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Abstract

The Intelligent Agent (IA) technology has applications in the following areas of military Command and
Control (C2): logistics, combat planning and battle plan execution monitoring.

C2 information extraction should not rely on using simple database queries, since the amount of data
available to the commander on the modern battlefield can be overwhelming. In order to make informed
decisions; the commander must have immediate access to specific information in real time.  The
available data therefore, must be parsed in such a way as to extract only the specific information
required by the commander.  The ever-increasing volume of data in the C2 environment thus requires
the use of IAs to extract relevant information for the commander in real time.

The paper describes an application of IA in assisting a decision-maker, i.e. the military commander, by
extracting needed information from a large amount of data and triggering an alarm when certain critical
conditions are reached.  The open architecture proposed here not only allows effective IA
implementation but also expansion of future IA applications, as needs demand. This paper is a
continuation of earlier work [Ref. 1,2,3].

1.0 Introduction

The increase in dynamics associated with the modern battlefield adds additional levels of complexity to
the perception of what constitutes a battlespace.  As a rule, even the best battle plans are subject to
change. In this rapidly changing environment, the commander must be notified in real time when critical
situation changes occur.  For this problem, the IA proves to be extremely useful. In addition to alerting
the commander about a sudden encountered problem, the IA also provides the necessary information
allowing the commander to resolve the problem in near-real time.

In general, IAs should exhibit the following behavior:
1. Intelligent – ability to infer, learn
2. Proactive - goal-directed
3. Reactive - respond to domain changes
4. Autonomous - operate without human involvement.
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An IA will exhibit some if not all of the above properties. However, strong proactive and reactive
behavior may also bring about a manifestation of an undesirable anarchical personality exhibited by the
IAs within a particular system application.  To prevent this occurrence, a Governing agent is
implemented to maintain order within the system.

1.1 Application

The described IA application was limited to the areas of logistics, execution monitoring, and
commander's assistant.  Due to time and resource limitations, but the practicality of IA technology is
shown.

2.0 Architecture

The IA architecture developed was designed to incorporate all four behavioral elements described earlier
and is illustrated in Figure 1.  The architecture allows behavioral modification and is common to agents
designed to interact with the user.  This model, however, does not address the architecture of a
Governing Agent or Controller.
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The task attributes are pre-configured to meet the anticipated user needs. The user has an option to
customize the attribute settings based on requirements. The attributes determine the tasks assigned and
the behavioral tendency of the agent.

The rules are selected from the Rule Base (RB) by Rule Selection and Configuration (RSC) using
selected attributes, and loaded into the Inference Engine (IE).  The output generated by the Inference
Engine will supply information to the client/user2.

The IE executes selected rules and informs the user if the information supplied was conclusive. If not,
the IE brokers another service, agent or human for additional information. Irrespective of available
information, the IE will generate an output.  However, it will reflect the completeness of information by
computing a confidence level of the inference made.

2.1 Open Architecture

The open architecture design increases the product’s life cycle while reducing software maintenance
costs.  This is accomplished by replacing outdated methods with new methods, and expanding the RB
with new rules defined by the user. The software maintenance is accomplished with the aid of RSC.  The
following example illustrates the open architecture concept, and the role RSC plays in facilitating
software maintenance.  In general, a rule can be formulated as:

If Sensor (argument list) Then
Effector (argument list)

End if

Where Sensors and Effectors are the test and inference functions, respectively.

The RSC allows the user to modify the RB and Knowledge Base (KB) with a user-friendly interface.
The user is presented with task pertinent lists of sensor3 and effector methods.  The lists of Sensors and
Effectors are generated based on the content of the Method Library repository. These lists can consist of
old or new methods. Presented with the available methods, the user can formulate the rule. If no
duplicate or similar rule exists in the RB the newly configured rule is then stored in the Rule Base.

3.0 Method and Experiment

The IA application was built using the following tactical scenario to demonstrate collaboration between
Commanders Aid (CA), Execution Monitoring (EM), and Situation Awareness (SA) agents.

The scenario is as follows:
A battalion size team is to secure Objective Area (OA) Alpha at 04:00 hours. At 03:35 scouts report
enemy activity in the vicinity of the OA.  The enemy force is reported to be at least two companies of
mechanized infantry and a small number of tanks. The lead elements of the force are four kilometers
away from the OA.
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The information supplied by the scout triggers the EM agent. The EM agent in turn triggers the CA

friendly artillery or/and airborne platforms.  Within minutes, the CA presents the commander with the
information needed to devise a plan of action based on the computed weapon effectiveness (WE) shown

Target Asset
Inf. CO-1,2 MLRS  M270 .85
Inf. CO-1,2 Howitzer 155-mm .73

Armor CO-1 Longbow .87
Armor CO-1 MLRS  M270 .59

Table 1

The equation used in computing weapon effectiveness can be defined considering the events to be
dependent or independent.

WE=P(A)

Where: WE = Weapon Effectiveness and P is the probability of occurrence of event E, 0≤P(A)≤1.
Since A is a union of events we can express [5]

P(A)=P(a1+ a2+ a3+… an)

If a1+ a2+ a3+… an are all elements in A. The probability of union of events A and B can be extended as:

P(A∪∪B)=P(A+B)=P(A)+P(B)- P(A∩∩B)

This relationship is shown in Figure 3.
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If events A and B are mutually exclusive, i.e. P(A∩∩B)=0
then:

WE= P(A∪B)= P(A)+P(B)

where

When the combined effectiveness for several weapons firing at the same target area sequentially and in a
short time interval, the WE is computed as:

   N

=1 - Π(1−d )
    i=1

where:

di   -  probabilistic contributing elements such as probability of a hit under ideal conditions, weapon
effectiveness under ideal conditions.

N is the number of probabilistic contributing elements.

For example, if we use both options in Table 1, the MLRS M270 WE=.85 and the 155mm Howitzer
WE=.73, then the combined WE=.96
The CA suggests a possible course of action (COA) using situation relevant rules, and computed values
of WE.  The results produced by the CA are displayed as a task execution matrix shown in Figure 2.
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4.0 Conclusion

 IA technology can add a new level of sophistication to the battlefield.  The IAs can serve as the
commander’s intelligent assistants for instance, capable of analyzing a given situation, and suggesting
elements of a possible COA. The ultimate goal of the IA is to become an intelligent help capable of
anticipating user needs based on the current situation.

IAs can dramatically increase their combined capability in an environment of collaborative problem
solving, regardless of their individual limitations.  To optimize that potential, a good stasis between the
system and the individual agents must be achieved.  A well-designed architecture is of great importance
in achieving this goal.
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