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Abstract— When the quality of service (QoS) of an 

unmanned air vehicle’s (UAV) communications link is 

poor, and the UAV is tracking a moving target, a trade-off 

exists between the fidelity and timeliness of information 

provided from the vehicle to an operator. The authors’ 

2011 ICCRTS paper showed that an optimal 

representation scheme for transmitting information from 

UAV to operator can be found by using information 

theory. This paper extends that work by introducing an 

adaptive, autonomous unmanned air vehicle (UAV) 

command and control system that autonomously changes 

the fidelity of information communicated to an operator in 

response to variances in communications QoS. Results and 

analysis of hardware in-the-loop experiments using a UAV 

that is tracking a moving car are presented. This paper 

also examines the impact of information decay and 

network performance on both human tele-operation and 

on-board autonomous control, comparing the relative 

performance of tele-operation and autonomy as a function 

of entropic drag, which is a measurement, in information 

theory “bits”, of the rate at which information is lost due 

to unpredictable change in the environment. In the 

experiments described in this paper entropic drag is 

produced by the movement of the vehicle being tracked. 

Keywords- Networks and Networking; Agile Command and 

Control; Unmanned Vehicles; Autonomous Systems 

I.  INTRODUCTION 

“Imagine a world where sensors from seabed to space 
enable virtual operations from cyber-enabled warriors, and 
the speed of war is milliseconds.” – CNO SSG XXVI [1]  

The Command and Control Research Program (CCRP) has 
concluded that next generation war fighters will become 
increasingly “agile” [2], accelerating their observe, orient, 
decide and act (OODA) cycle by empowering “edge” units to 
make local decisions based upon “commanders intent”. Agile 
warriors are effective because, as CCRP correctly points out, 
the optimality of a decision or plan is frequently less important 
than the timeliness of the decision. Information timing 
requirements are dictated by operational tempo while 
information timing capability (derived from processing and 

distribution latencies) is dictated by a combination of 
operational complexity and signal-to-noise ratio. Both 
operational tempo and operational complexity change 
constantly throughout an engagement, creating a dynamic 
interplay between information requirements and information 
capability. Agile war fighters will require supporting systems 
that use an understanding of this relationship to continuously 
adjust the flow of information in response to war fighter 
needs. The US military currently relies upon unmanned air 
systems to provide a large portion of tactical intelligence, 
surveillance and reconnaissance (ISR). The tactical 
information provided by UAVs is often dynamic, that is, the 
validity of the information changes due to unpredictable 
change in the environment being observed. The rate of change 
can vary from minutes, to milliseconds. The command and 
control systems currently used to control these platforms are 
not agile. A mismatch exists between our war fighters, who 
are capable of agile operations; and ISR systems that support 
them, which rely upon temporally insensitive a priori 
processes to control vehicle movement and information 
exchange vehicles.  

This paper describes an agile information exchange 
mechanism between a single UAV and an operator. The goal 
UAV system is to retain track on a moving vehicle. The 
vehicle is prone to unanticipated course changes that introduce 
entropy into prior information provided by the UAV. As 
shown in Figure 1, for a fixed bandwidth, an optimal fidelity 
of information exists for exchanging information on a dynamic 
scenes that lose information due to a constant entropic drag. 
When the communications bandwidth between the UAV and 
user and/or the rate at which unpredictable acts cause prior 
knowledge to decay change, the optimal fidelity of 
information sent from the UAV to the operator (shown as the 
minima in Figure 1) changes. The current effective bandwidth 
and the entropic drag are measurable in real time. The 
information exchange mechanism uses real-time 
measurements of communications bandwidth and entropic 
drag to identify the optimal fidelity of ISR data. When the 
optimal fidelity is less than the maximum fidelity of the 
UAV’s on-board sensors, the information exchange system 
autonomously compresses sensor data, transmitting the 
compressed, lower fidelity data to the user. Because the lower-
fidelity data requires fewer bits to transmit the data is received 
by the user sooner, the information loss due to entropic drag is 



less and, importantly, the combined information loss due to 
compression and entropic drag is minimized.  

The next section of this paper describes theoretical basis for 
autonomous data compression as a function of  
communications bandwidth and entropic drag. That section is 
followed by a section describing a practical experiment in 
which a real UAV used on-board bandwidth measurements to 
vary the fidelity of track imagery communicated to the user.  

 

Figure 1: Uncertainty of a sample two-dimensional world showing 
effects of entropic drag as unit resolution is increased. Increasing 
resolution increases complexity, which increases communication 
time, resulting in more entropic drag [3].  

II. THEORY 

This section reviews the authors’ previous work on the 

application of information theoretic concepts to command and 

control and applies them to the overhead-tracking scenario 

with limited communications bandwidth. 

A. Definitions 

Suppose that the C2 process )(tx  operates in a discrete 

state space }{ ixX   with finite cardinality     .  The 

discreteness of the state space is not absolutely required, as 

long as the sensor discretizes the output in an appropriate 

fashion.  The number of bits required to describe the state is 

the descriptive complexity and it is equal to        .  This 

quantity can be thought of as the fidelity to which the C2 

process is described, e.g., to the nearest meter as compared to 

kilometer. 

 

To ascribe a notion of uncertainty and information to the 

C2 process, Shannon information entropy is used.  The 

information entropy    of the process   at time   is  

                              , 

Where         is the probability that the process   is in state 

   at time  .  Given a specific observation of the process 

       , the information   is  

                    . 

Thus, one interpretation of entropy is the expected information 

gain of an observation.  It is also known that entropy is 

maximized when all states of the system are equally probable, 

and so the descriptive complexity is also the maximum 

possible entropy of the system, given a fixed discretization. 

 

Suppose we have an observation         , meaning 

through an observation we have        .  Using the 

definition above (as well as an abuse of notation) yields 

                   . 

Note that the second argument above is a time index as well.  

As time elapses the relevance of the observation   should 

decrease, and it is natural to ask what information the 

observation   has about       for some     .  If the system is 

not uniquely determined by a single observation, then the 

conditional expected information content of a second 

observation         
   of the same sensor at a later time    is 

                           , and this is defined 

similarly to         but using the conditional probability 

distribution                 .  The very fact that repeating 

the same observation results in the gain of new information 

beyond the original observation indicates that the prior 

observation’s information content has in some sense decayed. 

 

For a sequence of   observations                of the 

process   with the final observation at     , the entropic 

drag   of the system on the observations      at time      is  

          
   

             

    
. 

Conceptually, entropic drag can be thought of as the time 

derivative of conditional entropy, but in a strict mathematical 

sense the assumed discrete space will not admit a derivative.  

For observations that occur with fixed sampling time    the 

quantity                is effectively the expected rate of 

information generation of the system at time  .  This notion 

can be generalized to multiple sensors [4].  However, entropic 

drag should not be interpreted solely as the change of state of 

the underlying system as predictable change should have 

significantly lower entropic drag (if any at all) as compared to 

systems whose change is less predictable. 

 

B. Analysis 

In [5], the notion of entropic drag was defined for a simple 

tracking problem on a grid with noiseless sensors that can 

measure the entire grid at once.  In this framework,      is the 

location of the a single target in the state space     Given a 

purely Markovian motion model and an initial probability 

distribution        , one can compute the probability 

distribution on state using the relationship 

                         
    , (1) 

where    
     is the probability that the target moves to    

given it is currently in   .  Using this equation, it was 

demonstrated that the effects of entropic drag varied with the 

specifics of the motion model    
    .  Here, we consider a 

different analysis of entropic drag.  Instead of varying the 

motion model, the sensor granularity will be varied.  By 

reducing the granularity of the sensor, the initial observation is 

less informative, but the number of bits required to describe an 



observation will be fewer.  If these observations are 

transmitted over a noiseless communications channel with 

bitrate  , then an observation that requires fewer bits to encode 

will require less time to transmit, and thus will be subject to 

entropic drag for a shorter amount of time.  This could 

potentially result in a more informative observation after 

transmission. 

 

Suppose we setup the state    for the tracking of an object 

on an     grid, with circular boundary conditions for 

simplicity.  Clearly, the descriptive complexity in this scenario 

is       .  Furthermore, suppose that the object being 

tracked can make a move to any of eight adjacent grid squares 

(including diagonals), or stay put, every    seconds.  We have 

at our disposal a finite number of sensing options   that can 

quantize the underlying     grid by a factor of    .  For 

purposes of simplicity, we will assume that   is a power of 2, 

and that      .  So, the number of bits required to encode an 

observation using quantization factor    is 

     
 

  

 

  
                  . (2) 

 

From the above expression it is clear that reducing the 

resolution of the sensor by a linear factor reduces the number 

of possible values of the sensor by a quadratic factor, but only 

reduces the communications time by a linear factor.  We will 

revisit the implications of this observation later, but for now 

we continue with the calculation of the entropic drag based on 

the bitrate   and the quantization factor   . 

 

What then is the information theoretic impact of using 

sensing option  ?  Well, just because we have coarsened the 

observations taken does not mean that the underlying motion 

or state model of the target should change.  The target should 

still move on the     grid every    seconds. When an 

observation is taken, it encodes this observation into the 

coarser 
 

  
 

 

  
 grid.   The approach considered here to 

incorporate this coarser measurement with the finer grid where 

the motion model (and thus entropic drag) is defined, is to 

refine the observation to the finer grid using a maximum 

entropy approach.  Put simply, given a coarse observation we 

know this means that the target was detected in a unique 

      square in  .   Using a maximum entropy approach, we 

assign the probability of target presence in each of those   
  

locations to be    
  .  Once an observation has been converted 

to a probabilistic state on   , calculating the entropic drag on 

an observation amounts to applying the motion model (1) for 

the number of target moves   that can occur in the time it 

takes to transmit the observation, as determined by the 

communications bitrate   and the descriptive complexity 

induced by sensor mode  , as determined by (2), that is 

   
                  

  
 . 

 

As an example, Figure  shows the information content of 

an observation for a tracking problem where        and 

                  , as a function of the communications 

bitrate  .  Note that aside from some quantization issues, there 

are clear ranges of   where each of the quantization levels 

results in the maximum information content of the observation 

after transmission, i.e., minimum uncertainty.  This example, 

while notional, clearly illustrates the tradeoffs between sensor 

resolution and uncertainty. 

 

 

 
Figure 2: Information content after transmission as a function of 
quantization and communications bitrate. 

 

As alluded to above, when the sensor quantization 

increases by a linear factor, the resolution of the sensor, say as 

an image, reduces by a quadratic factor.  This decrease in 

resolution should eventually result in a decrease in detection 

probability,   , of the target, with continued quantization 

eventually resulting in a     of 0.   Previously, the target 

detection probability was assumed to be 1, regardless of sensor 

modality.  Clearly, if the probability of detection decreases, 

then the initial information content of the sensor observation 

(that is, prior to transmission and the effects of entropic drag) 

should alternate between 0 and the value in (2), depending on 

whether or not that observation resulted in a detection or not.  

To calculate the entropic drag in such a scenario is essentially 

equivalent to ignoring the sensor observations that did not 

result in detection and continuing to apply the motion model 

(1) until a new detection is received.   Additionally, an     

image that uses   bits of color/intensity information per pixel 

requires         bits to encode an observation from which a 

maximum       bits of information about the target’s 

location can be derived.  This begins to illustrate the subtle 

point that maximizing raw information may not be the ideal 

objective function to consider when applying information 

theoretic concepts to C2 problems, and instead one should 

consider other notions of utility as mentioned in [6].  For a 

tracking problem, a reasonable metric to consider should be 

one that attempts to characterize the notion of maintaining a 

persistent track, perhaps by not allowing a lapse in detection 

of length greater than   seconds. 

 



The metric we will use in this slightly more realistic 

tracking scenario (that is, the scenario with     ) is the 

probability that the track will be continued given an initial 

detection, i.e., given a successful detection, another successful 

detection will occur with   seconds.  Given the probability of 

detection   , which here will be a function of image resolution 

only.  This metric can be defined using the cumulative 

distribution function of a geometric distribution with 

parameter 

           
     , 

where     
  

  
    , the amount of time that it takes to 

transmit an     image with pixel depth   using 

quantization factor   .  For typical cameras,     for 

grayscale images and 24 or 32 for color. This assumes, 

however, that the image is not compressible.  In practice, the 

images captured by such a device are highly compressible 

(that is, they contain much less information than the number of 

pixels and bit-depth would indicate) as indicated by the file 

sizes of the experimental setup below.  Furthermore, this 

compression level could also be a parameter to select from, in 

much the same way as image resolution.  So, for the purposes 

of analysis and algorithm development, we will use the 

empirical file sizes generated by the experimental setup, which 

ranged between 128 to 239 kb over four levels of resolution, 

which is far less than the 192 Mb one would expect naively 

from the 8 megapixel images considered.  

 

Figure  shows how the probability of track continuation 

varies as the time delay between observations (which may 

include missed detections) for various    .  This plot is not 

particularly interesting since it does not tie the notion of 

detection probability with the delay in observation time.  Put 

simply, if the time delay between observations is fixed and 

independent of   , one would naturally select the sensor 

modality that maximized   .  Figure 4 shows the far more 

interesting case, when observation time delay and    are both 

functions of the image quantization factor   .  For these plots, 

the    values correspond by color to the values used in Figure  

3.  It is clear from Figure 4 that for each communication’s 

bitrate, there is an optimum quantization factor, in terms of 

track continuation, and the optimum    varies with  .  Thus, if 

one were able to reliably estimate  , one could use determine 

the optimal quantization factor    to maximize   . 

 

 
Figure 3: Track continuation as a function of detection probability 
and observation frequency. 

Of course, there are some disclaimers in this analysis that 

need to be considered, but the general principles should 

remain valid, but may require simulation and experimentation 

(instead of closed-form calculation) to derive.  First, the 

specific values of    used here are notional as are the bitrates 

and descriptive complexities.  To actually compute the 

probability of detection given a set of image factors requires 

substantial testing and is likely application specific.  

Furthermore, since modern image formats use compression to 

reduce file size, potentially complicating the calculation of 

transmission time.  This is somewhat mitigated, however, by 

the expectation that since the background image should remain 

relatively constant, the compression level should remain 

relatively fixed.  This notion could be exploited (as it often is 

in movie compression) to only encode the “changes” between 

images to reduce the amount of information transmission 

required.  Additionally, the true transmission time should 

include both latency (from the sensor and the communications 

channel), although incorporating these (at least in the 

deterministic, expected, or worst case) should be straight 

forward and depend on whether the observations are pipelined 

(in which case the latency is irrelevant) or if the observations 

are on demand (in which case they should add in to the total 

transmission time). 

 



 
Figure 4: Track continuation as the image resolution and 
communication's bitrate varies. 

III. EXPERIMENTATION 

A. Use Case 

Our experimental concept of operations (CONOPS) is a 

simple target tracking problem in which a single UAV 

provides target imagery to a single user. UAVs collect more 

data than can be transmitted in time to be useful. This is 

especially true in communications challenged environments 

including: intentional interference (e.g., jamming), changing 

environmental conditions, changing network usage or 

crosstalk with other electromagnetic systems.  

 

The adaptive system presented would keep fidelity as high 

as possible while sending images at a rate that would keep the 

target in the field of view. In this problem the speed of the 

target and the bandwidth available for communication 

between the UAV and the operator can be determined. Fidelity 

of the images sent to the operator can be varied to increase the 

probability of maintaining track. An Android app was 

developed to test the change in bandwidth over time and in 

response to file size and signal strength. It sent images with 

file sizes between 128 and 239 kb. The time that the message 

was sent and received and the signal strength at the time it was 

sent were recorded. As would be expected, bandwidth 

decreases quickly with worsening signal strength. 

B. Metrics 

As described in the previous section, the goal of the target 

tracking UAV is to maximize the probability of detection, pd, 

and, once the target has been detected, maximize the 

probability of track continuation, pc, which we assume is a 

function of image resolution only.  

C. Assumptions 

Our experiment makes several simplifying assumptions, which 

are:  

 Target vehicle behavior is completely unpredictable, this 

allows us to conveniently, yet unrealistically, assume that 

all feasible trajectories are equally probable. For a more 

nuanced dissertation on post observation target trajectory 

probability distribution see [7]. 

 The information provided by imagery decays in 

proportion to the localization accuracy. While this is true 

for track continuation, this is not true for target detection 

and target classification. 

 The decision-making process of the pilot was not 

modeled, rather, we assume that the ability of the pilot to 

track the target is proportional to the information the pilot 

has on the target. 

 
Figure 5: Modified Procerus Unicorn UAV 

D. Equipment 

The UAV used in this experiment is a modified Procerus 

Unicorn (Figure 5). Unicorns are electrically powered, 

Styrofoam flying wings with a 72” wingspan. Stock Unicorns 

are controlled by a Kestrel autopilot, which communicates to a 

ground-station over a 900MHz radio link. Through the 

ground-station, the Unicorn operator can control the Unicorn 

with simple commands, such as loiter at this waypoint, land at 

this location, or fly this path. The Unicorn was modified to 

include a Samsung Galaxy S II cell phone running the Android 

4.1.2 Jelly Bean operating system. The phone’s reverse-face 

camera was used as a payload to provide target imagery. The 

phone was mounted with the camera unobscured and pointed 

down. Image metadata that described the time and location of 

the image was provided by the GPS receiver integrated into 

the phone. 

 

The UAV was configured for tele-operated control, 

following waypoints provided by the stock Unicorn ground-

station, and as an autonomous unmanned vehicle. When 

operating autonomously waypoint commands were sent from 

the autonomy toolkit (ATK) software running on the Android 

cell-phone over a Bluetooth wireless connection to the Kestrel 

autopilot. When operating autonomously ATK interprets 

position data from the phone’s GPS data and payload sensors 

and devises a course that satisfies user-defined mission-level 

goals. A detailed description of ATK can be found in [8].  

 

The communications network used in our experiments was 

the public AT&T public cell-phone network. The cell phone 

network provides a variable quality of service (QoS) mobile 

ad hoc network (MANET) whose available bandwidth varies 



in response to overall network usage and signal strength. From 

the point of view of a single phone-to-phone data link the cell 

QoS variations are unpredictable, which allows us to use the 

cell network as a proxy for military wireless communications 

in contested areas.  Using the AT&T network, target images 

are sent from the on-board cell phone to the operator’s Galaxy 

S II as attachments using email. 

 

Test flights were conducted at an altitude of 300-400ft. 

This altitude was selected to comply with flight safety 

regulations and also to provide target imagery of a size that is 

amenable to both manual and automated target detection. A 

sample image is shown in Figure 6. 

 
Figure 6: Imagery from the cell phone camera tracking a white van 
down a country road. 

E. The Agile Information Exchange Algorithm 

A simple information exchange protocol was used to adjust 

the rate and quality of images sent from the UAV phone to the 

operator phone.  The algorithm sends messages continuously, 

one after another without delay, as soon as the previous 

message has been received.  The frame rate at which the phone 

can capture images far exceeds the rate at which they can be 

transmitted across the cell network. To prevent multiple 

images from queuing up inside the network, which produces 

latency-induced entropy, images are taken and sent only when 

the prior image has been sent to the email server. This strategy 

produces a frame rate of the image file size divided by the bit 

rate.   

The algorithm varies the image quality in order to maintain 

a delay between images that is smaller than a specified time, 

    , while sending the highest quality images possible.  For 

experiments here,      was set to 9.09 seconds, which was 

computed to be an upper bound on the time required to keep a 

slow moving vehicle in scene.  By measuring the send-receive 

time for a message of known size, the algorithm is able to 

estimate the current it rate provided by the network.  This time 

is averaged over a small number of consecutive messages 

(here, a value of five is used) to produce a smoother estimate 

of the bandwidth.  The algorithm then uses a look-up table 

derived from previous experiments to estimate the typical file 

sizes for a given resolution and compression factor, and then 

looks for the highest quality settings such that the average file 

size divided by the current bandwidth estimate is less than 

    .  The average file size could be replaced by a larger 

quantity in order to hedge against randomness in file sizes if 

necessary.  Alternatively, using a smaller     would result in 

similar a similar effect. 

Originally, it was envisioned that the phone’s signal 

strength sensor would be used to determine the image quality 

settings in the agile exchange algorithm, however, baseline 

experimentation indicated that the signal strength was not 

strongly correlated with the computed bandwidth during 

message transmission (see Figure 7), making it an unreliable 

estimator.  Thus, using the recent history of bandwidth was the 

only available data.  Even this was quite noisy, so the average 

over several messages is used in order to low-pass filter the 

bandwidths, 

 

F. Results 

1) Communications baseline 

For the agile information control algorithm to be of value 

two assertions on network characteristics must hold. These 

assertions are: 

1. Network QoS must vary over the course of an 

engagement. 

2. The rate at which network QoS varies must be 

significantly less than the time required to send an 

image. 

 

Prior to flight testing, experiments were conducted to 

characterize the cell phone network. As indicated in the scatter 

plot shown in Figure 7, the time required to send images of 

varying size varied considerably, indicating that assertion #1 is 

valid. As indicated by the time-series plot in Figure 8, the rate 

at which network QoS varies is slower than the time required 

to end a single image.  

 

 
Figure 7:  Signal strength vs. bandwidth 

 

2) Flight test results 

 

Unfortunately, actual flight tests using the information 

exchange algorithm resulted in some unexpected phenomenon 

that render the algorithm ineffective, at least using the 



hardware and imaging used here.  Figure 9 shows a plot of the 

bandwidth (i.e., the ratio of image size to image sending time) 

over time.  The ‘x’ marks indicate the time that the actual 

message was sent, with the lines present simply to illustrate 

the shape of the curve.  Clearly, there is a strong periodic 

component present in the bandwidth that was not present for 

measurements taken on the ground.  Since the UAV was fixed 

wing and it cannot hover over a target, it must loiter in a 

circular pattern, and we conclude that it this periodic motion is 

inducing the periodic behavior in the bandwidth.  We further 

conjecture that this is not a function of a change in distance 

between the UAV and the nearest cell tower that is causing 

this change in bandwidth, but rather a change in orientation of 

the cell phone with regards to the cell tower, resulting in 

changes in performance due to directionality in the antenna, or 

through asymmetries in the airframe affecting electromagnetic 

propagation. 

 
Figure 8:  Time series plot of bandwidth 

 
Figure 9: Bandwidth over time during a single flight experiment. 

 

If the observed periodicity were much slower than the rate 

at which the information exchange algorithm was able 

transmit imagery, these smooth changes in bandwidth would 

have been handled by the algorithm.  However, as noted 

before, the information exchange algorithm updated its 

estimate of the bandwidth every three images, which appears 

to be around the period of the bandwidth change.  This is 

reflected in Figure 10, where the time between messages 

varies considerably and is often over the desired rate of one 

image per 9.09 seconds.  This is due to the image compression 

settings not being compatible with the actual bandwidths. 

 

 
Figure 10: Delay between consecutive messages in a single flight 
experiment. 

Alternatively, it may be possible to improve performance in 

the algorithm if position and trajectory information were 

included in the predictions of bandwidth.  Unfortunately, the 

aircraft heading and waypoint information is inaccessible to 

the cell phone, but the cell phone’s GPS may have some useful 

information that could be incorporated.  One could envision an 

algorithm that builds up correlations between position and 

bandwidth that could prove useful in an urban environment, 

for example. 

IV. CONCLUSION 

This paper describes a prototype agile information 
exchange system for exchanging information between a UAV 
and a UAV operator. The information exchange system uses 
real-time information-theoretic measurements of the operating 
environment and the communications infrastructure to adjust 
the fidelity of data being communicated from the UAV to the 
operator. The theoretical basis that is used by system to adjust 
data fidelity is explained and an analysis of the potential 
benefits is provided.  

A prototype information exchange system that includes a 
single, research-grade UAV communicating to an operator 
over the public cell-phone network is described. Laboratory-
based characterizations of the cell phone network and flight 
test results of the modified UAV using the agile information 
exchanging system to provide imagery of a moving target are 
provided.  However, the immediate utility of such a system is 
significantly decreased due to an unexpected interaction 
between the motion of the UAV and the bandwidth. 
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