CYBER WARFARE SIMULATION TO PREPARE TO CONTROL CYBER SPACE

Martin R. Stytz, Ph.D.

UMUC / Georgetown

<u>mstytz@att.net</u>, <u>mstytz@mstytz.com</u>, <u>mstytz@drexel.edu</u>

Sheila B. Banks, Ph.D.

Calculated Insight

sbanks@calculated-insight.com

Introduction

- Cyber warfare
 - Controls information flow
 - Targets information used to determine situational awareness and make decisions

Cyber warfare simulation

Prepares decision-makers for information challenges

Cyber space domination

 Ensures accurate, trustworthy, relevant information presented to decision-maker

Background

Cyber space

- Data
- Computing Technologies
- Informational Analysis/Comprehension Technologies
- Information Interaction/Management Technologies
- The opposing commander's mind is an important target and successfully striking it can provide a decisive advantage
- Cyber space technology requirements
 - Movement of information in the space
 - Shared Situational Assessment
 - Virtual Machine Approaches

Motivation

- Achieving cyberspace dominance is crucial, enables confident decision-making
- Must prepare decision-makers to:
 - Determine the targets of attacks
 - Operate effectively despite cyberattack
 - Determine difference between a fault and attack
 - Know the defensive techniques that are likely to be effective
- To perform properly, cyber event simulation components must exchange information about the defense, event, and response

Movement of information

- Organizational information movement
 - Important in development of situational awareness
 - Network centric organizations have two sets of information:
 - Sources of data
 - Recipients of data
 - Cyberattacks target both

Shared Situational Assessment

- Definition of situational assessment (Endsley)
 - Perception
 - What are the facts
 - Comprehension
 - Understanding the facts
 - Projection
 - Anticipation based upon understanding
 - Prediction
 - Evaluation of outside forces that may act upon to effect your projections

Virtual Machine Approach

Cyber Warfare Simulation

- Simulation provides a safe and flexible teaching method
- Prepares decision-makers for cyber attacks
 - Challenges to re-assess data protection
 - Cyber warfare defenses
- Cyber warfare training goals
 - How to determine targets of attack
 - Techniques and tactics used against targets
 - Techniques and tools to use to counteract each attack and the attacks effect
 - Explicitly assessing information value to protect the highest value information in the environment

Cyber Warfare Simulation Approach

- Successful cyber warfare simulation needs only to alter the information presented to the user
- Three basic approaches
 - Increase in information presented
 - Blocking information needed by users
 - Substituting false information for actual information
- Cyber warfare simulation systems
 - Determine if a cyber attack is successful
 - Determine the effect of the cyber attack
 - Portray defensive responses

Cyber Warfare Simulation

- At each simulation step the decision-maker is provided
 - Cyber attack and defensive activities
 - Status of the attack
 - Information behaviors that mirror information delays
 - Alterations in cyber warfare environment
- Cyber simulators also communicate (machine-tomachine)
 - Types and variations of cyber attack simulated
 - Defensives that are present
 - Cyber attack success rate

- Protection of cyber space is the goal
- Cyber space simulation environment allows decision-makers to protect cyber space
 Prioritize information
 - Prioritize elements of the cyber space
 - Operate in cyber environment where elements are corrupted/compromised

Goals

Cyber defensive goals

- Make defeating a cyber defense difficult
- Provide cyber defenders with dynamic defenses
- Provide a foundation for rapid detection of cyber attacks
- Provide successful operation despite an information breach
- Provide rapid recovery from cyber penetration/compromise

Active Cyber Defense

 Dynamic Layered Cyber Defense

Conclusion

- Decision-makers must experience the ever increasing complexity of cyber space attacks without real-world risk
- Cyber warfare training
 - Human assessment and judgment are necessary
 - Important in situational awareness
 - Correlate disparate activities into insight with technological advancements
- Future activities
 - Advancing cyber battle understanding
 - Advancing human behavior modeling
 - Advancing decision-making and situational awareness within large-scale and high-volume data environments

Future Work

- Develop a comprehensive cyberwarfare opposing force that can be generated automatically
- Develop and test defensive strategies against bot attacks
 - The key measure is the quality of the decisions that are made
- Develop an autonomous, intelligent cyber battlespace red team for defense evaluation and attack support
 - However, need improved understanding of human behavior, reasoning, knowledge acquisition, intent reasoning, data mining, and use within a cyber battlespace

Background (2)

Bots are an *amalgam* technolog

- **Conserving** technology, and change te**chn**ologies at will **Essent**ially large, distributed, secure clouds
- Worm technology is a means for bot software to move through the internet
- Trojan technology to hide
- Backdoors for software updates and herder access/ _ exfiltration Internet
- Rootkits to hook and insure the bot runs at every boot-up
- Virtualization

Found and developed worldwide Bot Bot **TARGET COMPUTERS**