Multi-Entity Bayesian Networks Learning in Predictive Situation Awareness

Cheol Young Park [STUDENT]

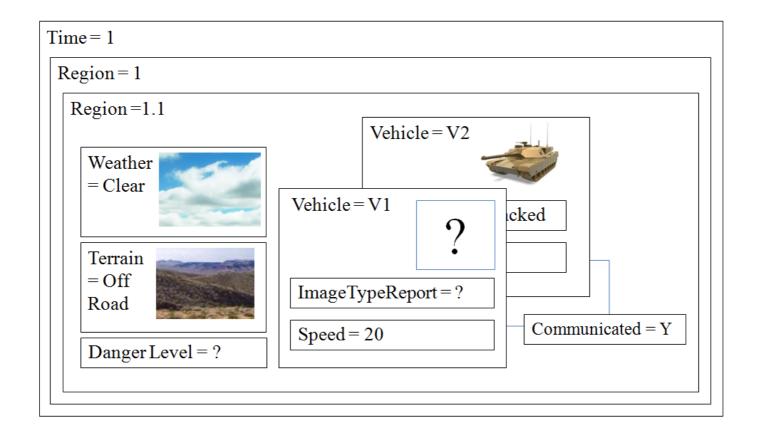
Dr. Kathryn Blackmond Laskey

Dr. Paulo Costa

Shou Matsumoto [STUDENT]

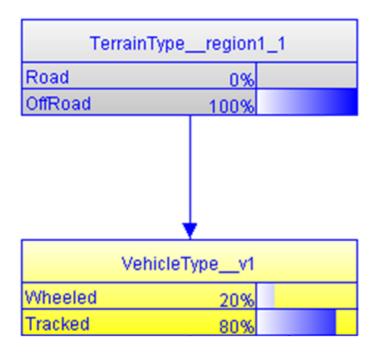
Index

- 1. Introduction
- 2. Problem Statement
- 3. Basic MEBN Learning
- 4. Case Study
- 5. Conclusion



Data fusion-SAW-C2

- Data Fusion
 - Integration Process of multiple data and knowledge
- Situation Awareness (SAW)
 - Perception
 - Comprehension
 - Projection
- Predictive Situation Awareness (PSAW)
 - Estimation and prediction of an evolving situation over time

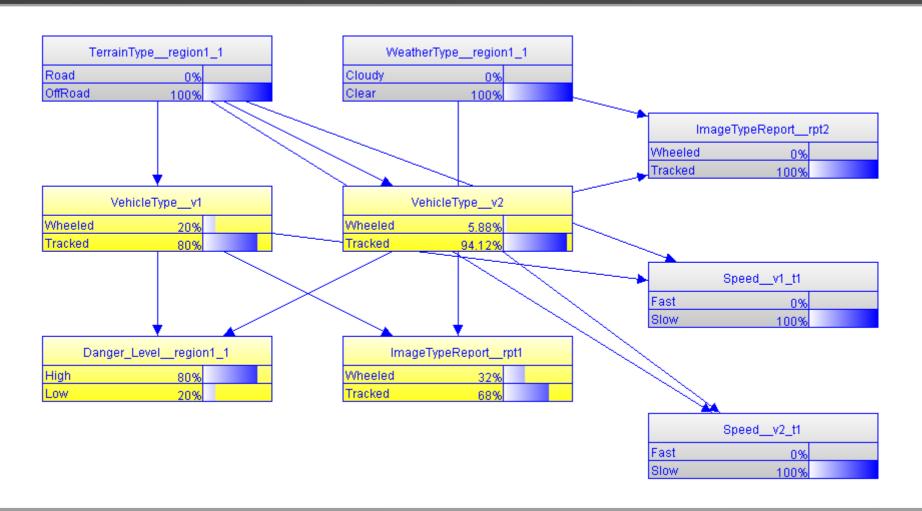


An example of PSAW situation

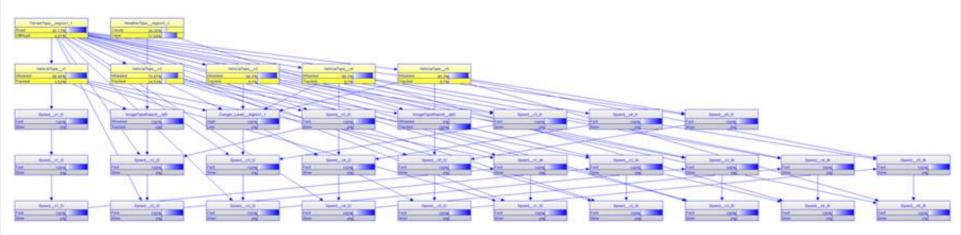
Bayesian Networks for the example

Directed Acyclic Graph (DAG)

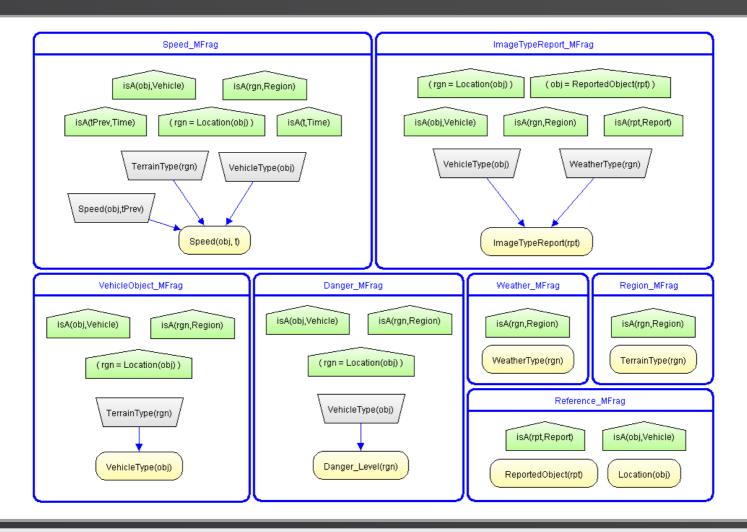
TerrainTyperegion1_1	Road	OffRoad
Wheeled	0.8	0.2
Tracked	0.2	0.8


Conditional Probability Distribution (CPD)

Observations: Terrain Type of region 1.1

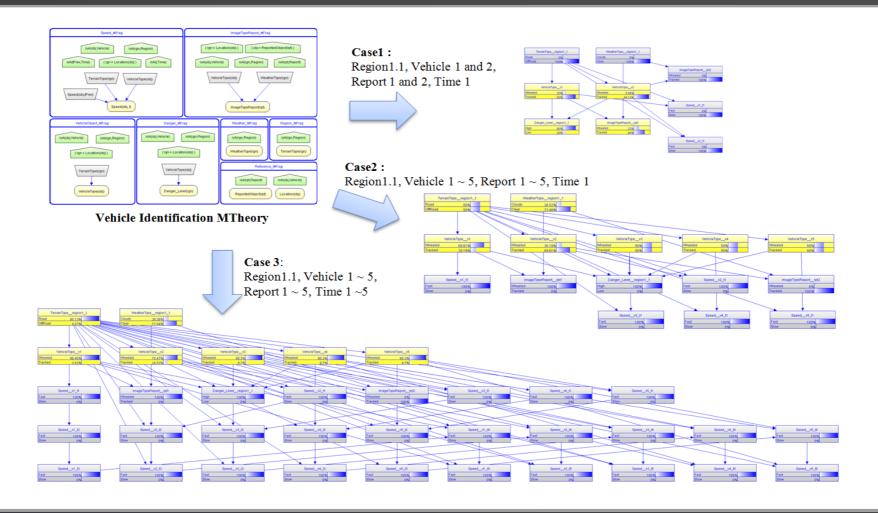

Queries: Vehicle Type of V1

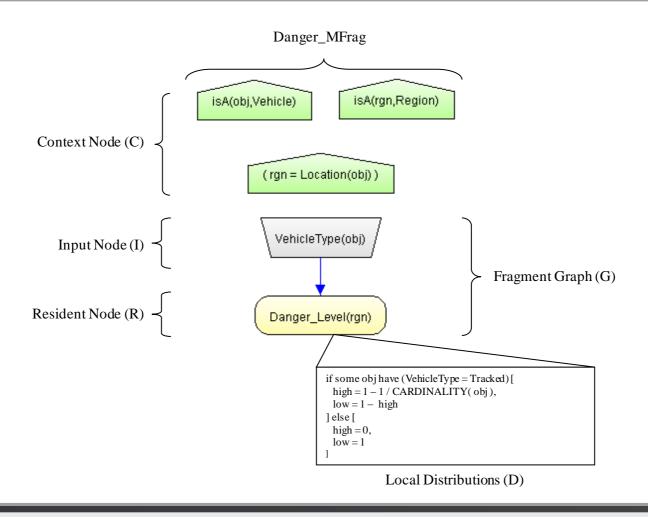
Bayesian Networks for the example



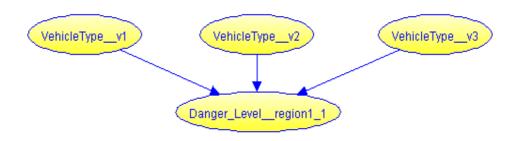
Bayesian Networks for the example

MEBN Model(MTheory) from the example





SSBN generation



A Danger MFrag

Generated SSBN from the Danger MFrag

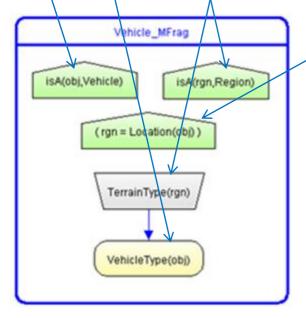
VehicleType_v3	Wheeled		Tracked					
VehicleType_v2	Whe	eeled	Trac	cked	Whe	eeled	Trac	cked
VehicleTypev1	Wheeled	Tracked	Wheeled	Tracked	Wheeled	Tracked	Wheeled	Tracked
High	0	0	0	0.5	0	0.5	0.5	0.66
Low	1	1	1	0.5	1	0.5	0.5	0.34

2. Problem Statement

- Old approach
 - Manual MEBN modeling

- Problem of Manual MEBN modeling
 - labor-intensive
 - insufficiently agile process

- MEBN-RM(Relational Model) Model
- Basic MEBN Parameter Learning
- Basic MEBN Structure Learning


3. Basic MEBN Learning MEBN-RM Model

Vehicle		
obj	VehicleType	
v1\	Wheeled	
v2	Tracked	
v3	Tracked	
v4	Tracked	
v5	Wheeled	
v6	Tracked	

Region				
rgn	TerrainType	UpperRegion		
rl	OffRoad	null		
r1_\1	Road	r1		
r1_2	OffRoad	r1		
r2	OffRoad	null		
r2_1	OffRoad	r2		
r2_1_1	Road	r2_1		

Report				
rpt	ImageTypeReort	ReportedObject		
rpt1	Wheeled	v1		
rpt2	Wheeled	XI		
rpt3	Tracked	v1		
rpt4	Tracked	v2		
rpt5	Wheeled	v2		
rpt6	Tracked	v2		

Locat	tion
t	rgn
t1	r1
t2	r1
t3	r1
t1	r2_1
t2	r2_1
t3	r2_1
	t t1 t2 t3 t1 t2

Type	Name	Example
1	Isa	Isa(obj, VehicleObject), Isa(rgn, Region),
1	184	Isa(t, Time), Isa(rpt, Report)
2	Value-Constraint	VehicleType(obj) = Wheeled
3	Slot-Filler	obj = Reported Object(rpt)
4	Entity-Constraint	Communication(obj1,obj2)

Table 1. Context Node Types on MEBN-RM Model

RM	Resident Node
Attribute	Function/ Predicate
Key	Arguments
Cell of Attribute	Output

Table 2. Function of MEBN-RM Model

Basic MEBN Parameter Learning

$$\widehat{\theta} = arg \, max_{\theta \in \Theta} \, p(\theta \mid D, M)$$

Optimal parameter

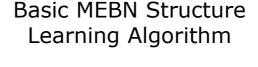
MTheory

Relational Dataset

A set of parameters in Local Probability Distribution

3. Basic MEBN Learning Basic MEBN Structure Learning

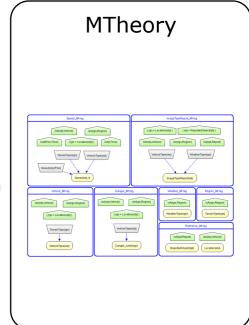
$$\widehat{M} = arg \; max_{M \in \mathcal{M}} \; p(\; M \mid D\;)$$
 Optimal MTheory Relational Dataset



A set of possible MTheories

3. Basic MEBN Learning Basic MEBN Structure Learning Algorithm

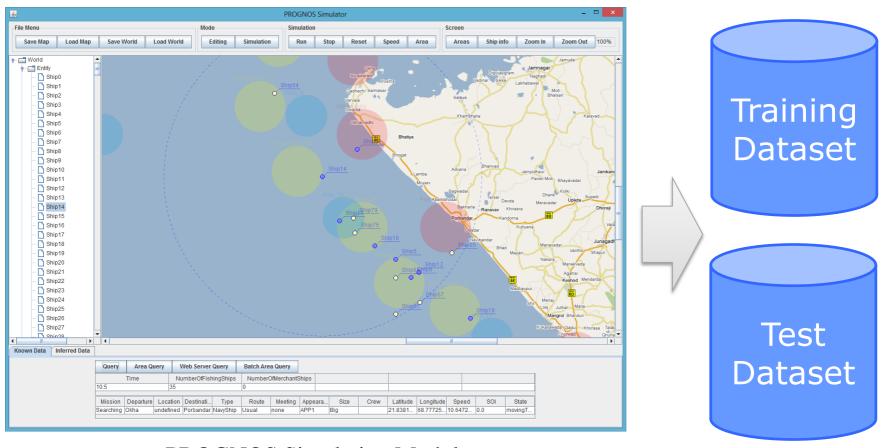
Any Bayesian Networks Structure Algorithm




```
Algorithm 1: Basic Structure Learning For MEBN
Procedure BSL MEBN ( DB,
                                                // Relational database
                                BNSL_alg // BN Structure Search algorithm
                                               // Maximum size of chain
            on ← create a default MTheory
       M_{down} \leftarrow add entities from the all keys in the tables of DB
       MF_{ref} \leftarrow create a default reference MFrag
      for i = 1, ... until size of all tables in DB
         T_i \leftarrow \text{get table from } DB
         G_i \leftarrow search the graphs in T_i using BNSL_alg
         G_t \leftarrow revise the graph to ensure no cycle and undirected edge
        if G_i \neq \emptyset then
          MF_i = \text{createMFrag}(G_i, T_i, M_{theory})
      for c = 1, ... until sc

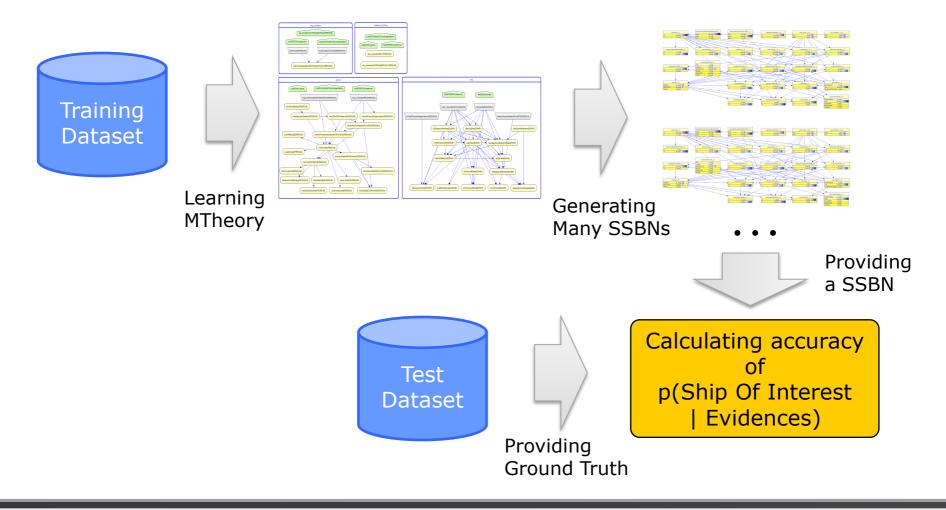
JT \leftarrow joinTables(DB, c)
        for i = 1, ... until size of JT
          G_i \leftarrow search the aggregating graphs using FFS-LPD

G_i \leftarrow search the graphs in JT_i using BNSL\_alg
          G<sub>i</sub> ← revise the graph to ensure no cycle and undirected edge
          if G_i \neq \emptyset then
           for j = 1, ... until size of G_i
               if any nodes in G_{ij} is not used for any MFrag then
                 MF_{ref} \leftarrow create the resident node with the name of JT_i on MF_{ref}
createMFrag(G_i, JT_i, M_{theory})
                  addEdges(G<sub>i</sub>, JT<sub>i</sub>, Ø)
     for i = 1, ... until size of all resident nodes in the MTheory
       T_b \leftarrow \text{get dataset related the resident node i}
       calculateLPD(R_i, T_i)
      return M_{theory}
```

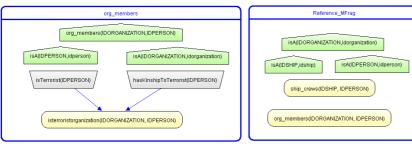


4. Case Study

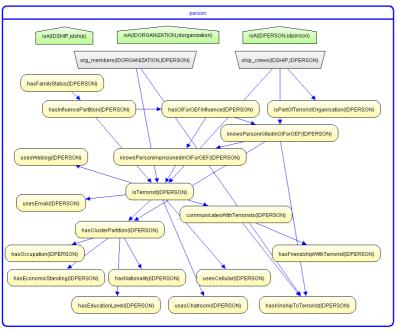
- Generating Training and Test data
- Evaluating MTheory
- Learned MTheory
- Accuracy of P(SOI(Ship Of Interest) | Evidences)

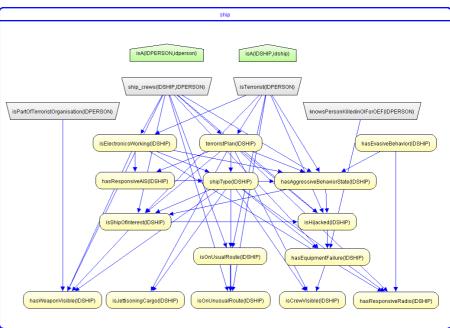
4. Case Study


Generating Training and Test data

PROGNOS Simulation Module

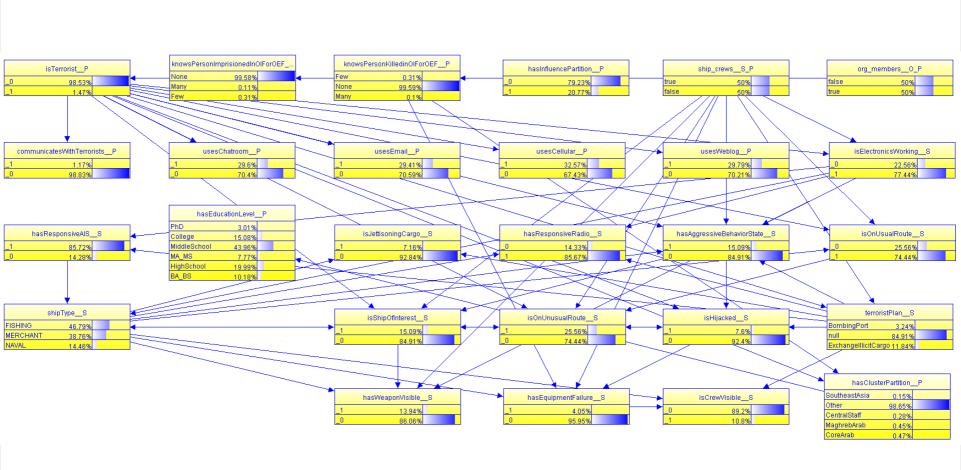

4. Case Study **Evaluating MTheory**





4. Case Study

Learned PROGNOS MTheory



4. Case Study Generated SSBN from Learned PROGNOS MTheory

4. Case Study

Accuracy of P(SOI | Evidences)

Model	AUC
Learned MTheory	0.897206546

Table 3. AUC of Learned MTheory

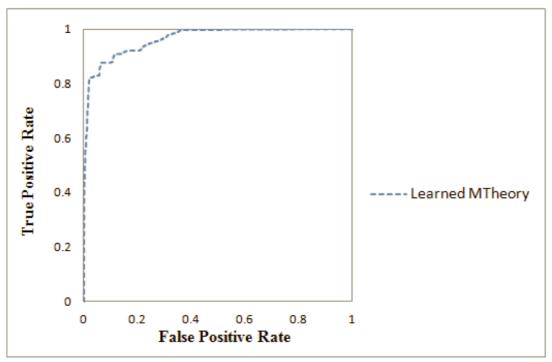


Figure 10. ROC of Learned MTheory

5. Conclusion

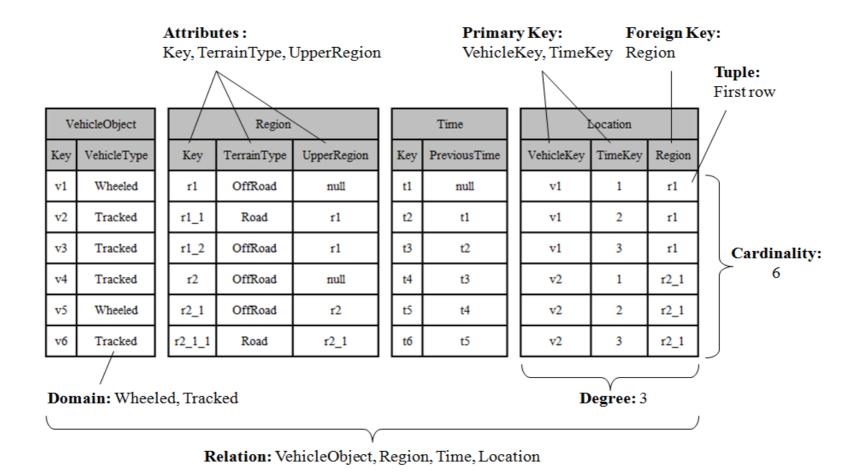
- Basic MEBN Learning
 - MEBN-RM Model
 - MEBN Parameter Learning
 - MEBN Structure Learning
- Current Work
 - Hybrid random variable learning in PSAW

Thank you for viewing our presentation!

Back up 1

There remain many open research issues in this domain

- 1) Aggregating influence problem; how to learn an aggregating function in an aggregating situation where an instance child random variable depends on multiple instance parents which is generated from an identical class random variable?
- 2) Optimization of learned MTheory; how to learn an optimized structure of an MTheory without losing accuracy of query?
- 3) Unstructured data learning; how to learn unstructured data which isn't derived from a data model?
- 4) Continuous random variable learning; how to learn an MTheory which includes continuous random variables?
- 5) Multiple distributed data learning; how to learn an MTheory from data in multiple distributed databases?
- 6) Incomplete data learning; how to approximate parameters of an MTheory from missing data?
- 7) Learning in insufficient evidence; how to learn an MTheory from not enough observations?
- 8) Incremental MEBN learning; how to learn parameters of an MTheory from updated observations?


Back up 2

- The data for learning are stored in a relational database
 - There is a single centralized database rather than multiple distributed databases
 - We do not consider learning from unstructured data
- The database contains enough observations for accurate learning
- There is no missing data
- All RVs are discrete
 - Continuous RVs are not considered
- Learning is in batch mode
 - We do not consider online incremental learning
- We do not consider the problem of aggregating influences from multiple instances of the parents of an RV

4. Background

Relational Model Example

Example of MEBN Structure Learning

Vehicle		
obj VehicleType		
v1	Wheeled	
v2	Tracked	
v3	Tracked	
v4	Tracked	
v5	Wheeled	
v6	Tracked	

Region			
rgn	TerrainType	UpperRegion	
r1	OffRoad	null	
r1_1	Road	r1	
r1_2	OffRoad	r1	
r2	OffRoad	null	
r2_1	OffRoad	r2	
r2_1_1	Road	r2_1	

Report		
rpt	ImageTypeReort	ReportedObject
rpt1	Wheeled	v1
rpt2	Wheeled	v1
rpt3	Tracked	v1
rpt4	Tracked	v2
rpt5	Wheeled	v2
rpt6	Tracked	v2

Location			
obj	t	rgn	
v1	t1	r1	
v1	t2	r1	
v1	t3	r1	
v2	t1	r2_1	
v2	t2	r2_1	
v2	t3	r2_1	

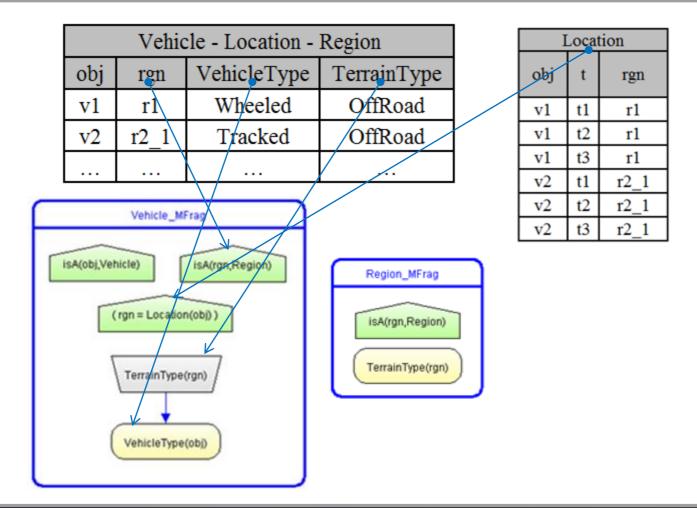
Entity Table

Relationship Table

Vehicle Region			Report			Location		
obj VehicleType	rgn TerrainType UpperRegion	rpt	ImageTypeReort	ReportedObject	obj	t	rgn	
v1 Wheeled	rl OffRoad null	rpt1	Wheeled	v1	v1	t1	r1	
v2 Tracked	rl_l Road rl	rpt2	Wheeled	v1	v1	t2	r1	
v3 Tracked	r1_2 OffRoad r1	rpt3	Tracked	v1	v1	t3	r1	
v4 Tracked	r2 OffRoad null	rpt4	Tracked	v2	v2	t1	r2_1	
v5 Wheeled	r2_1 OffRoad \r2	rpt5	Wheeled	v2	v2	t2	r2_1	
v6 Tracked	r2_1_1 Road r2_1	rpt6	Tracked	v2	v2	t3	r2_1	
	isA(obj,Vehicle) VehicleType(ob))		Region_MFrag isA(rgn,Region) TerrainType(rgn)					

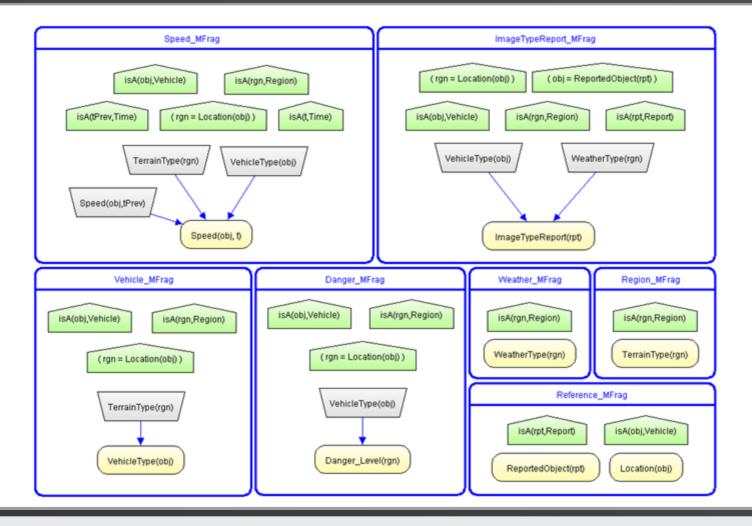
- 1. For every entity Table, generate MFrags
- 2. Graph is derived by the BN structure learning Algorithm

Vehicle			
obj	VehicleType		
v1	Wheeled		
v2	Tracked		
v3	Tracked		
v4	Tracked		
v5	Wheeled		
v6	Tracked		


Region				
rgn	TerrainType UpperReg			
r1	OffRoad	null		
r1_1	Road	r1		
r1_2	OffRoad	r1		
r2	OffRoad	null		
r2_1	OffRoad	r 2		
r2_1_1	Road	r2 <u>1</u>		

Report			
rpt	ImageTypeReort	ReportedObject	
rpt1	Wheeled	v1	
rpt2	Wheeled	v1	
rpt3	Tracked	v1	
rpt4	Tracked	v2	
rpt5	Wheeled	v2	
rpt6	Tracked	v2	

Location				
obj	t	rgn		
v1	t1	r1		
v1	t2	r1		
v1	t3	r1		
v2	t1	r2_1		
v2	t2	r2_1		
v2	t3	r2_1		


	Vehicle - Location - Region			
ob	j	rgn	VehicleType	TerrainType
v1		r1	Wheeled	OffRoad
v2	2	r2_1	Tracked	OffRoad

- 4. Link between Joined entities
- 5. Add context nodes

Basic MEBN Structure Learning

```
Algorithm 1: Basic Structure Learning For MEBN
Procedure BSL MEBN ( DB.
                                              // Relational database
                               BNSL alg // BN Structure Search algorithm
                                             // Maximum size of chain
      M_{theory} \leftarrow create a default MTheory
      M_{theory} \leftarrow add entities from the all keys in the tables of DB
      MF_{ref} \leftarrow create a default reference MFrag
      for i = 1, ... until size of all tables in DB
        T_i \leftarrow \text{get table from } DB
        G_i \leftarrow search the graphs in T_i using BNSL alg
        G_i \leftarrow revise the graph to ensure no cycle and undirected edge
        if G_i \neq \emptyset then
          MF_i = \text{createMFrag}(G_i, T_i, M_{theory})
      for c = 1, \dots until sc
        JT \leftarrow \text{joinTables}(DB, c)
        for i = 1, ... until size of JT
          G_i \leftarrow search the aggregating graphs using FFS-LPD
          G_i \leftarrow search the graphs in JT, using BNSL alg
          G_i \leftarrow revise the graph to ensure no cycle and undirected edge
          if G_i \neq \emptyset then
            for j = 1, ... until size of G_i
               if any nodes in Gi is not used for any MFrag then
                 MF_{ref} \leftarrow create the resident node with the name of JT_i on MF_{ref}
20
                 createMFrag(G_i, JT_i, M_{theory})
21
               else
                 addEdges(G_i, JT_i, \emptyset)
      for i = 1, ... until size of all resident nodes in the MTheory
        T_b \leftarrow \text{get dataset related the resident node i}
        calculateLPD(R_i, T_i)
26 return M<sub>theory</sub>
```

