SPAWAR

v

Systems Center
PACIFIC

C2 Synchronization in Disconnected, Intermittent,

and Limited (DIL) Environments
Primary: Topic 3: Data, Information, and Knowledge

20 June 2013
John McDonnell Ryan Gabrys
John.mcdonnell@navy.mil Ryan.gabrys@navy.mil
619-5563-6098 619-563-6532

5.3 5.3

Distribution F: Further dissemination only as directed by SSC Pacific CO/TD; (18 May 2011); or higher DoD authority

mailto:John.mcdonnell@navy.mil

SPAWAR
\ 4 . L
e Project Objectives

PACIFIC

Vv Summary of overall final goal of this work

= Develop, integrate, and assess data synchronization techniques to
support maritime tactical C2.

= Provide a C2 Synchronization Service (C2SS) to support maritime C2
V¥ Rationale for doing this work

= Capability Gap:
— Tactical C2 requires the capability to support collaborative planning, distributed
execution and mission-focused data delivery in a DIL Environment

— Data synchronization capabilities typically exist in Master-Slave and terrestrial
environments.

8/16/2010 Distribution F: Further dissemination only as directed by SSC Pacific CO/TD; (18 May 2011); or higher DoD authority

SPAVAR

¥ Related Eff
e RElAtEM EffOrts

V¥ FNT-09-04: Dynamic C2 for Tactical Forces and MOCs

= DMS components provide prioritized synchronization of C2 data sources: (i)
Rep/Sync Framework to support C2 data sources; (ii) Mission-based Prioritization
and dynamic queuing; (iii) Responsive to observed network performance between
relevant nodes

V¥ Federation and Force Discovery Services (FFDS)

= Set of services designed to facilitate discovery and sharing of information sources
within a rapidly composable environment, while levying minimal development
requirements on client applications and their developers.

v PMW150 SBIRs

= Navy Wave: Collaboration based on Google Wave/Operational Xforms
= True Numbers: Data Pedigree and Provenance

SPAWAR
v,

(4 . .
-mee- G2 Synchronization Service

(USERS > External Systems

Service Consumers

\

PRESENTATION
LAYER

Preferences n
Widget etai
Display Rules 3D Ma p eadine: Decision Paint R:Ia;nio':ships OPCON Ed tol
Editor Widget Widge Tool Widget Tool Widget Wid,

C2 Extended Services

L 4
(2)
=)

z
58
&3
~8.
5§
o 2
U

D A
&

SERVICES
LAYER

Cross Cutting (ACS 2.0)
OpenAM
PAAS (OpenShift)
Operational Management

C2 Business Processes

DATA BUSINESS @
LAYER
_

- 4
[+ \ /
§ [Adaptors) C Local Cache) | C2SS |) \Data Cloud]

SPAMAR

8. APPROACH

Develop, integrate, and assess data synchronization techniques to support maritime
tactical C2-data consistency in a DIL environment

V¥ Develop target architecture
= [nitial technology survey resulted in a taxonomy of 14 generic C2SS functions
= Working taxonomy provides a basis for developing a C2SS functional architecture
Vv Develop/Implement technologies
= Vector Clock
= Hash Representations: SHA-1/Merkle Trees
Vv Focus On
= Concurrent Distributed Ops
= Conflict ID
= Data Integrity
= Eventual Consistency
Support track management and planning/tasking applications
Test and assess in lab tests and/or exercises (eg. Trident Warrior)

4 <

SPAWAR
v,

»ssiz Merkle Trees w/ SHA-1 Encodings

SHA-1 is used to determine data consistency w/in a Hash Tree:

SHA-1 Set Reconciliation Merkle Tree Sample Instance

The prefix field at level n includes n bytes from the key shatl.

The shal field is the computed shal for all elements coverzd by the node.

level 0

prefic =
Elements are covered by a node when the key shal has a prefix match. sha1 = "0001020304050607080910111213141516171919"

The empty prefix " matches all elements.

level 1 bucket 0

prefix ="00"
shal="1011121214151617 1210000 10202040506070=209"

4

AN

level 1 bucket 1

level bucket ...

level 1 bucket ff

prefix= "'

shal="aabbceddeeff1617121000010203040508070200"

level 2

shal="."

prefix="0101"

After a single change, red nodes change SHA-1. Motice that root SHA-1 is changed.

12/1/2009

——

SHA-1 Set Reconciliation Merkle Tree Sample Instance

level 1 bucket 1

level hucket ...

level 1 bucket ff

prefix = "ff"
shal="aabbccddeeff1617121900010203040508070209"

A

SPAWAR
v,

sz \lector Clocks

Vector clocks support the causal ordering of events and are
described by the partial ordering property:

VC(x) < VC(y) «Vz[VC(X), = VC(y),] A3Z[VC(x), < VC(y),]

Plan(3,0) vs. Plan (2,1)

Plan Plan Plan Plan Plan
Platform ' (0,0) (1,0) (2,0) (3.0) (3.1)
A ’
Modify Modify Modify Reconcile
o X o X 5
g < & < o
Synch Synch Modify
Platform v v }
B Plan Plan Plan Plan
(0,0) (1,0) (2,0) (2,1)
Plan(1,0) vs. Plan (0,0) Plan(2,0) vs. Plan (1,0)

121112009

5'3;”3 Implementation of VC as
ez KeylVersion Pairs

Vv A vector of versions

= Element at index iin the vector represents the version at node 1.

= Updating element on node / increments the version at vector position 1.
= Make sparse

— Use map of node name to version. If nodes are named DDG and CVN,
then {DDG=117, CVN=4}.

— This means DDG has made 117 changes and CVN has only made 4
changes. All other nodes are implied at version 0.

= Examples
- {DDG=117,CVN=4} = {DDG=117,CVN=4}
— {DDG=117,CVN=4} < {DDG=117,CVN=5}
— {DDG=118,CVN=4} conflicts with {DDG=117,CVN=5}

PNy 6000009090900 e

SPAVAR

vy _
’ Multi-Master Updates

VDX Client Update

V¥ Prior research regarding synchronization of track
data used the notion of master-mirror to manage

DDG CWM CPF PACCOM STRATCOM

the direction changes flowed. T
= Differences are always an add, update, or {_{:"
delete at the mirror. PR

= Changes are pushed to “Top COP”, then back oG | [cvn | | cPr || [Paccom | [sTRATCOM
V¥ DIL networks require that edits are applied at any

node to support availability, then reconciled. Multi-Master Client Update

= Any node can “master” a change (multi-master). (oo L2 L0) L2200) (2000
v Technical issues: L

= |tis hard to determine last edit . |

= No common time source, computer clocks drift. I |
Vv Vector Clocks indicate when there is a “causal <~

ordering” of changes or if the changes are in | | | | —

“conflict”. poG || |cwn | | cPF | | Paccom | | sTRATCOM

presy 60000909

SPAMAR

’ Track Updates

1) DDG creates TRK1 so Vector DDG and MOC Normal
Clock (VC) becomes
TRK1{DDG=1}

2) Synchronizing DDG/CVN sees DG input MoG Input
TRK1 with empty VC at CVN, i1 CreatE(TRi.{'])
sends update |

3) Synchronizing CVN/MOC sees ! ! : !
TRK1 with empty VC at MOC, | | 2 Synchronize(TRI{DDE=T) >
sends update TRK1{DDG=1}

4) MOC updates TRK1 so VC 3 Synchronize(TRK1{DDG=1})
becomes ! ! ! !
TRK1{DDG=1,MOC=1} ; | | | :

5) Synchronizing CVN/MOC sees | 4 Updata(TRKY) 5 >
TRK1{DDG=1} at CVN and | TRK1{DDG=1 MOc=1}
update CVN ’ TRK1{DDG=1, MOC:1}B]

6) Synchronizing DDG/CVN sees é{ﬁ Syn-:hu-nnizerrRK1{DDG=1.M00=1}Ji
TRK1{DDG=1} at DDG and | [TRK1(DDG=1 Moc=1) 1)
TRK1{DDG=1,MOC=1} at ! ' '

DDG Input MOC Input

CVN which dominates, so % DDG CVN MOC

DDG CWN MOC

L.
v

| | TRK1{DDG=1}

. . |
r
i

TRK1{DDG=1} -

update DDG

SPAMAR

’ Track Updates w/ Conflicts

DDG and MOC Conflict

+ Given DDG, CVN, and MOC all

have TRK1{DDG=1} % % — —
1) DDG updates TRK1 so Vector PDG jnput - MIEC fnput |

Clock (VC) becomes , , , {civen =

TRK1{DDG=2} at DDG § §
2) At roughly the same time, the MOC 5 5 !

updates TRK1 so VC becomes

TRK1{DDG=1} -
1

TRK{DDG=1,MOC=1} at MOC | o | —

3) Synchronizing DDG/CVN sees 5 5 5 {Then J=
TRK1{DDG=2} dominates 1 UpdateTRKY)__) |
TRK1{DDG=1} so DDG sends | | | |
TRK1{DDG=2} to CVN i 2 UpaateRc) = .

4) Synchronizing CVN/MOC sees TRKI{DDG=1 MOC=1)
conflict TRK1{DDG=2} versus ! ! '3 Synchronize(TRK1{DDG=2) g !
TRKl{DDGzl,MOC:].}, potentially TRK1{DIIZJG=2} :
resolve using hlgher echelon ;{4 Synchronizs Overwrita(TRK1{DDG=1 MOC=1}) |

5) Conflict recorded to present to User [TRKIDDG-1M0C-1) | |
Interface ' 5 Record Conflct

6) Synchronizing DDG/CVN sees ! ! ! _ _ :
conflict TRK1{DDG=2} versus | ' <o e Sent AR,

TRK1{DDG=1,MOC=1}, resolve | _ |
using higher echelon | | %d o | |

7) Conflict recorded to present to User oos it mocipu o Vo

Interface

SPAMAR

’ Tombstones and Vector Clocks

p

Vv OTM keeps Vector Clocks for deleted tracks
= Used to determine delete or add action
= Prunes Tombstones after one month
— TRKY{DDG=12}, TRK2{DDG=3}, = = =

Vv PTDS uses a modified scheme for Vector Clocks based on
= Bieniusa, efc..., An Optimized Conflict-free Replicated Set, Octobre 2012

— Single version number per node

— Version vector, v, with latest version seen from every node.
— Not a tombstone for every element

— Same example from above would look like
— TRK9{DDG=12}, TRK2{DDG=13}, v{DDG=17, CVN=4}
— When many deletes much less storage

sz PTDS Add/Update/Delete using
vt ORSET

1) DDG creates PLN1 so ORSET PDG and MOC Normal
becomes PLN1{DDG=1} v{DDG=1} % %
2) Synchronizing DDG/CVN sees

CWN MOoC
empty ORSET at CVN, sends PDG Jnput - MEC fneut . .
update 1 Cleate(F’LN1)
3) Synchronizing CVN/MOC sees 5 IPILN1{DDG=1I}v{DDG=1}%
empty ORSET at MOC, sends 1 2 Synchronize(PLN1{DDG=1} {DDG=1}) !
update PLN1{DDG=1l}v{DDG=1}H

4) MOC updates PLN1 so ORSET
becomes PLN1{DDG=1,MOC=1}

'3 Synchronize(PLN1{DDG=1} yDDG=1}) !

VW{DDG=1, MOC=1} |PLN1{DDG=1.}V{DDG=1}%

5) Synchronizing CVN/MOC sees 4 Update(ﬁ’wﬂ ,5
TRK1{DDG=1} at CVN and [PLN1{DDG=1 MOC=1} v{DDG=1,MOC=1})
TRK1{DDG=1,MOC=1} at MOC 5 Synchronize(PLN1{DDG=1 MOC=1) ;

which dominates, so update CVN
6) Synchronizing DDG/CVN sees
TRK1{DDG=1} at DDG and ' '
TRK1{DDG=1,MOC=1} at CVN |PLN1 DDG=1 MOC=1} {DDG=1 MoC= T
which dominates, so update DDG %».
7) DDG deletes PLN1 => ORSET {pDe=2MOC=1)™
empty values, vector v holds ; ; ' 8 Synchronize({DDG=2.MOC=1) R
{DDG=2,MOC=1} ! : : = N
8) Synchronizing DDG/CVN sees V{DDGQTOM :
empty values and v dominates, so | | | 59 Synchionize(DOG=2MOC=1)
delete ! : : ! ¥DDG=1 MOC=1})
9) Synchronizing CVN/MOC sees DDG inpm MOGC :mpm ' ' '
empty values and v dominates, so
delete

PLN1{DDG=1, MOC—1} WDDG=1 ,MOC—1}H

] 1
; 6 Synchronize(PLN1{DDG=1 MOC=1} {DDG=1 MOC=1}) !

DDG CWN MOC

SPAVAR

v,® .
e Y13 WOrk Remaining

PACIFIC

Vv PTDS

= Testing using OpSync Tool Ul
= Web configuration
= DMS side by side

v OTM
= TWH13 Participation
= Conflict Resolution: Heuristics (Multi-Echelon rules)
V¥ Analyze Performance
= Topology trade-offs (Hierarchical Master/Mirror, P2P, Hybrid)
= Granularity trade-offs to reduce conflicts/bandwidth requirements

V¥ Develop MOES/MOPs

V¥ Testing

= A DMS/C2SS shared Test Bed is being developed at SSCPAC to support
UNCLASS C2RPC including OTM and PTDS applications.

SPAWAR

’ Questions?

SPAWAR
v
e REPISYNCh Models

PACIFIC

V¥ Replication is the process of keeping a set of replicas
consistent as they evolve over time.

V¥ Reconciliation is the process of computing the symmetric
difference between two sets.

V¥ Synchronization

= Master-Slave
= Peer-to-Peer
= Multi-Master

8/16/2010 Distribution F: Further dissemination only as directed by SSC Pacific CO/TD; (18 May 2011); or higher DoD authority

SPAVAR

K4 . CAP Theorem

Systems Centi
PACIFIC

V¥ When designing distributed web services, there are three
properties that are commonly desired:
= Consistency
= Availability
= Partition Tolerance
V Itis thought that it is impossible to achieve all three, but is

has been proven that eventual consistency can be
achieved.

V¥ The COP has adopted a model of satisfying availability and
partition tolerance while sacrificing consistency. The COP
sacrifices consistency during network partitioning so that
the local command can operate from its local sensors.

