

Monitoring in Disadvantaged Grids

Trude H. Bloebaum, Frank T. Johnsen Norwegian Defence Research Establishment (FFI)

Gunnar Salberg Narvik University College

Monitoring dynamic networks

- Best effort handling of network traffic is not good enough when resources are scarce
- Efficient automatic adaptation of the traffic injected into the network is only possible if the resource situation is known
- In dynamic networks, resource availability varies
 - The total capacity of the network is deployment specific, and should be measured for planning purposes
 - Knowledge about the current resource situation can enable better resource usage efficiency

Monitoring tool categories

- Active
 - Measures by probing, which means inserting traffic into the network
 - Can measure any part of the network independent of whether the network is being used
 - Increases the load on the network
- Passive
 - Measures by observation of already existing traffic
 - Often piggy-backs information on ongoing traffic
- Hybrid
 - Combines elements from passive and active techniques in different ways

Measuring "Bandwidth"

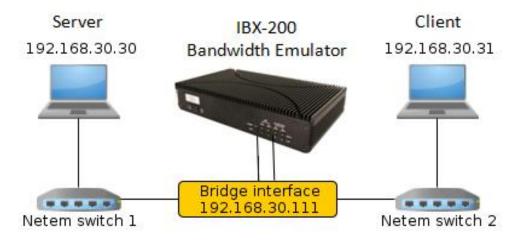
- Different tools measure different things
 - Capacity
 - Available bandwidth
 - TCP throughput
 - Per-hop vs path

Capacity	The maximum rate at which packets can be transmitted by a link
Narrow link	The link with the smallest capacity along a path
Available bandwidth	A link's unused capacity
Tight link	The link with minimum available bandwidth along a path
Cross traffic	Traffic other than the traffic created by the probing

Factors to consider

- Intrusiveness
 - The intrusiveness of a monitoring technique describes which impact the monitoring tool has on other traffic in network being measured
 - Flooding
 - Simple to implement and understand
 - Highly intrusive
 - Packet Pair
 - Sends a pair of probes and calculates performance factors based on the observed behavior of these
 - Less intrusive
 - Higher calculation overhead
 - and many others...

Factors to consider

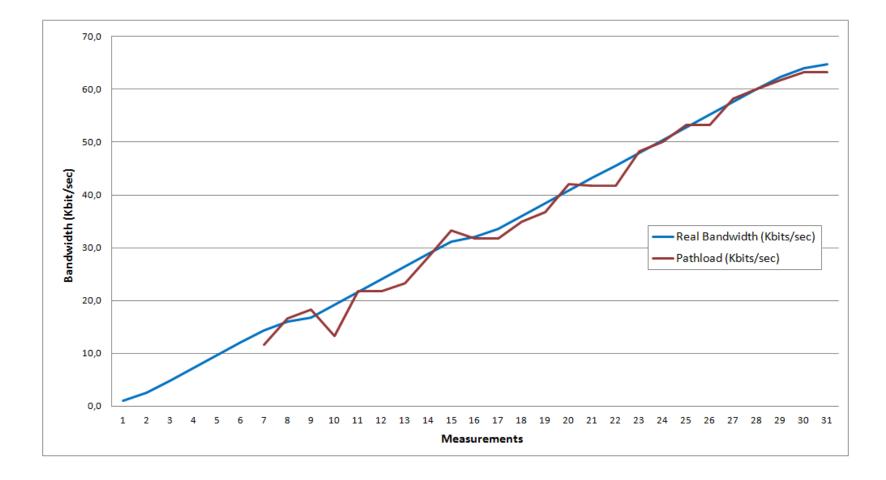

- Responsiveness
 - Measurements are always "outdated"
 - Predicting the future based on past events
 - Disadvantaged grids are often dynamic
 - The future can be very different from even the near past
 - Indicates that a short look back window should be used
 - Basing results on one (or a few) measurements can give large variations in the results
 - One lost packet can cause a large shift in measured performance
 - Temporary interference can cause connections to drop briefly
 - Indicates that a longer look back window should be used

Monitoring tool tests

- Requirement analysis based on the properties of dynamic, low capacity networks
 - Low intrusiveness
 - Short response time
 - End-to-end measurement (due to our intended use for the results)
 - Generic software solution
 - Ability to measure both capacity and available bandwidth
 - And for practical reasons: limited to openly available tools

Monitoring tool tests

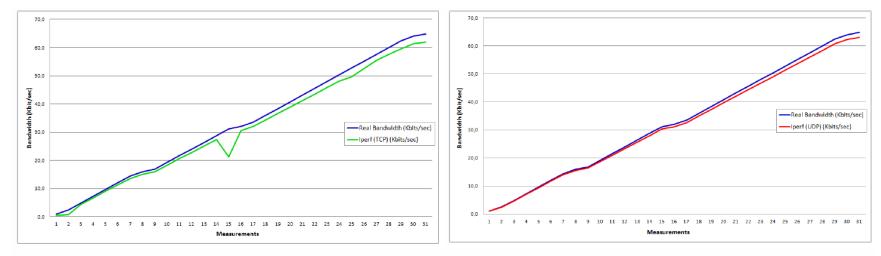
- We did a theoretical evaluation of a number of monitoring tools
 - Identified key properties of each tool
 - Table showing the full list in the paper
- Based on the theoretical evaluation we tested two promising tools
 - Low capacity emulated network



One-way delay of periodic packet streams will increase if the sending rate is higher than the available bandwidth.

- Iterative process, so multiple streams are required to get a result.
- Based on one-way delay
 - Requires support at both the sender and receiver side
- Chosen because
 - It can measure most the network parameters we are interested in
 - Fairly low intrusiveness
 - Generates results fast

Pathload



Floods the network path that is being measured with either TCP or UDP streams to determine the path capacity.

- Two modes: TCP and UDP
 - UDP measurement gives throughput and packet loss rate
 - TCP measurement gives TCP throughput
- Chosen because:
 - Most promising tool for measuring capacity
 - Can measure either one-way of round trip
- However, flooding makes it intrusive

(a) Iperf measurements - TCP protocol.

(b) Iperf measurements - the UDP protocol.

Tool Comparison

Pathload

- Measures available bandwidth
- Fleet of streams approach
 - low intrusiveness
 - streams discarded if results are inconclusive
- Difficult to get results at very low capacities
 - In our experiment, the lower limit was at 14.4 kbps

Iperf

- Measures capacity (UPD)
 - less than 3% difference between actual and measured capacity
 - flooding
- Measures TCP throughput (TCP)
 - ~4-5% delta
 - packet loss can affect accuracy
 - less intrusive than the UDP mode

Summary

- Knowledge about networking conditions
 - An enabler for automatic adaptation of information flows and more advanced network and system management
 - Useful both in the network setup/configuration phase and at runtime
- Monitoring dynamic networks is challenging, but freely available tools can give reasonable results
 - Pathload gives fairly accurate measurements for available bandwidth
 - But only over a certain threshold
 - Iperf can be used to find the maximum capacity of the current network configuration
 - Should not be used during operation as it influences other traffic

