June 19-21, 2013 ICCRTS 2013



U.S. Army Research, Development and Engineering Command

Multi-Objective Optimization for Trustworthy Tactical Networks: A Survey and Insights

### TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

### ICCRTS 2013, Paper ID: 082

Jin-Hee Cho \*, Ing-Ray Chen+, Yating Wang+, Kevin Chan \*, Ananthram Swami \* \*US Army Research Laboratory

+Virginia Tech





Motivation

2

- Contributions
- Multi-Objective Optimization (MOO) in Coalition Formation
  - Coalition Formation
  - Multi-Objective Optimization (MOO)
- MOO Techniques for Coalition Formation
  - Conventional Approaches
  - Evolutionary Algorithms
  - Game Theoretic Approaches
- MOO Classification based on Nature of Individual Objectives
- Current ARL Efforts
- Future Research Directions and Insights



3



- Multiple objectives may exist in tactical networks:
  - Coalition partners with different objectives
  - Multiple system goals with restricted resources
- Examples of system goals are:
  - Sustainability / survivability
  - Resilience
  - Scalability
  - Reconfigurability for agility
  - Resource efficiency
- Multiple goals may conflict:
  - Performance vs. security
  - Accuracy vs. efficiency
  - Effectiveness vs. survivability





 Used a novel classification developed to categorize existing work on coalition formation for MOO

- Delivered the overview of research trends in solving coalition formation MOO problems in terms of used techniques
- Showed the recent trends that use trust concept to solve MOO problems in tactical networks



According to Kahan and Rapoport (1984): A coalition can be formed when three or more parties get together with a common interest that gives mutual benefits.



- The common aspect of coalition is mutual benefits based on trust relationships between two parties
- Examples:

RDECOM

5

- Asset-task assignment for successful mission completion with multiple coalition partners
- Service composition to maximize service (mission) satisfaction in battlefield situations
- Achieving sustainability for future performance while satisfying the current performance based on effective/efficient resource allocation

Multi-Objective Optimization ARL



RDECOM

6

- Maximize mission performance;
- Maximize load balance over all nodes;
- Minimize overall resource consumption
- MOO often yields a set of optimal solutions, called optimal Pareto frontiers



#### Source: http://www.enginsoft.com/



**SOO vs. MOO** 



# Single-Objective Optimization (SOO)

# Multi-Objective Optimization (MOO)

Optimize f(X)subject to  $H(X) = 0, G(X) \ge 0$  Optimize  $F(X) = \{f_1(X), f_2(X), \dots, f_n(X)\}$ subject to  $H(X) = 0, G(X) \ge 0$ 

- Function f(X) is to be optimized;
- Vector X indicates the set of independent input variables
- Functions H(X) and G(X) describe the problem constraints





# Convert a MOO problem to a SOO problem

 Weighted Sum: creates a single objective function (OF) as a linear combination of the multiple OFs

$$\begin{split} \text{Optimize } F_S(X) &= \sum_{i=1}^n r_i f_i(X),\\ \text{subject to } H(X) &= 0, G(X) \geq 0\\ 0 &\leq r_i \leq 1, i = \{1, \dots, n\}\\ &\sum_{i=1}^n r_i = 1 \end{split}$$

- Used in multiple criteria decision makings
- Each weight: the degree or priority level of the respective OF
- Individual OFs are typically non-linear functions of the variables of interest





# Convert a MOO problem to a SOO problem

 ε-Constraints: constructs a single OF where only one of the functions is optimized while the remaining functions are constraints



f<sub>i</sub>(X) is the function selected for optimization and the other (n-1) functions are modeled as constraints



### MOO Techniques for Coalition Formation Evolutionary Algorithms



The Structure of General EAs.

- Categorized as metaheuristics, high-level algorithmic strategies that direct other heuristics or algorithms
- Search through the feasible solution space to find an optimal solution
- Mainly used for NP-Complete problems (e.g., combinatorial optimization prob.)
- Often finds close-to-optimal solutions in a polynomial time



# MOO Techniques for Coalition Formation Game Theoretic Approaches ARL

### Two layers of auction process in a hierarchical C2 structure



**Example of Auction Process in Hierarchical C2 Structure.** 

### **Auction Theory**

- In a coalition formation problem:
  - A coalition leader wants to recruit its members to maximize its payoff;
  - A potential bidder wants to join the coalition if the coalition provides the best gain by doing so

### **Cooperative Game Theory (aka. Coalitional game)**

- A cooperative game is a game in which groups of players, called coalitions
- Player: joins a coalition that maximizes its own individual payoff (selfish)
- Coalition leader: chooses players to maximize its own coalition
- The goal of the cooperative game is to maximize a grand coalition's payoff



**MOO Techniques for Coalition Formation** 

Game Theoretic Approaches

Example of cooperative game process in hierarchical C2 structure





12





• Literature review for 2002-2012; 22 works

13

- Dominant approaches are Evolutionary algorithms and game theoretic approaches
- Main objectives are closely related to resource constraints and system payoffs





- Class 1 (C1): No individual objectives
- Class 2 (C2): Individuals have identical objectives
- Class 3 (C3): Individuals have different objectives

In all three classes, system objectives must also be optimized



### C1: System Objectives Only (no trust is considered)

15

US ARMY

RDECOM

| Author(s)                        | System/coalition objectives                                                                                   | Techniques/Solutions                         | Problem            |
|----------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------|
| Balicki (2009)                   | Minimize workload and cost; maximize system reliability                                                       | Quantum-based evolutionary<br>algorithm      | Task<br>assignment |
| Dieber et al.<br>(2011)          | Minimize energy consumption and data volume;<br>maximize quality-of-service                                   | Evolutionary algorithm                       | Task allocation    |
| Jin et al. (2012)                | Maximize network lifetime; minimize latency for task execution                                                | Fitness function based on genetic algorithms | Task allocation    |
| Matsatsinis and<br>Delias (2003) | Maximize speediness of task execution and assignments functionality; minimize risk due to allocation decision | ε-constraints                                | Task allocation    |
| Notario et al.<br>(2012)         | otario et al. Maximize task execution quality; minimize energy Genetic (2012) and bandwidth consumption       |                                              | Task<br>assignment |
| Yin et al. (2007)                | Maximize reliability; Minimize resource (memory / computational power) consumption                            | Hybrid particle swam optimization            | Task allocation    |

#### TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.



# C2: System Objectives and Identical Individual Objectives (no trust is considered)

| Author(s)                          | Individual objectives                                                            | System/coalition objectives                                                                                           | <b>Techniques/Solutions</b>                               | Problem                               |
|------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|
| Cho et al.<br>(2011)               | Maximize node utilization                                                        | Minimize communication overhead<br>caused by mission assignment;<br>Maximize mission completion                       | Combinatorial auction                                     | Mission<br>assignment                 |
| Edalat et al.<br>(2012)            | Minimize bid waiting time                                                        | Minimize energy consumption and delay in task assignment                                                              | Reverse auction in cooperative game                       | Task<br>allocation                    |
| Genin and<br>Aknine<br>(2010)      | Maximize node utilization,<br>given resource constraints<br>and task requirement | Maximize coalition payoff                                                                                             | Similarity and frequency<br>based selection<br>algorithms | Coalition<br>formation                |
| Koloniari<br>and Pitoura<br>(2012) | Minimize cost for queries<br>recall and membership<br>maintenance                | Minimize the convergence time to<br>optimality, load balance,<br>membership and recall cost, and<br>required overhead | Cluster formation game                                    | Formation of<br>clustered<br>overlays |
| Nardin and<br>Sichman<br>(2010)    | Maximize a payoff as a share of the coalition payoff                             | Maximize throughput and valuation; minimize delay                                                                     | Hedonic coalition game                                    | Task allocation                       |
| Saad et al.<br>(2011)              | Customer: Maximize service<br>satisfaction as a share of<br>coalition payoff     | Provider: Maximize revenue in<br>wireless network service as<br>coalition payoff                                      | Nontransferable payoff coalitional game                   | Resource<br>allocation                |
| Singh et al.<br>(2011)             | An agent: maximize its<br>utilization by being assigned<br>to tasks              | Task planner: maximize task<br>assignment                                                                             | Consensus-based bundle<br>algorithm                       | Task assignment                       |

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

US ARMY

RDECOM )



17



# C3: System Objectives and Different Individual Objectives (no trust is considered)

| Author(s)             | Individual objectives                                                                           | System/coalition objectives                                     | Techniques/Solutions                                       | Problem                 |
|-----------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|-------------------------|
| Meng et al.<br>(2010) | Maximize an individual player's<br>objective where each individual<br>has a different objective | Minimize computational<br>cost; Maximize optimality<br>accuracy | Nash equilibrium,<br>cooperative, and<br>evolutionary game | Generic MOO<br>solution |



# Trust has been used to solve coalition formation (task assignment) with multiple objectives

|    | Author (s)                        | Individual Objectives                                  | System Objectives                                                 | Techniques                                           | Problem                |
|----|-----------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|------------------------|
| C1 | Dorn et al.<br>(2011)             |                                                        | Maximize skill coverage and team connectivity                     | Genetic algorithms / simulated annealing             | Team<br>formulation    |
| C2 | Chang et al.<br>(2012)            | Maximize node utilization                              | Maximize mission completion ratio under a given a risk constraint | Auction-based                                        | Task<br>assignment     |
|    | Guo et al.<br>(2009)              | Maximize membership<br>period                          | Maximize efficiency and security in business process              | Trust and self-<br>confidence based                  | Coalition<br>formation |
|    | Huo et al.<br>(2011)              | Maximize an individual payoff                          | Maximize the profit of the supply chain alliance                  | Cooperative game                                     | Alliance<br>formation  |
|    | Mikulski et<br>al.<br>(2011)      | Maximize an individual payoff                          | Maximize trust synergy;<br>minimize trust liability               | Cooperative game                                     | Coalition<br>formation |
|    | Griffiths and<br>Luck (2003)      | Maximize an individual payoff                          | Maximize coalition payoff;<br>Minimize resource<br>consumption    | Congregating;<br>cooperation-based<br>clan formation | Clan<br>formation      |
| C3 | Breban and<br>Vassileva<br>(2002) | Vendor:<br>Maximize sales<br>Customer: Minimize prices | Maximize stability of an optimal formation of coalitions          | Trust-based coalition formation                      | Coalition<br>formation |

#### TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

US ARMY

ARL Current Effort: Trust-based Coalition Formation for MOO



# Goal: The proposed task assignment technique is to:

- Meet multiple system objectives using composite trust-based member selection process
- Reduce complexity significantly for finding close-to-optimal solutions
- Conduct comparative performance study of the proposed technique





## **RDECOM** ARL Current Effort: Trust-based Coalition Formation for MOO

# ARL

### Composite trust based member selection improves performance with less complexity

Non-trust: no trust used; ranking: trust-based; optimal: optimal solution using ILP



- Higher mission completion ratio (P<sub>MC</sub>) and node utilization (U; not shown) and lower delay (D) with more trustworthy nodes
- Higher multi-objective value (P<sub>MOO</sub>) with more trustworthy nodes

Result: Trust ranking-based selection outperforms non-trust-based scheme while performing close to the optimal solution

#### Cho, Chan with Chen and Wang (Virginia Tech), IEEE GLOBECOM13 submitted, March 2013

ARL Current Effort: Trust-based Service Composition/Binding for MOO

# **Goal:** The proposed service composition and binding technique is to:

RDECOM

21

- Meet multiple system objectives by maximizing MOO function
- Improve performance objectives by making trust-based decisions
- Conduct comparative performance study of the proposed technique and non-trust baseline scheme

### **Multiple Objectives**

$$MOO = \sum_{\mathbf{m}\in\mathcal{T}} (\mathbf{Q}_{\mathbf{m}} - \mathbf{D}_{\mathbf{m}} - \mathbf{C}_{\mathbf{m}}) = \mathbf{Q} - \mathbf{D} - \mathbf{C}$$

Maximize Quality-of-Information (Q)

Minimize Delay (D)

Minimize Cost (C)



 $USR_{m} = Min \left(\frac{Q_{m}^{true}}{Q_{m}^{advertised}}, \frac{D_{m}^{advertised}}{D_{m}^{true}}, \frac{C_{m}^{advertised}}{C_{m}^{true}}\right)$  **TECHNOLOGY DRIVEN, WARFIGHTER FOCUSED.** 

# ARL Current Effort: Trust-based Service Composition/Binding for MOO ARL

#### **Trust weighted qualification assessment improves performance objectives**

22



 $UST_m$ : User satisfaction threshold for operation m  $USR_m$ : User satisfaction received based on advertised quality of service provision

**Result: Trust-based scheme shows higher resilience against % of malicious entities (and various intensity of malicious activities) with higher MO values / USR**<sub>m</sub>

Cho, Chan, Swami with Chen and Wang (Virginia Tech), IEEE MILCOM13 submitted, May 2013



- Provide a systematic yet repeatable method to define critical multiple objectives;
- Develop node behavior (attack) models;

23

- Define payoffs (or utilities) of all involved parties and/or reward/penalty mechanisms
- Devise effective and efficient MOO techniques



**Questions?** 



# Thank You!

# U.S. Army Research Laboratory Jin-Hee Cho

jinhee.cho@us.army.mil

301.394.0492 2800 Powder Mill Rd. Adelphi, MD 20783

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.