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Abstract: We identify challenges that arise during development and evolution of secure Open 
Architecture (OA) command and control (C2) systems. OA systems are those whose software 
system components and interconnection mechanisms are either proprietary closed source 
software offerings with open interfaces (e.g., Application Program Interfaces), open source 
software, or some architectural configuration of closed and open source elements. Secure OA 
systems are those where the security of individual software elements may be uncertain, because 
of the ongoing evolution, poorly understood system integration compromises, or obtrusive 
software intellectual property licenses, yet where overall OA security must be continuously 
assured. We present a framework that organizes OA system security elements and mechanisms in 
forms aligned with stages of the life cycle of C2 for system design, building, and runtime 
deployment, as well as system evolution. We provide a case study to show our scheme and how it 
can be applied to C2 system architectures that rely on an OA. Finally, we show how our efforts 
complement and extend the agile C2 framework that utilizes a new generation of software 
components and security mechanisms that are engineered/adapted by multiple parties and 
disseminated within a diverse marketplace ecosystem of software producers, integrators, and 
consumers.
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Introduction
In this paper, we identify and investigate technical and acquisition challenges that arise during the
development and evolution of secure Open Architecture (OA) command and control (C2) 
systems. OA systems are those whose software system components and interconnection 
mechanisms are either proprietary closed source software offerings with open interfaces (e.g., 
Application Program Interfaces), open source software (including Government Open Source 
Software or Defense Open Source Software (OSS) via Forge.mil), or some architectural 
configuration of closed and open source elements. Secure OA systems are those where the 
security of individual software elements may be uncertain, because of the ongoing evolution, 
poorly understood system integration compromises, or obtrusive software intellectual property 
licenses, yet where overall OA security must be continuously assured [ScA12a, ScA12b, 
ScA12c]. 

It is now clear that future C2 systems must resist internal or external attacks on single/multiple 
system components, interconnection interfaces, or data repositories. No longer can we rely on 
“air-gap” system barriers, or security through proprietary obscurity, as individual security barriers 
get compromised through intrusive cyberwarfare software attack vectors or social engineering. 
Furthermore, current approaches to system security are most often piece-meal with little/no 
support for guiding the what system security requirements must address across different software 
system processing elements and data levels, and how those can be manifest during the design, 
building, deployment, and evolution of OA software systems. Finally, agile C2 efforts seek to 
transform overall system development and evolutionary adaptation time frames from years to 
months (or less) [RBC12]. This means fundamentally new approaches to secure C2 system 
development and evolution must be available. 

We present a framework that organizes OA system security elements and mechanisms in forms 
that can be aligned with different stages of the life cycle of C2 system design, building, and 
runtime deployment, as well as system evolution. We provide a case study to show our scheme 
and how it can be applied to centralized C2 system architectures like C2RPC [Gar11, Giz11] or to 
next-generation decentralized C2 systems [SBN12] that rely on an OA. Finally, we show how our 
efforts complement and extend the agile C2 framework that utilizes a new generation of software 
components (apps, widgets, connectors, and encapsulation mechanisms) that are sourced from a 
diverse marketplace ecosystem of software producers [RBC12].

Open Architectures for Command and Control Systems
Open architecture (OA) software is a customization technique that enables third parties to modify 
a software system through its exposed architecture, evolving the system by replacing its 
components, connectors, or configuration. The three military services within the U.S. Department 
of Defense are pursuing initiatives that encourage the adoption of OA approaches, and OA 
systems as way to reduce system development costs over the life of a system [ACC13]. 
Increasingly more software-intensive systems are developed using an OA strategy, not only with 
proprietary, closed source software components with open application program interfaces (APIs). 
But also OSS components. However, composing a system with components that are subject to 
different intellectual property (IP) licenses, increases the likelihood of conflicts, liabilities, and 
no-rights stemming from incompatible licenses. We call systems whose components are subject 
to different licenses, heterogeneously-licensed systems [ASA10]. So in our work we define an 
OA C2 system as a software system for command and control consisting of components that are 
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either OSS or proprietary with open APIs, whose overall system license rights at a minimum 
allow its use and redistribution, in full or in part. It may appear that using a system architecture 
that incorporates OSS components and uses open APIs will result in an OA system. But not all 
such architectures will produce an OA, since the (possibly empty) set of available license rights 
for an OA system depends on: (a) how and why OSS and open APIs are located within the system 
architecture, (b) how OSS and open APIs are implemented, embedded, or interconnected, and (c) 
the degree to which the licenses of different OSS components encumber all or part of a software 
system's architecture into which they are integrated [ASA10,AAS12, ScA12].

The following kinds of software elements appearing in common software architectures can affect 
whether the resulting systems are open or closed [BCK03]. 

Software source code components – These can be either (a) standalone programs, (b) 
libraries, frameworks, or middleware, (c) inter-application script code such as C shell scripts, or 
(d) intra-application script code, as for creating Rich Internet Applications using domain-specific 
languages such as XUL for the Firefox Web browser, “mashups", or their composition into 
widgets [Fel07, OWl3, SWM11]. Their source code is available and they can be rebuilt. Each 
may have its own distinct license. 

Executable components – These components are in binary form, and the source code may 
not be open for access, review, modification, or possible redistribution. If proprietary, they often 
cannot be redistributed, and so such components will be present in the design- and run-time 
architectures but not in the distribution-time architecture. 

Software services – An appropriate network-accessible software service can replace a 
source code or executable component. 

Application programming interfaces/APIs – Availability of externally visible and 
accessible APIs is the minimum requirement for an “open system" [MeO01]. Open APIs are not 
and cannot 
be licensed, and can limit the propagation of license obligations. 

Software connectors – Software whose intended purpose is to provide a standard or 
reusable 
way of communication through common interfaces, e.g.  Microsoft.NET, Enterprise Java Beans, 
GNU Lesser General Public License (LGPL) libraries, and data communication protocols like the 
HyperText Transfer Protocol (HTTP). Connectors generally limit the propagation of license 
obligations. 

Methods of connection – These include linking as part of a configured subsystem, 
dynamic linking,  client-server connections, and what we call, “interface shims” (abstract 
interfaces or interface libraries). Methods of connection affect license obligation propagation, 
with different methods affecting different licenses. 

Configured system or subsystem architectures – These are software systems that are used 
as atomic components of a larger system, or as a reusable or “functional capability,” such that its 
internal architecture may comprise components with different licenses, affecting the overall 
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system license. To minimize license interaction, a configured system or sub-architecture may be 
surrounded by what we term a license firewall, namely a layer of dynamic links, client-server 
connections, license interface shims, or other connectors that block the propagation of reciprocal 
obligation. Similarly, a configured system or subsystem can be encapsulated within a security 
mechanism such as a virtual machine [Xen12].

Examples of such elements appear in descriptions and figures presented later in this paper. But 
the diversity of kinds of elements that appear in an OA system enables the design, development, 
and evolution of agile C2 systems within an agile and adaptive software ecosystem [RBC12], as 
we well show.

Accommodating Agile C2 Development and Evolution 
The MITRE Corporation and others in the Defense community seek to embrace the development 
of agile C2 systems [RBC12]. Such systems are envisioned to arise from the assembly and 
integration of system elements (application components, widgets, content servers, networking 
elements, etc.) within a software ecosystem of multiple producers, integrators, and consumers 
who may supply or share the results of their efforts. The assembly and integration of system 
elements produces “C2 system capabilities” (C2SCs). C2SCs may be produced, acquired, 
integrated, shared, or reused by different trusted parties. C2SCs may address a set of ISR 
data/signal processing components, office productivity components supporting mission planning, 
or the like. Our purpose is to identify how our approach to the design of secure OA systems can 
be aligned with their vision for agile C2 systems. Along the way we focus on design of OA 
system capability involving office productivity components that must be configured as a secure 
C2SC.

The design and development of agile C2 systems follows from two sets of principals: one set 
addressing guidelines/tenets for multi-party engineering (MPE) of C2 system components; the 
other set addressing attributes of agile and adaptive ecosystems (AAE) for producing C2SCs or 
C2 system elements. For brevity, we simply identify these principals for MPE and AAE, as they 
are more fully explained elsewhere [RBC12], but we do so in ways that foreshadow and more 
clearly align with our approach that follows in a later section.

MPE Tenets:
1. Provide small system components that can be rapidly developed, and accommodate different 
functionally equivalent variants, or functionally similar versions
2. Certify components are consistent with “shared agreements” regarding security 
requirements, system architecture, data semantics, production and integration processes or 
process constraints, and other aspects of mission-specific or mission-common domain models
3. Supply diverse C2 system components via a market of component producers or integrators
4. Assemble and integrate C2SCs from components available in the market that are consistent 
with relevant shared agreements
5. Provide feedback from C2 system users to component producers or capability integrators to 
improve market efficiency and effectiveness.

AAE Attributes:
1. Encourage and sustain a software ecosystem that is agile (supports assembly and integration 
C2SC) from components in market, and adaptive (supports substitution of functionally similar 
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component versions or functionally equivalent component variants), in line with user feedback.
2. Component markets are federated so as to accommodate sharing, reuse, or trading of 
components across different system integrators or consumer organizations.
3. Shared agreements serve as a basis for enabling multi-party collaboration in system 
development, integration, and evolution/sustainability.
4. Production, integration, or post-deployment support for components or C2SCs must be 
viable for small businesses or large, as well as promoting market diversity and effectiveness.
5. Consumer/user organizations seek to manage portfolios of components or C2SCs that 
collectively improve mission effectiveness, agility and adaptiveness, while reducing costs.

Finally, to help understand what we mean by a software ecosystem, we use Figure 1 to represent 
where different parties are located across a generic software ecosystem, and the supply networks 
or multi-party relationships that emerge to enable the software producers to develop and release 
products that are assembled and integrated by system integrators for delivery to consumer/end-
user organizations.

Figure 1. A generic software ecosystem supply network (upper part), along with a sample
elaboration of producers, software components, and licenses for an OA system components they

employ (lower part) [ScA12].
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The lower part of Figure 1 also identifies where elements of shared agreements like IP licenses 
enter into the ecosystem, and how the assembly of components into a configured system or 
subsystem architecture by system integrators effectively (and perhaps unintentionally) determines 
which IP license obligations and rights get propagated to consumer/end-user organizations. 
Agreement terms and conditions acceptable to consumer/end-user organizations flow back to the 
integrators. This helps reveal where and how shared agreements will mix, match, mashup, or not 
at the system architecture level, which is another reason for why we use (and advocate) explicit 
OA system models.

A Framework for Securing Agile OA C2 Systems
Over the past five or so years, we have been researching, prototyping, and refining an approach to 
the acquisition, development, and evolution of OA software systems [ASA10, AAS12, ScA12]. 
Central to our approach is our reliance on explicit models of software system architectures 
described in an architectural description language [TMD09]. Use of explicit architectural models 
is key to making OA systems tractable and observable, since we want to be able to make visible 
where and how a system's architecture is open, and where it is not, during different system 
development and evolution activities. Explicit architectural representations are also key to 
coordinating the development, integration, deployment, and evolution of complex OA software 
systems among a dispersed community of development and user organizations [OPM03]. Our 
models also draw attention to the identification of a system's elements and their configuration into 
a system capability or complete system. In addition, our models allow for the system elements to 
be specified by type or instance (e.g., web browser, Microsoft Internet Explorer), as well as 
optionally specifying functionally similar versions or functionally equivalent variants thereof 
(e.g., Internet Explorer 8 and Internet Explorer 9 are similar, while 32-bit and 64-bit variants of 
IE9 are equivalent)1. Finally, we annotate our models with formal expressions that allow us to 
specify details like IP license or security policy obligations and user rights in ways that are 
amenable for acquisition contracting and auditing, and compliance practices [ASA10]. Thus, our 
annotated OA system models form a core of the shared agreements identified as a key element to 
the development of agile C2 systems within an agile and adaptive ecosystem [RBC12]. The 
remainder of this section identifies other aspects of our approach that align with the MPE/AAE 
framework.

Let us consider what needs to be specified during the acquisition of an OA C2 system that allows 
for a system suggested by use within the command and control rapid prototyping continuum, 
C2RPC [Gar11, Giz11].  Such a system incorporates both mission-specific components 
(applications or widgets for processing ISR data, e.g., [GeW12]), and also common office 
productivity applications that run on a personal computer networked to remote servers. Such a 
system can include a web browser, word processor, email and calendaring applications that are 
configured to operate on a personal computer, where the PC’s operating system, Web browser and 
other applications need to be configured to access remote data/Web content servers. Figure 1 
shows part of the system ecosystem of software producers and the components they can provide 
for our enterprise system. A web browser like Mozilla Firefox, Microsoft Internet Explorer, 

1 Many software producers utilize multi-level numerical identifiers or other nomenclature (e.g., Internet Explorer 10 
Release Preview) to distinguish major version releases from minor revision variants (e.g., Internet Explorer 9 versus 
Internet Explorer 9.1.3) which we also accommodate. Such specificity is required to support system integration and 
deployment requirements.
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Opera, or Google Chrome can further be tailored and invoked through internal scripts to support 
small, mission-specific widgets, as might be developed using the Ozone Widget Framework 
[OWF2013].

Figure 2 shows the reference design of an OA system architecture of the office productivity 
capability associated with a C2 system [cf. Gar11]. This OA system design also accommodates 
the integration of browser-based remote networked services or scripted widgets. What might a 
secure software product line for a system like this involve, and how might it provide benefits and 
security qualities to be specified for design time, build time, and run time?  How can its OA and 
product-line characteristics contribute to security throughout the acquisition system life-cycle?

Figure 2. A design-time reference model of an OA system that accommodates multiple
alternative software component selections and configurations.

Within our approach, we address non-functional C2 system requirements, such as security, 
configurability into C2SC, and post-deployment adaptation, These requirements are elaborated at 
design and integration times by specific functional requirements that explain how and to what 
degree the non-functional requirements are going to be satisfied at deployment time for 
consumer/end-user organizations [AAS09, ASA10, ScA12].
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Figure 3. A view of an OA software ecosystem that provides alternative, functionally similar
components compatible with the reference design-time architecture.

Figure 3 illustrates a possible software product line that follows from the OA software ecosystem 
shown in Figure 2.  Here a number of possible producers and the components they produce and 
license come into play, within four specific instance C2SC architectures.  With appropriate 
architectural topologies, and appropriate shim components and connectors inserted between the 
major components, each of these four instances support the same general functionality of the 
office productivity C2SC that can support mission planning.  This means that it becomes possible 
to offer support for rapidly switching from one OA system configuration to another by 
substituting compatible (functionally similar) components. This gives us the ability to adapt the 
C2SC in ways that sustain its overall operational requirements, while allowing multiple parties to 
independently maintain or evolve the component configuration they choose.

Last, it is also possible to achieve different nonfunctional requirements addressing support for 
security policies through the four architectural choices;  for example, by requiring that computer 
operating systems on which such a capability be hosted must support an appropriate mandatory 
access control and type enforcement mechanism, such as is provided in the Security-Enhanced 
Linux protection service library (e.g., for computers running the RedHat Enterprise Linux or 
Fedora operating systems), or by requiring the use of secure network protocol connectors like 
HTTPS which provide basic network data encryption functionality.

A Case Study for Securing OA C2 Systems
We utilize a case study to describe and analyze our approach to design secure OA C2 systems or 
C2SCs. Such a study serves to help identify issues that arise pertaining to our support of 
MPE/AAE elements, which in turn drive the development or evolution of such systems, whether 
they are deployed in a fully developed environment, or whether they are envisioned to address 
challenges that arise in underdeveloped, degraded or resource limited operational environments. 
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Our study is divided into two parts, the first addressing design of a simple centralized C2 system 
with an OA for use in a fully developed environment, and the second addressing a similar but 
decentralized C2 system with an OA, which may be appropriate for experimental studies.

Centralized C2 system architecture
Traditional C2 systems are designed to support a centralized system deployment. In such a 
situation, all core system elements or capabilities are located in a single facility, though such a 
facility may be mobile (e.g., airborne or shipboard).

Within the overall ecosystem of Figure 3, Figure 4 shows one possible instance ecosystem 
involving specific producers (Mozilla--Firefox, abisource.org--AbiWord, gnome.org--Evolution, 
Red Hat--Fedora) and specific component alternatives selected (i.e., Firefox, AbiWord, Evolution, 
Fedora).  

Figure 4. A selection among alternative components that can be included at build-time to produce
an integrated system compatible with the design-time reference.

Figure 5 then shows what a deployed run-time instantiation of this OA C2SC might look like 
from the perspective of the system's end-users. Here we see the Firefox web browser (upper left 
corner), AbiWord word processor (upper right corner), Gnome Evolution email+calendaring 
application (lower left corner), and the Fedora operating system (lower right corner). Though the 
visual detail in this example is limited, the Red Hat Fedora Linux operating system (lower right 
corner) is shown utilizing the SELinux security protection library, for coding and enforcing 
mandatory access control on programs/data, and other security enforcement functions.
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Figure 5. An end-user run-time version of the selected alternative components that fulfills the OA
C2SC system design. 

Figure 6 outlines an alternative system configuration and the instance ecosystem that produces it.  
This instance architecture substitutes services for components in the case of Google Docs for the 
word processing functionality and Google Calendar for the calendar functionality.  With 
appropriate shims and changes to the architectural topology this combination of major 
components could also support the system’s functional requirements, and because the services are 
accessed through client-server connections, which block the propagation of most license 
obligations, there are a number of ways to satisfy the IP constraints imposed by the component 
and service licenses.

This alternative configuration also highlights possible acquisition-time concerns and the 
nonfunctional requirements and security license issues that follow from them.  For example, a 
remote service such as Google Docs provides benefits and imposes costs with respect to a 
compiled component such as AbiWord.  On the one hand, the remote service makes some 
qualities easier to achieve (data sharing, backup, etc.) but on the other may make some qualities 
harder to achieve (data security over a network connection and in the “cloud”, up-time of the 
service, little or no control over when new versions of the service are used compared to complete 
control over when new versions of a component are integrated). 
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Figure 6. A second configuration of the OA C2SC example, using alternative but functionally
similar components.

This ability to rapidly and conveniently substitute components (agility) to adapt to different end-
user needs or required components aligns with the MPE/AAE elements. However, we still need to 
address how other elements in the shared agreements, like IP licenses, enable/constrain whether 
such an alternative configuration, though technical possible, meets other organizational 
requirements. This concerns raises the following kinds of questions:

● Who in the ecosystem of human actors (the multiple parties) for this system has the right 
to make the decisions to use a remote/networked computational service in place of a 
locally hosted software system component, or one component version in place of another?  
What obligations are they required to satisfy first?  These questions are of concern at 
acquisition time and, we claim, are addressable through explicit acquisition policies that 
stipulate desired rights and acceptable obligations by the acquiring organization, where 
such policies are important to system acquisition officers, just as IP licenses do for IP 
rights and obligations important to software producers. Our shared agreements need to 
provide guidance for what to do here.

● When can these decisions be made?  In traditional development processes these would 
occur at design time, but in the larger view we examine here such decisions, or rather the 
shared agreements that control them, are perhaps more properly considered at component, 
C2SC, or system acquisition time.  As we will see below, it is also possible that in order to 
achieve specific security qualities they might be made at system integration time or at 
deployment time, in response to specific end-user organization needs.
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Figure 7. An end-user view of the alternative run-time system configuration 

Figure 7 shows a run-time view of this alternative configuration.  To the end user this system 
appears quite similar to the one in Figure 5, and the differences might scarcely be noticed, which 
raises the next set of possibilities.

Both these instance architectures displayed in Figure 5 and Figure 7 specify specific alternatives 
for the major components, for example, Mozilla Firefox for the web browser component.  But 
which version of Firefox?  For example, it is quite possible that both the instance architectures 
discussed above could be implemented using either Firefox 18 or Firefox 19, satisfying all the 
functional requirements with no change to the instance architecture and no revision of software 
shims.  Who has the power to decide to use version 18 rather than version 19?  How late in the 
software process can this decision be made -- for example, could it be made as late as system 
startup time by a system user? or in response to a particular security attack on the previous 
configuration?

Finally, an orthogonal consideration is the use of software-based access control containment 
vessels to encapsulate components or subsystems within a virtual machine, to monitor and control 
interactions among components and subsystems in order to block attacks and protect vulnerable 
parts of a system.  Figure 8 shows a screenshot in ArchStudio of a design-time architecture 
utilizing eight containment vessels, seven for individual components and connectors and the 
eighth for the group of components and connectors associated with the computer's operating 
system. 

For security, the Fedora operating system can employ the SELinux capabilities to restrict all 
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shell/operating systems commands through mandatory access control and type enforcement, 
while other components can all be contained within one (for minimal security confinement) or 
more (for increased security confinement on a per component basis) Xen-based virtual machines 
(See Figure 8). The interoperability of SELinux and Xen is now a common feature of many large 
Linux system installations (e.g., Amazon.com now has more than 500K Linux systems running 
Xen) [Xen12]. So it is possible for shared agreements to call for the use of multiple software-
based security mechanisms to protect a OA system or C2SC, while still accommodating the 
MPE/AAE elements. This is an important accomplishment.

Figure 8. A secure OA system configuration alternative that encapsulates multiple system
capabilities within different virtual machines (e.g., using [Xen12]), where each system capability

may be under the purview of a different organizational authority.

Decentralized C2 system architecture
Decentralized C2 systems can employ OA that accommodate their deployment and usage in 
degraded and limited operation environments. Decentralized C2 systems can have a very small 
physical footprint, and mission planners/commanders may be located potentially anywhere in the 
world. So decentralized OA C2 systems can serve as appropriate candidates for experimentation 
or training in underdeveloped, degraded, or denied operational environments.
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In our previous work, we have investigated and prototyped a C2 system called DECENT 
[SBN12] that provides an immersive 3D virtual world for experimenting with decentralized C2 
activities. DECENT is designed to run in a wide-area network environment that supports 3D 
browsers (or conventional Web browsers with 3D world viewer plug-ins) as clients, and remote 
servers to provide content and other services accessible through the browsers. DECENT operates 
on the Internet, but not on the Web, relying instead on a separate decentralized network grid 
architecture called the HyperGrid [Lop11]. The HyperGrid infrastructure in turn allows for the 
establishment and operation of distinct or interconnected hypergrids as separate administrative 
authorities for research, experimentation, or training applications. The MOSES hypergrid is such 
an example [Max12, Mos13]. 

The Ozone Widget Framework [OWF13] supports a different form of decentralized OA. OWF 
provides support for the development of Web-compatible widgets as lightweight applications that 
access pre-specified kinds of content from remote servers. This allows the creation of virtual 
private networks offering Web-like applications and services through network-managed security 
capabilities. However, in an underdeveloped operational environment, such networking 
capabilities may not be available or reliable, so other means must be utilized to realize secure 
communications. Alternatively, applications or widgets that rely on signals from known types of 
sensors may also not be available or reliable, so other widget versions may be need to be 
provided.

Subsequently, one strategy for developing a decentralized C2 system would combine the OA for a 
centralized C2 system, but allow for the system components (applications, widgets, content 
servers, operating systems, etc.) or C2SCs to be interconnected to local/remote servers through 
encrypted network connectors (e.g., secure data communication protocols like HTTPS or TLS, or 
robust dynamic capability connectors, like those used in the COAST [GST12]) that enable data, 
control, or signals to flow across (or tunnel beneath) virtual software defined networks. In other 
words, the user interface would still rely on a Web browser modality, yet in a simple 
implementation, be able to securely access hypergrid worlds in one window, with other widget-
based content services located in other browser window or user sessions, depending on overall 
security policy. So we have a basis for developing a secure decentralized C2 system that allows a 
consistent OA system model whose components or connectors may be centralized or 
decentralized by design choice or security policy. However, compiling and deploying such a 
decentralized C2 system are the system development activities when the security components will 
be integrated.

Overall, a decentralized C2 system can be developed using system elements (components, 
connectors, or embedded C2SCs) that may reside on local computer or remote networked 
computers that are accessed through software client applications that may reside within a C2 
virtual world. Such choices may be most appropriate for OA C2 systems that are intended to 
support experimentation in C2 mission planning activities. Such activities may be most relevant 
where underdeveloped or degraded system elements are employed, in order to help train mission 
commanders to learn how to articulate their requirements for new system components that can be 
rapidly developed, integrated and deployed. It also can serve to reveal other practical advantages 
and constraints that arise when end-user organizations follow the MPE/AAE guidelines for 
adapting and evolving their OA C2 systems.
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Conclusions
In this paper, we identified and investigated technical and acquisition challenges that arise during 
the development and evolution of secure Open Architecture (OA) command and control (C2) 
systems. OA systems are identified as those whose software system components and 
interconnection mechanisms are either proprietary closed source software offerings with open 
application program interfaces, open source software, or some architectural configuration of 
closed and open source elements. Secure OA systems are identified as those where the security of 
individual software elements may be uncertain, because of the ongoing evolution, poorly 
understood system integration compromises, or obtrusive software intellectual property licenses, 
yet where overall OA security must be continuously assured. 

We presented a framework that organizes OA system security elements and mechanisms in forms 
that can be aligned with different stages of the life cycle of C2 system development. We focused 
attention to the design of OA C2 systems or C2 system capabilities using commonly available 
software components that provide office productivity capabilities that support C2 operations.. We 
provided a case study to show our scheme and how it can be applied to C2 system architectures 
that rely on an OA. Finally, we showed how our efforts complement and extend the agile C2 
framework that utilizes a new generation of software components and security mechanisms that 
are engineered/adapted by multiple parties and disseminated within a diverse marketplace 
ecosystem of software producers, integrators, and consumers.
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