Graceful Degradation: A C2 Design Virtue for Our Times ICCRTS Paper #3

Dr. Jonathan E. Czarnecki Naval War College

jczarne@nps.edu

COL K. Todd Chamberlain
Army Capabilities Integration
Center

k.todd.chamberlain@gmail.com

Graceful degradation occurs by virtue of the interaction of 3 aspects of system design

- 1. Hardware (Technology)
- Software (Doctrine, procedures, instructions)
- The human interface between hardware & software

Redundancy **Active Passive Type Action**

Robustness

Robustness

Resistance to change Resistance to uncertainty

The strength of a system:

- Ability to resist changes from both in/out
- Ability to resist the uncertainties associated with system processes

Redundancy
Active
Passive
Type
Action

available

Passive: A non-operational "back-up" component is

Domain Review of Resilience

Degree of Complexity

	Materials Engineering	Systems Engineering	Social-ecological System Mgt	Critical Infrastructure Mgt
Focus	Discrete part of the system	Groups of interacting parts	Adaptive Capacity	System Protection
Purpose	Design the system part to endure stress/minimize change		Design the system as a whole to tolerate stress and adapt	Design the system to withstand both unintentional and intentional damage
Insights	Assumes there is one "normal" state to which a system returns after a disturbance		 The "parts" of these systems are inherently adaptable Explicitly recognizes humans as part of the system 	Tightly-coupled systems with circular, reciprocal dependencies can lead to cascading or escalating failures in other systems 8

Six Case Studies on Graceful Degradation

Hardware

- Successful: USS San Francisco, Guadalcanal 1942
- Unsuccessful: Hurricane Katrina 2005

Software

- Successful: Battle of Wanat 2008
- Unsuccessful: Operation Fall Gelb 1940

Human Interface

- Successful: Task Group 77.3, Battle off Samar 1944
- Unsuccessful: 1st Army, Huertgen Forest Campaign 1944

Observations and Recommendations

- Resilience requires trade-offs
- Resilience requires disturbances
- Resilience requires an acceptance of unpredictability
- Increasing resilience is dependent upon selecting actions that are informed by the existing system state
- Resilience requires a culture that:
 - Allows a variety of leadership styles
 - Fosters a high degree of trust
 - Uses decisions that retain all options open
 - Provides the capacity and capability to self-organize & reorganize

CCJO and Graceful Degradation

- Educate commanders and staffs to match their command philosophy to the particular requirements of each mission
- Regularly train the force to operate in "worst case" degraded environments
- Make a common set of C2 applications available as cloud services
- Build greater resilience into technical architectures
- Develop capabilities and tradecraft that provide broader intelligence to decision makers
- Improve the capabilities that fuse, analyze, & exploit large data sets