and therefore discovered separately. This chal-
lenge is related to the problem rediscovery in multi-

agent systems: After all, if individual team members
are encoded by separate genes, even if a component of
their capabilities is shared, the search algorithm has
no way to exploit such a regularity. Thus this pa-
per leverages the power of indirect encoding instead,
which means that the description of the solution is
compressed such that information can be reused, al-
lowing the final solution to contain more components
than the description itself.

For example, if a hypothetical solution ANN re-
quired all weights to be set to 1.0, NEAT would
separately have to discover that each such weight
must be 1.0 whereas an indirect encoding could in-
stead discover that all weights should be the same
value. Indirect encodings are often motivated by de-
velopment in biology, in which the genotype (DNA)
maps to the phenotype (the living organism) indi-
rectly through a process of growth [4, 34, 56]. Indirect
encodings are powerful because they allow solutions
to be represented as a pattern of policy parameters,
rather than requiring each parameter to be repre-
sented individually. This capability is the focus of
the field called generative and developmental systems
[4, 5, 17, 29, 34, 38, 51, 54, 56].

HyperNEAT, reviewed in this section, is an exten-
sion of NEAT that allows it to benefit from indirect
encoding. HyperNEAT has become a popular neu-
roevolution method in recent years and is proven in
a wide range of domains such as board games [21–
24], adaptive maze navigation [46], quadruped loco-
motion [11], keepaway soccer [63, 64] and a variety of
others [8–10, 12, 16, 27, 61, 66]. For a full description
of HyperNEAT see Stanley et al. [61] and Gauci and
Stanley [24].

In HyperNEAT, NEAT is altered to evolve an in-
direct encoding called compositional pattern produc-
ing networks (CPPNs [54]) instead of ANNs. CPPNs
are a high-level abstraction of the development pro-
cess in nature, intended to approximate its represen-
tational power without the computational cost. The
idea is that regular patterns such as those seen in
nature can be approximated at a high level by com-
positions of functions, wherein each function in the
composition loosely corresponds to a canonical event
in development. For example, a Gaussian function
is analogous to a symmetric chemical gradient. Each

4

such component function also creates a novel geomet-
ric coordinate frame within which other functions can
reside. For example, any function of the output of
a Gaussian will output a symmetric pattern because
the Gaussian is symmetric. In this way, the Gaussian
is a coordinate frame like a chemical gradient in nat-
ural development that provides a context for growing
symmetric structures.

The appeal of this encoding is that it allows a rep-
resentation akin to developmental processes to be
encoded as networks of simple functions (that is,
CPPNs), which means that NEAT can evolve CPPNs
just like ANNs. CPPNs are similar to ANNs, but
they rely on more than one activation function (each
representing a chemical gradient common to develop-
ment) and are an abstraction of development rather
than of brains. Also, unlike other artificial develop-
mental encodings, CPPNs do not require an explicit
simulation of growth or local interaction, yet still ex-
hibit their essential representational capabilities [54].

Specifically, CPPNs produce a phenotype that is
a function of n dimensions, where n is the number
of dimensions of the desired solution, for example,
n = 2 for a two-dimensional image. For each coordi-
nate in that space, its level of expression is output by
the CPPN, which encodes the phenotype. Figure 1
shows how a two-dimensional phenotype can be gen-
erated by a function of two parameters (x and y) that
is represented by a network of composed functions
that produce intensitiy values for each set of param-
eters. The CPPN in figure 1b actually produces the
pattern in a. Because CPPNs are a superset of tra-
ditional ANNs, which can approximate any function
[14], CPPNs are also universal function approxima-
tors. Thus a CPPN can encode any pattern within
its n-dimensional space.

The appeal of the CPPN as an indirect encoding
is that it can compactly encode patterns with regu-
larities such as symmetry, repetition, and repetition
with variation [49, 50, 54]. For example, simply by in-
cluding a Gaussian function, which is symmetric, the
output pattern can become symmetric. A periodic
function such as sine creates segmentation through
repetition. Most importantly, repetition with varia-
tion (for example, the fingers of the human hand)
is easily discovered by combining regular coordinate

CPPN
x
y

value
at x,y

x

y

(applied at
each point)

(a) Pattern Encoding

x y

output pattern

bias
(b) CPPN

Figure 1: CPPN Encoding

frames (for example, sine and Gaussian) with irreg-
ular ones (for example, the asymmetric x-axis). For
example, a function that takes as input the sum of a
symmetric function and an asymmetric function out-
puts a pattern with imperfect symmetry. In this way,
CPPNs produce regular patterns with subtle varia-
tions reminiscent of many seen in nature. The po-
tential for CPPNs to represent patterns with natural
motifs has been demonstrated in several studies [54]
including an online service on which users collabora-
tively breed patterns represented by CPPNs [49, 50].

The main idea in HyperNEAT is that CPPNs can
also naturally encode connectivity patterns [21, 22,
24, 61, 64]. That way, NEAT can evolve CPPNs that
represent large-scale ANNs with their own symme-
tries and regularities. This capability will prove es-
sential to encoding multiagent policy geometries in
this paper because it will ultimately allow connectiv-
ity patterns to be expressed as a function of team
geometry, which means that a smooth gradient of

5

 -1 1

1 Y

-1

CPPN
(evolved)

x1 y1 x2 y2

3) Output is weight
between (x

1
,y

1
) and (x

2
,y

2
)

1) Query each potential
connection on substrate

Substrate

 1,0 1,1
 ...
-0.5,0 0,1
 ...
-1,-1 -0.5,0
 ...
-1,-1 - 1,0
 ...

2) Feed each coordinate pair into CPPN

X

Figure 2: Hypercube-based Geometric Connectivity
Pattern Interpretation

policies can be produced across possible agent loca-
tions. The key insight in HyperNEAT is that 2n-
dimensional spatial patterns are isomorphic to con-
nectivity patterns in n dimensions, that is, in which
the coordinate of each endpoint is specified by n pa-
rameters, which means that CPPNs can express both
spatial and connectivity patterns with the same kinds
of regularities.

Consider a CPPN that takes four inputs labeled
x1, y1, x2, and y2; this point in four-dimensional
space also denotes the connection between the two-
dimensional points (x1, y1) and (x2, y2), and the out-
put of the CPPN for that input thereby represents
the weight of that connection (Figure 2). By query-
ing every possible connection among a set of points in
this manner, a CPPN can produce an ANN, wherein
each queried point is a neuron position. Because the
connections are produced by a function of their end-
points, the final structure is a product of the geome-
try of these points and the CPPN can thus exploit the
relationships between them in the network it encodes.
In effect, the CPPN is painting a pattern on the inside
of a four-dimensional hypercube that is interpreted
as the isomorphic connectivity pattern, which ex-
plains the origin of the name hypercube-based NEAT
(HyperNEAT). Connectivity patterns produced by a
CPPN in this way are called substrates so that they
can be verbally distinguished from the CPPN itself,
which has its own internal topology.

Each queried point in the substrate is a node in a
neural network. The experimenter defines both the

1

2
3

5

4

(a) Robot

1 2 4 53 X

 -1 1

1 Y

L RF

(b) Substrate

Figure 3: Substrate Configuration

location and role (that is, hidden, input, or output) of
each such node. As a rule of thumb, nodes are placed
on the substrate to reflect the geometry of the task
[10, 11, 22, 24, 61, 64]. That way, the connectivity of
the substrate is a function of the the task structure.

For example, the sensors of an autonomous robot
can be placed from left to right on the substrate in
the same order that they exist on the robot (Fig-
ure 3). Outputs for moving left or right can also
be placed in the same order, implying a relationship
between the sensors and effectors. Such placement
allows the CPPN to generate connectivity patterns
easily that respect the geometry of the problem, such
as left-right symmetry. In this way, knowledge about
the problem geometry can be injected into the search
and HyperNEAT can exploit the regularities (for ex-
ample, adjacency, or symmetry) of a problem that
are invisible to traditional encodings.

In summary, HyperNEAT is a method for evolving
ANNs with regular connectivity patterns that uses
CPPNs as an indirect encoding. This capability is
important for multiagent learning because it provides
a formalism for producing policies (that is, the out-
put of the CPPN) as a function of geometry (that
is, the inputs to the CPPN). The evolutionary algo-
rithm in HyperNEAT is the same as NEAT except
that it evolves CPPNs that encode ANNs instead of
evolving the ANNs directly.

6

3 Approach

The approach applied in this paper combines two
existing extensions to the HyperNEAT method:
HyperNEAT-BEV and multiagent HyperNEAT,
both of which are described in this section.

3.1 HyperNEAT-BEV

The Bird’s Eye View (BEV) extension to Hyper-
NEAT allows it to accept complex information as
input represented as a static overhead view, which
is a a common approach for visualizing and under-
standing C2 domains for humans. This extension
was applied by Verbancsics and Stanley [64] in sev-
eral strategic decision domains such as Robocup soc-
cer. This approach is advantageous because it allows
HyperNEAT to exploit patterns in the information
as a whole, rather than piecewise. Inputting infor-
mation in this manner is also beneficial because the
state-space remains fixed rather than changing ego-
centrically.

In previous applications of BEV, while there were
multiple agents present, only one would act per time
step. In this paper, multiple agents must act simul-
taneously, and thus multiple outputs are required.
Therefore the multiagent HyperNEAT paradigm is
employed to incentivize cooperation and coordination
among their behaviors.

3.2 Multiagent HyperNEAT

Multiagent HyperNEAT is based on the idea that
a team of cooperating agents can be defined by de-
scribing the relationship of policies to each other (re-
ferred to as the team’s policy geometry. To under-
stand how the policy geometry of a team can be en-
coded, it helps to begin by considering homogeneous
teams, which in effect express a trivial policy geome-
try in which the same policy is uniformly distributed
throughout the team at all positions. Thus this sec-
tion begins by exploring how teams of purely homo-
geneous agents can be evolved with an indirect encod-
ing, and then transitions to the method for evolving
heterogeneous teams that are represented by a single
genome in HyperNEAT.

X1 Y1 Y2

Out

X2

CPPN
Topology
Evolves

(a) Homogeneous CPPN

X1 Y1 Y2

Out

X2 Z

CPPN
Topology
Evolves

(b) Heterogeneous CPPN

 X

 -1 1

1 Y

-1

(c) Homogeneous Substrate

Z

(d) Heterogeneous Substrate

Figure 4: Multiagent HyperNEAT Encoding

3.2.1 Pure Homogeneous Teams

A homogeneous team only requires a single controller
that is copied once for each agent on the team. To
generate such a controller, a four-dimensional CPPN
with inputs x1, y1, x2, and y2 (Figure 4a) queries the
substrate shown in Figure 4c, which has five inputs,
five hidden nodes, and three output nodes, to deter-
mine its connection weights. This substrate is de-
signed to correlate sensors to corresponding outputs
geometrically (for example, seeing something on the
left and turning left). Thus the CPPN can exploit the
geometry of the agent [61] when generating the ANN
controller. However, the agents themselves have ex-
actly the same policy no matter where they are posi-
tioned. Thus while each agent is informed by geom-
etry, their policies cannot differentiate genetically.

7

3.2.2 Teams on the Continuum of Hetero-
geneity

Heterogeneous teams are a greater challenge; how can
a single CPPN encode a set of networks in a pattern,
all with related yet varying roles? Indirect encodings
such as HyperNEAT are naturally suited to captur-
ing such patterns by encoding the policy geometry
of the team as a pattern. The remainder of this sec-
tion discusses the method by which HyperNEAT can
encode such teams.

The main idea is that the CPPN is able to create
a pattern based on both the agent’s internal geom-
etry (x and y) and its position on the team (z) by
incorporating an additional input (Figure 4b,d). The
CPPN can thus emphasize connections from z for in-
creasing heterogeneity or minimize them to produce
greater homogeneity. Furthermore, because z is a
spatial dimension, the CPPN can literally generate
policies based on their positions on the team. Note
that because z is a single dimension, the policy ge-
ometry of this team (and those in this paper) is on
a one-dimensional line. However, in principle, more
inputs could be added, allowing two- or more dimen-
sional policy geometry to be learned as well.

The heterogeneous substrate (Figure 4d) formal-
izes the idea of encoding a team as a pattern of
policies. This capability is powerful because gener-
ating each agent with the same CPPN means they
can share tactics and policies while still exhibiting
variation across the policy geometry. In other words,
policies are spread across the substrate in a pattern
just as role assignment in a human team forms a pat-
tern across a field. However, even as roles vary, many
skills are shared, an idea elegantly captured by indi-
rect encoding.

Importantly, the complexity of the CPPN is inde-
pendent of the number of agents in the substrate,
which is a benefit of indirect encoding. Therefore, in
principle, teams with a high number of agents can
be trained without the additional cost that would in-
cur to traditional methods. Another key property of
the heterogeneous substrate is that if a new network
is added to the substrate at an intermediate loca-
tion, its policy can theoretically be interpolated from
the policy geometry embodied in the CPPN. Thus,

as the next section describes, it becomes possible to
scale teams without further training by interpolating
new roles.

4 Surveillance Experiment

In this domain, two planes (P-3 AIPs) must patrol
the waters of Central America with the goal of spot-
ting boats that are smuggling narcotics over a 72 hour
period. The area that must be searched is vast and
separated by land, so the planes must cooperate to
effectively cover it. Of benefit to the planes, however,
is that there is some degree of information about the
smugglers, although much of it is uncertain. Hyper-
NEAT is a natural fit for this problem because of
the large input space and cooperative nature of the
problem. There are two agent types to be considered:
smugglers and searchers.

Planning asset allocation depends largely on in-
telligence gathered. In this scenario, the important
information known about the smuggler boats is the
path they will take, the time they will depart, and the
speed at which they will travel. The paths all begin
in South America, lead to a point in Central Amer-
ica, and are defined by one to four waypoints that
the boats will travel through. It is assumed that the
boats will take the most direct route to each way-
point. Both the waypoints and the departure time
have a known uncertainty value, which are used to
generate probability distribution heatmaps that rep-
resent the chance that a smuggler boat will be at
a given location for given time, which is dependent
on the uncertainty associated with the intelligence
related to the boats. Figure 5 shows an example
heatmap with multiple possible boat tracks. In this
experiment, 72 (one for each hour of the scenario)
such distributions are created at a 1 degree by 1 de-
gree resolution and serve as the basis for deciding the
patrol routes of the searchers.

The searcher planes both start at the same location
(89,13) and can move up to 325 nautical miles every
hour. To determine the patrol route the planes will
take, a substrate is defined that takes the probability
heatmaps defined above as input at z = 0. The out-
puts are two sheets of neurons at z = 1 and −1 that

8

Figure 5: Heatmap Example

are the same size as the heatmaps above and repre-
sent a desired location to move to (figure 6). The
substrate takes as input a heatmap at z = 0, which
is fully connected to two equally sized output maps
at z = −1 and z = 1. This substrate construction is
slightly different than the traditional multiagent Hy-
perNEAT approach in section 3.2, and would likely
require additional input dimension for more than two
planes. The highest output neuron within a plane’s
movement radius is where the plane will move in the
next hour. This process is repeated for each timestep
to produce the patrol route for both planes. A smug-
gler boat is considered spotted if it and a plane oc-
cupy the same cell at the same hour. Importantly,
this approach does not assume communication be-
tween the planes, that is the policy of one plane does
not depend on the actions of another plane; they are
both defined by the substrate. Thus, environments
with limited, intermittent, or even non-existent com-
munication could benefit from a multiagent Hyper-
NEAT approach, because it allows the agents to ef-
fectively cooperate without explicit communication.

To evaluate the patrols, 25 Monte Carlo simula-
tions are run and assigned a fitness based on the num-
ber of boats spotted and how close the plane was to
spotting the unspotted boats. Thus, 1

B , where B is
the number of boats is added to the fitness for each
spotted boat and 0.1× 1− db

dmax × 1
B where db is the

Z

X

Y

X

Y

X

Y

Figure 6: Neural Network Substrate

9

0 50 100 150 200
Generations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rf

o
rm

a
n
ce

Average
Best
Heuristic

Figure 7: Training Results

closest a plane got to the given boat and dmax is
the maximum distance a boat could be from a plane
for each unspotted boat. This approach allows for
a smoother search gradient by partially rewarding
strategies that come close to discovering smugglers.
Note that the input heatmaps are pre-generated and
not affected by the actual behavior of the boats dur-
ing the simulation. Thus the planes must come up
with patrol routes that will work in all situations.

5 Results

The results show that, on average, strategies that
spot 90% of boats are found within 149 generations,
although the best run found such solutions in only
43 generations (figure 7). When compared to the
hand-coded strategy of moving towards the area of
highest probability, while minimizing coverage over-
lap, evolved solutions are, on average, significantly
better within 26 generations (p < 0.05 by Student’s t-
test). To test generalization, the best strategies from
each generation were further evaluated on 250 Monte
Carlo simulations that had not been seen in train-
ing and the average performance was not significantly
different (p < 0.05) than training.

6 Discussion and Future Work

The results show that multiagent HyperNEAT can
find effective patrol routes for this domain. Quali-
tatively, different evolutionary runs produced several
different types of solutions. The two planes would
always initially split up, but from there several tac-
tics were employed. Some planes found high traffic
locations and stayed in those general areas, whereas
other planes moved around the entire map frequently.
Imposing additional goals or costs (e.g. fuel expen-
diture, coverage, etc.) could shift the ideal policy
closer to one of these extremes, but the fact that there
are multiple effective solutions in this general case
demonstrates the utility of evolutionary approaches
in finding “creative” solutions to problems.

There are several future research directions based
on this work. Firstly, the C2 problem could be
extended to include additional agent types such as
friendly boats that will actually intercept detected
smugglers. An alternative extension would be to in-
crease the accuracy of the solutions by inputting and
outputting higher resolution heatmaps and scaling
up the substrate, as has been done in many other
HyperNEAT problems [24]. However, the ANNs in
this paper were already quite large (over 1.5 mil-
lion connections), so training larger networks could
be a time consuming. Finally, applying other C2 ma-
chine learning approaches and comparing them to the
HyperNEAT results would provide interesting bench-
marking opportunities.

7 Conclusion

This paper presented a relevant C2 domain in the
form of determining patrol routes for planes searching
for drug smugglers and a machine learning approach
to solving it. The approach, multiagent HyperNEAT,
was able to find multiple effective routes that sig-
nificantly outperformed hand-coded heuristics. Ulti-
mately this domain can serve as a new benchmark
domain for comparing C2 approaches in the future.

10

8 Acknowledgments

Thanks to Michael Atkinson for providing initial
heatmap data and visualization.

References

[1] Aaltonen et al. (over 100 authors). Measurement
of the top quark mass with dilepton events se-
lected using neuroevolution at CDF. Physical
Review Letters, 102(15):2001, 2009.

[2] L. Altenberg. Evolving better representations
through selective genome growth. In Proceed-
ings of the IEEE World Congress on Computa-
tional Intelligence, pages 182–187, Piscataway,
NJ, 1994. IEEE Press.

[3] P. J. Angeline, G. M. Saunders, and J. B. Pol-
lack. An evolutionary algorithm that constructs
recurrent neural networks. IEEE Transactions
on Neural Networks, 5:54–65, 1993.

[4] P. J. Bentley and S. Kumar. The ways to grow
designs: A comparison of embryogenies for an
evolutionary design problem. In Proceedings of
the Genetic and Evolutionary Computation Con-
ference (GECCO-1999), pages 35–43, San Fran-
cisco, 1999. Kaufmann.

[5] J. C. Bongard. Evolving modular genetic reg-
ulatory networks. In Proceedings of the 2002
Congress on Evolutionary Computation, 2002.

[6] M. Bowling and M. Veloso. Multiagent learning
using a variable learning rate. Artificial Intelli-
gence, 136(2):215–250, 2002.

[7] L. Busoniu, B. D. Schutter, and R. Babuska.
Learning and coordination in dynamic multia-
gent systems. Technical Report 05-019, Delft
University of Technology, 2005.

[8] J. Clune, C. Ofria, and R. Pennock. How a gen-
erative encoding fares as problem-regularity de-
creases. In Proceedings of the 10th International
Conference on Parallel Problem Solving From

Nature (PPSN 2008), pages 258–367, Berlin,
2008. Springer.

[9] J. Clune, B. B. Beckmann, R. Pennock, and
C. Ofria. HybrID: A hybridization of indirect
and direct encodings for evolutionary computa-
tion. In Proceedings of the European Conference
on Artificial Life (ECAL-2009),, 2009.

[10] J. Clune, B. E. Beckmann, C. Ofria, and R. T.
Pennock. Evolving coordinated quadruped gaits
with the HyperNEAT generative encoding. In
Proceedings of the IEEE Congress on Evolution-
ary Computation (CEC-2009) Special Session
on Evolutionary Robotics, Piscataway, NJ, USA,
2009. IEEE Press.

[11] J. Clune, R. T. Pennock, and C. Ofria. The
sensitivity of HyperNEAT to different geometric
representations of a problem. In Proceedings of
the Genetic and Evolutionary Computation Con-
ference (GECCO-2009), New York, NY, USA,
2009. ACM Press.

[12] J. Clune, B. Beckmann, P. McKinley, and
C. Ofria. Investigating whether HyperNEAT
produces modular neural networks. In Pro-
ceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2010),
New York, NY, 2010. ACM Press. URL
http://eplex.cs.ucf.edu/publications/

2010/verbancsics.gecco10.html.

[13] N. Correll and A. Martinoli. Collective in-
spection of regular structures using a swarm of
miniature robots. In M. Ang and O. Khatib,
editors, Experimental Robotics IX, volume 21
of Springer Tracts in Advanced Robotics, pages
375–386. Springer Berlin / Heidelberg, 2006.

[14] G. Cybenko. Approximation by superpositions
of a sigmoidal function. Mathematics of Control,
Signals, and Systems, 2(4):303–314, 1989.

[15] D. B. D’Ambrosio, J. Lehman, S. Risi, and K. O.
Stanley. Evolving policy geometry for scalable
multiagent learning. In Proceedings of the 9th In-
ternational Conference on Autonomous Agents

11

and Multiagent Systems: volume 1-Volume 1,
pages 731–738. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2010.

[16] J. Drchal, J. Koutnk, and M. Snorek. Hyper-
NEAT controlled robots learn to drive on roads
in simulated environment. In Proceedings of the
IEEE Congress on Evolutionary Computation
(CEC-2009), Piscataway, NJ, USA, 2009. IEEE
Press.

[17] P. Eggenberger. Evolving Morphologies of Sim-
ulated 3d Organisms Based on Differential Gene
Expression. Fourth European Conference on Ar-
tificial Life, 1997.

[18] S. Ficici and J. Pollack. A game-theoretic ap-
proach to the simple coevolutionary algorithm.
Lecture notes in computer science, pages 467–
476, 2000.

[19] D. Floreano, P. Dürr, and C. Mattiussi. Neu-
roevolution: from architectures to learning. Evo-
lutionary Intelligence, 1:47–62, 2008.

[20] P. Frey and D. Slate. Letter recognition us-
ing holland-style adaptive classifiers. Machine
Learning, 6(2):161–182, 1991.

[21] J. Gauci and K. O. Stanley. Generating large-
scale neural networks through discovering geo-
metric regularities. In Proceedings of the Ge-
netic and Evolutionary Computation Conference
(GECCO 2007), New York, NY, 2007. ACM
Press.

[22] J. Gauci and K. O. Stanley. A case study on
the critical role of geometric regularity in ma-
chine learning. In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelli-
gence (AAAI-2008), Menlo Park, CA, 2008.
AAAI Press. URL http://eplex.cs.ucf.edu/

papers/gauci_aaai08.pdf.

[23] J. Gauci and K. O. Stanley. Indirect encoding of
neural networks for scalable go. In R. Schaefer,
C. Cotta, J. Ko lodziej, and G. Rudolph, editors,
Parallel Problem Solving from Nature – PPSN
XI, volume 6238 of Lecture Notes in Computer

Science, pages 354–363. Springer, 2010. ISBN
978-3-642-15843-8.

[24] J. Gauci and K. O. Stanley. Autonomous evolu-
tion of topographic regularities in artificial neu-
ral networks. Neural Computation, 22(7):1860–
1898, 2010. URL http://eplex.cs.ucf.edu/

publications/2010/gauci.nc10.html.

[25] F. Gomez and R. Miikkulainen. Solving
non-Markovian control tasks with neuroevo-
lution. In Proceedings of the 16th Interna-
tional Joint Conference on Artificial Intelli-
gence, pages 1356–1361, San Francisco, 1999.
Kaufmann. URL http://nn.cs.utexas.edu/

keyword?gomez:ijcai99.

[26] F. Gruau, D. Whitley, and L. Pyeatt. A com-
parison between cellular encoding and direct en-
coding for genetic neural networks. In J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, editors, Genetic Programming 1996: Pro-
ceedings of the First Annual Conference, pages
81–89, Cambridge, MA, 1996. MIT Press.

[27] E. Haasdijk, A. Rusu, and A. Eiben. Hy-
perNEAT for Locomotion Control in Modular
Robots. Evolvable Systems: From Biology to
Hardware, pages 169–180, 2010.

[28] I. Harvey. The Artificial Evolution of Adaptive
Behavior. PhD thesis, School of Cognitive and
Computing Sciences, University of Sussex, Sus-
sex, 1993. URL http://www.cogs.susx.ac.

uk/users/inmanh/inman_thesis.html.

[29] G. S. Hornby and J. B. Pollack. Creating
high-level components with a generative repre-
sentation for body-brain evolution. Artificial
Life, 8(3), 2002. URL http://www.demo.cs.

brandeis.edu/papers/hornby_alife02.pdf.

[30] P. Hotz, G. Gomez, and R. Pfeifer. Evolving the
morphology of a neural network for controlling
a foveating retina-and its test on a real robot.
In Artificial Life VIII-8th International Confer-
ence on the Simulation andSynthesis of Living
Systems, volume 2003, 2003.

12

[31] J. Hu and M. P. Wellman. Multiagent rein-
forcement learning: theoretical framework and
an algorithm. In Proc. 15th International Conf.
on Machine Learning, pages 242–250. Morgan
Kaufmann, San Francisco, CA, 1998.

[32] J. R. Koza and J. P. Rice. Genetic generaliza-
tion of both the weights and architecture for
a neural network. In Proceedings of the Inter-
national Joint Conference on Neural Networks
(New York, NY), volume 2, pages 397–404, Pis-
cataway, NJ, 1991. IEEE.

[33] F. Leisch and E. Dimitriadou. Machine learning
benchmark problems. 2010.

[34] A. Lindenmayer. Adding continuous compo-
nents to L-systems. In G. Rozenberg and A. Sa-
lomaa, editors, L Systems, Lecture Notes in
Computer Science 15, pages 53–68. Springer-
Verlag, Heidelberg, Germany, 1974.

[35] O. Mangasarian and W. Wolberg. Cancer di-
agnosis via linear programming. University of
Wisconsin-Madison, Computer Sciences Depart-
ment, 1990.

[36] A. Marino, L. Parker, G. Antonelli, and F. Cac-
cavale. Behavioral control for multi-robot
perimeter patrol: A finite state automata ap-
proach. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on,
pages 831–836. IEEE, 2009.

[37] A. P. Martin. Increasing genomic complexity by
gene duplication and the origin of vertebrates.
The American Naturalist, 154(2):111–128, 1999.

[38] J. F. Miller. Evolving a self-repairing, self-
regulating, French flag organism. In Proceed-
ings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2004), Berlin, 2004.
Springer Verlag. URL http://www.elec.york.

ac.uk/intsys/users/jfm7/gecco2004.pdf.

[39] D. J. Montana and L. Davis. Training feedfor-
ward neural networks using genetic algorithms.
In Proceedings of the 11th International Joint

Conference on Artificial Intelligence, pages 762–
767. San Francisco: Kaufmann, 1989.

[40] L. Panait and S. Luke. Cooperative multi-agent
learning: The state of the art. Autonomous
Agents and Multi-Agent Systems, 3(11):383–434,
November 2005. ISSN 1573-7454. doi: 10.1007/
s10458-005-2631-2. URL http://jmvidal.cse.

sc.edu/library/panait05a.pdf.

[41] L. Panait, R. Wiegand, and S. Luke. Improving
coevolutionary search for optimal multiagent be-
haviors. Proceedings of the Eighteenth Interna-
tional Joint Conference on Artificial Intelligence
(IJCAI), pages 653–658, 2003.

[42] L. Panait, K. Tuyls, and S. Luke. Theoretical
Advantages of Lenient Learners: An Evolution-
ary Game Theoretic Perspective. The Journal
of Machine Learning Research, 9:423–457, 2008.

[43] J. Pita, M. Jain, J. Marecki, F. Ordóñez,
C. Portway, M. Tambe, C. Western,
P. Paruchuri, and S. Kraus. Deployed ar-
mor protection: the application of a game
theoretic model for security at the los angeles
international airport. In Proceedings of the 7th
international joint conference on Autonomous
agents and multiagent systems: industrial track,
pages 125–132. International Foundation for
Autonomous Agents and Multiagent Systems,
2008.

[44] M. Quinn, L. Smith, G. Mayley, and P. Hus-
bands. Evolving controllers for a homogeneous
system of physical robots: Structured coopera-
tion with minimal sensors. Philosophical Trans-
actions of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sci-
ences, 361(1811):2321, 2003. ISSN 1364-503X.

[45] M. Quinn, L. Smith, G. Mayley, P. Husbands,
M. Quinn, L. Smith, G. Mayley, and P. Hus-
bands. Evolving controllers for a homogeneous
system of physical robots: Structured coopera-
tion with minimal sensors. Philosophical Trans-
actions of the Royal Society of London. Series

13

A: Mathematical, Physical and Engineering Sci-
ences, 361(1811):2321–2343, 2003.

[46] S. Risi and K. O. Stanley. Indirectly encoding
neural plasticity as a pattern of local rules. In
Proceedings of the 11th International Conference
on Simulation of Adaptive Behavior (SAB2010),
Berlin, 2010. Springer.

[47] H. Santana, G. Ramalho, V. Corruble, and
B. Ratitch. Multi-agent patrolling with rein-
forcement learning. Autonomous Agents and
Multiagent Systems, International Joint Confer-
ence on, 3:1122–1129, 2004.

[48] N. Saravanan and D. B. Fogel. Evolving neural
control systems. IEEE Expert, pages 23–27, June
1995.

[49] J. Secretan, N. Beato, D. B. D’Ambrosio,
A. Rodriguez, A. Campbell, and K. O. Stan-
ley. Picbreeder: Evolving pictures collabora-
tively online. In CHI ’08: Proceedings of the
twenty-sixth annual SIGCHI conference on Hu-
man factors in computing systems, pages 1759–
1768, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-011-1. doi: http://doi.acm.org/10.
1145/1357054.1357328.

[50] J. Secretan, N. Beato, D. B. D.Ambrosio, A. Ro-
driguez, A. Campbell, J. T. Folsom-Kovarik, and
K. O. Stanley. Picbreeder: A case study in
collaborative evolutionary exploration of design
space. Evolutionary Computation, 2011. To ap-
pear.

[51] K. Sims. Evolving 3D morphology and behavior
by competition. In R. A. Brooks and P. Maes,
editors, Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of
Living Systems (Artificial Life IV), pages 28–39.
MIT Press, Cambridge, MA, 1994. URL http:

//www.mpi-sb.mpg.de/services/library/

proceedings/contents/alife94.html.

[52] A. Soltoggio, A. J. Bullinaria, C. Mattiussi,
P. Dürr, and D. Floreano. Evolutionary advan-
tages of neuromodulated plasticity in dynamic,

reward-based scenarios. In S. Bullock, J. Noble,
R. Watson, and M. Bedau, editors, Proceedings
of the Eleventh International Conference on Ar-
tificial Life (Alife XI), Cambridge, MA, 2008.
MIT Press. URL http://eplex.cs.ucf.edu/

papers/lehman_alife08.pdf.

[53] N. Sproles. The difficult problem of establish-
ing measures of effectiveness for command and
control: A systems engineering perspective. Sys-
tems engineering, 4(2):145–155, 2001.

[54] K. O. Stanley. Compositional pattern producing
networks: A novel abstraction of development.
Genetic Programming and Evolvable Machines
Special Issue on Developmental Systems, 8(2):
131–162, 2007.

[55] K. O. Stanley and R. Miikkulainen. Evolv-
ing neural networks through augmenting topolo-
gies. Evolutionary Computation, 10:99–
127, 2002. URL http://nn.cs.utexas.edu/

keyword?stanley:ec02.

[56] K. O. Stanley and R. Miikkulainen. A taxon-
omy for artificial embryogeny. Artificial Life, 9
(2):93–130, 2003. URL http://nn.cs.utexas.

edu/keyword?stanley:alife03.

[57] K. O. Stanley and R. Miikkulainen. Competitive
coevolution through evolutionary complexifica-
tion. Journal of Artificial Intelligence Research,
21:63–100, 2004. URL http://nn.cs.utexas.

edu/keyword?stanley:jair04.

[58] K. O. Stanley, B. D. Bryant, and R. Miikku-
lainen. Evolving neural network agents in the
NERO video game. In Proceedings of the IEEE
2005 Symposium on Computational Intelligence
and Games, 2005.

[59] K. O. Stanley, B. D. Bryant, and R. Miikku-
lainen. Real-time neuroevolution in the NERO
video game. IEEE Transactions on Evolution-
ary Computation Special Issue on Evolutionary
Computation and Games, 9(6):653–668, 2005.

[60] K. O. Stanley, N. Kohl, and R. Miikku-
lainen. Neuroevolution of an automobile crash

14

warning system. In Proceedings of the Ge-
netic and Evolutionary Computation Confer-
ence, 2005. URL http://nn.cs.utexas.edu/

keyword?stanley:gecco05.

[61] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci.
A hypercube-based indirect encoding for
evolving large-scale neural networks. Ar-
tificial Life, 15(2):185–212, 2009. URL
http://eplex.cs.ucf.edu/publications/

2009/stanley.alife09.html.

[62] M. E. Taylor, S. Whiteson, and P. Stone.
Comparing evolutionary and temporal differ-
ence methods in a reinforcement learning do-
main. In GECCO 2006: Proceedings of the
Genetic and Evolutionary Computation Confer-
ence, pages 1321–1328, July 2006.

[63] P. Verbancsics and K. O. Stanley. Task
transfer through indirect encoding. In Pro-
ceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2010),
New York, NY, 2010. ACM Press. URL
http://eplex.cs.ucf.edu/publications/

2010/verbancsics.gecco10.html.

[64] P. Verbancsics and K. O. Stanley. Evolving
static representations for task transfer. Jour-
nal of Machine Learning Research (JMLR), 11:
1737–1769, 2010.

[65] J. D. Watson, N. H. Hopkins, J. W. Roberts,
J. A. Steitz, and A. M. Weiner. Molecular Biol-
ogy of the Gene Fourth Edition. The Benjamin
Cummings Publishing Company, Inc., Menlo
Park, CA, 1987.

[66] B. G. Woolley and K. O. Stanley. Evolving a
single scalable controller for an octopus arm with
a variable number of segments. In R. Schaefer,
C. Cotta, J. Ko lodziej, and G. Rudolph, editors,
Parallel Problem Solving from Nature – PPSN
XI, volume 6239 of Lecture Notes in Computer
Science, pages 270–279. Springer, 2010. ISBN
978-3-642-15870-4.

[67] X. Yao. Evolving artificial neural networks. Pro-
ceedings of the IEEE, 87(9):1423–1447, 1999.

15

