
C2 Synchronization in Disconnected, Intermittent,

and Limited (DIL) Environments
Primary: Topic 3: Data, Information, and Knowledge

20 June 2013

Distribution F: Further dissemination only as directed by SSC Pacific CO/TD; (18 May 2011); or higher DoD authority

John McDonnell
John.mcdonnell@navy.mil

619-553-6098
5.3

Ryan Gabrys
Ryan.gabrys@navy.mil

619-553-6532
5.3

mailto:John.mcdonnell@navy.mil

Project Objectives

▼ Summary of overall final goal of this work

 Develop, integrate, and assess data synchronization techniques to
support maritime tactical C2.

 Provide a C2 Synchronization Service (C2SS) to support maritime C2

▼ Rationale for doing this work

 Capability Gap:
− Tactical C2 requires the capability to support collaborative planning, distributed

execution and mission-focused data delivery in a DIL Environment

− Data synchronization capabilities typically exist in Master-Slave and terrestrial
environments.

8/16/2010 2 Distribution F: Further dissemination only as directed by SSC Pacific CO/TD; (18 May 2011); or higher DoD authority

Related Efforts

▼ FNT-09-04: Dynamic C2 for Tactical Forces and MOCs
 DMS components provide prioritized synchronization of C2 data sources: (i)

Rep/Sync Framework to support C2 data sources; (ii) Mission-based Prioritization
and dynamic queuing; (iii) Responsive to observed network performance between
relevant nodes

▼ Federation and Force Discovery Services (FFDS)
 Set of services designed to facilitate discovery and sharing of information sources

within a rapidly composable environment, while levying minimal development
requirements on client applications and their developers.

▼ PMW150 SBIRs
 Navy Wave: Collaboration based on Google Wave/Operational Xforms

 True Numbers: Data Pedigree and Provenance

06/11/2013 3

C2 Synchronization Service

06/11/2013 4

C2 Extended Services

C2 Business Processes

C2SS

APPROACH

Develop, integrate, and assess data synchronization techniques to support maritime
tactical C2-data consistency in a DIL environment

▼ Develop target architecture

 Initial technology survey resulted in a taxonomy of 14 generic C2SS functions

 Working taxonomy provides a basis for developing a C2SS functional architecture

▼ Develop/Implement technologies

 Vector Clock

 Hash Representations: SHA-1/Merkle Trees

▼ Focus On

 Concurrent Distributed Ops

 Conflict ID

 Data Integrity

 Eventual Consistency

▼ Support track management and planning/tasking applications

▼ Test and assess in lab tests and/or exercises (eg. Trident Warrior)

5 6/11/2013

Merkle Trees w/ SHA-1 Encodings

SHA-1 is used to determine data consistency w/in a Hash Tree:

12/1/2009 6

Vector Clocks

Vector clocks support the causal ordering of events and are
described by the partial ordering property:

12/1/2009 7

Plan

(0,0)

Plan

(0,0)

Plan

(1,0)

P
e
e
r

Plan

(1,0)
Plan(1,0) vs. Plan (0,0)

Modify Modify

Plan

(2,0)

P
e
e
r

Plan

(2,0)
Plan(2,0) vs. Plan (1,0)

Reconcile

Plan(3,0) vs. Plan (2,1)

Plan

(3,1)

Plan

(2,1)

Modify Synch

Modify

Plan

(3,0)
A

c
k

Platform

A

Platform

B

VC(x) < VC(y) ↔z[VC(x)z ≤ VC(y)z] z’[VC(x)z’ < VC(y)z’]

P
e
e
r

Synch

A
c
k

Implementation of VC as

Key/Version Pairs

▼ A vector of versions
 Element at index i in the vector represents the version at node i.

 Updating element on node i increments the version at vector position i.

 Make sparse

− Use map of node name to version. If nodes are named DDG and CVN,
then {DDG=117, CVN=4}.

− This means DDG has made 117 changes and CVN has only made 4
changes. All other nodes are implied at version 0.

 Examples

− {DDG=117,CVN=4} = {DDG=117,CVN=4}

− {DDG=117,CVN=4} < {DDG=117,CVN=5}

− {DDG=118,CVN=4} conflicts with {DDG=117,CVN=5}

12/1/2009 8

Multi-Master Updates

▼ Prior research regarding synchronization of track
data used the notion of master-mirror to manage
the direction changes flowed.

 Differences are always an add, update, or
delete at the mirror.

 Changes are pushed to “Top COP”, then back

▼ DIL networks require that edits are applied at any
node to support availability, then reconciled.

 Any node can “master” a change (multi-master).

▼ Technical issues:

 It is hard to determine last edit

 No common time source, computer clocks drift.

▼ Vector Clocks indicate when there is a “causal
ordering” of changes or if the changes are in
“conflict”.

12/1/2009 9

Track Updates

10

1) DDG creates TRK1 so Vector

Clock (VC) becomes

TRK1{DDG=1}

2) Synchronizing DDG/CVN sees

TRK1 with empty VC at CVN,

sends update

3) Synchronizing CVN/MOC sees

TRK1 with empty VC at MOC,

sends update

4) MOC updates TRK1 so VC

becomes

TRK1{DDG=1,MOC=1}

5) Synchronizing CVN/MOC sees

TRK1{DDG=1} at CVN and

TRK1{DDG=1,MOC=1} at

MOC which dominates, so

update CVN

6) Synchronizing DDG/CVN sees

TRK1{DDG=1} at DDG and

TRK1{DDG=1,MOC=1} at

CVN which dominates, so

update DDG

6/11/2013

Track Updates w/ Conflicts

6/11/2013 11

• Given DDG, CVN, and MOC all

have TRK1{DDG=1}

1) DDG updates TRK1 so Vector

Clock (VC) becomes

TRK1{DDG=2} at DDG

2) At roughly the same time, the MOC

updates TRK1 so VC becomes

TRK{DDG=1,MOC=1} at MOC

3) Synchronizing DDG/CVN sees

TRK1{DDG=2} dominates

TRK1{DDG=1} so DDG sends

TRK1{DDG=2} to CVN

4) Synchronizing CVN/MOC sees

conflict TRK1{DDG=2} versus

TRK1{DDG=1,MOC=1}, potentially

resolve using higher echelon

5) Conflict recorded to present to User

Interface

6) Synchronizing DDG/CVN sees

conflict TRK1{DDG=2} versus

TRK1{DDG=1,MOC=1}, resolve

using higher echelon

7) Conflict recorded to present to User

Interface

Tombstones and Vector Clocks

▼ OTM keeps Vector Clocks for deleted tracks

 Used to determine delete or add action

 Prunes Tombstones after one month

− TRK9{DDG=12}, TRK2{DDG=3}, TRK1{DDG=17,CVN=4}, TRK7{CVN=3}

▼ PTDS uses a modified scheme for Vector Clocks based on

 Bieniusa, etc…, An Optimized Conflict-free Replicated Set, Octobre 2012

− Single version number per node

− Version vector, v, with latest version seen from every node.

− Not a tombstone for every element

− Same example from above would look like

− TRK9{DDG=12}, TRK2{DDG=13}, v{DDG=17, CVN=4}

− When many deletes much less storage

12 6/11/2013

PTDS Add/Update/Delete using

ORSET

06/11/2013 13

1) DDG creates PLN1 so ORSET

becomes PLN1{DDG=1} v{DDG=1}

2) Synchronizing DDG/CVN sees

empty ORSET at CVN, sends

update

3) Synchronizing CVN/MOC sees

empty ORSET at MOC, sends

update

4) MOC updates PLN1 so ORSET

becomes PLN1{DDG=1,MOC=1}

v{DDG=1, MOC=1}

5) Synchronizing CVN/MOC sees

TRK1{DDG=1} at CVN and

TRK1{DDG=1,MOC=1} at MOC

which dominates, so update CVN

6) Synchronizing DDG/CVN sees

TRK1{DDG=1} at DDG and

TRK1{DDG=1,MOC=1} at CVN

which dominates, so update DDG

7) DDG deletes PLN1 => ORSET

empty values, vector v holds

{DDG=2,MOC=1}

8) Synchronizing DDG/CVN sees

empty values and v dominates, so

delete

9) Synchronizing CVN/MOC sees

empty values and v dominates, so

delete

FY13 Work Remaining

▼ PTDS

 Testing using OpSync Tool UI

 Web configuration

 DMS side by side

▼ OTM

 TW13 Participation

 Conflict Resolution: Heuristics (Multi-Echelon rules)

▼ Analyze Performance

 Topology trade-offs (Hierarchical Master/Mirror, P2P, Hybrid)

 Granularity trade-offs to reduce conflicts/bandwidth requirements

▼ Develop MOEs/MOPs

▼ Testing

 A DMS/C2SS shared Test Bed is being developed at SSCPAC to support

UNCLASS C2RPC including OTM and PTDS applications.

14 6/11/2013

Questions?

12/1/2009 15

Rep/Synch Models

▼ Replication is the process of keeping a set of replicas
consistent as they evolve over time.

▼ Reconciliation is the process of computing the symmetric
difference between two sets.

▼ Synchronization

 Master-Slave

 Peer-to-Peer

 Multi-Master

8/16/2010 16 Distribution F: Further dissemination only as directed by SSC Pacific CO/TD; (18 May 2011); or higher DoD authority

CAP Theorem

▼ When designing distributed web services, there are three
properties that are commonly desired:

 Consistency

 Availability

 Partition Tolerance

▼ It is thought that it is impossible to achieve all three, but is
has been proven that eventual consistency can be
achieved. 1

▼ The COP has adopted a model of satisfying availability and
partition tolerance while sacrificing consistency. The COP
sacrifices consistency during network partitioning so that
the local command can operate from its local sensors.

12/1/2009 17

