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Abstract— Intelligence, Surveillance, and Reconnaissance 

(ISR) has been called the “… ‘hub’ of 21st century (military) 
operations.” Military doctrine provides guidelines and protocols 
for ISR, but little is known about Soldier decision-making for the 
allocation of ISR platforms. To determine if technology may be 
useful for augmenting Soldier performance with ISR, we assessed 
the accuracy of decision-making using simulated allocation tasks. 
Soldiers made decisions by assigning ISR platform sensors to 
simplified target detection and identification tasks. The objective, 
or algorithmic accuracy of the decisions were based on the 
National Imagery Interpretability Reconnaissance Scale (NIIRS), 
which consists of normative ratings of imagery interpretability 
by intelligence analysts across varying sensor capabilities (i.e., 
pixels on the sensor). Algorithmic accuracy was derived from 
unclassified/open-source information on sensor capabilities based 
on NIIRS. Soldiers performed the same set of decision-making 
tasks twice. First, using their own knowledge and experience with 
ISR and, second, with complete information on sensor 
capabilities. Decision accuracy was slightly lower in the first set 
of assignments compared with the second. However, both were 
below algorithmic accuracy. Results indicate technology for 
decision aids with ISR allocation may enhance human decision-
making.  

Keywords— Intelligence, Surveillance, and Reconnaissance; 
Decision-Making; Intelligence.    

I. INTRODUCTION 
Intelligence, surveillance, and reconnaissance (ISR) has 

been called the “…‘hub’ of 21st Century (Military) 
Operations” [1]. ISR supports current and future military 
operations through the planning and operation of sensors and 
assets [2]. We focus on ISR allocation, which is the 
assignment of assets to target detection and identification 
tasks, for physical sensors on aerial platforms. Military 
doctrine on ISR provides extensive guidelines and protocols 
for the staff specific roles and responsibilities in ISR 
collection planning and the tasking of ISR resources [3]. 
However, little is known about actual Soldier decision-making 
for ISR allocation. One exception is research examining 
simulated ISR allocation for multiple assets, threats, and 
varying priority targets [4]. In contrast, we focus on decision-
making for specific target detection and identification tasks.  

 
How can technology help with ISR sensor allocation? To 

determine if technology is needed to enhance Soldier  

 
performance for ISR allocation, we investigated decision-
making for sensor allocation for simulated target detection 
tasks.  

 
An illustration of ISR allocation is described in the 

following vignette (adapted from [5]):  
A patrol notices a suspicious black car with license plate 
ABC123 moving south. A database query reveals that this 
vehicle is known to be associated with a high value target, 
John Smith. They lose sight of the vehicle. An intelligence 
analyst must decide which unmanned aerial vehicle (UAV) 
to allocate to find the car. 

Most UAVs will likely have sufficient quality visual sensors 
to detect a black vehicle, but may not be able to distinguish 
between different types of cars, let alone identify the license 
plate. Thus, the ISR platform(s) capable of detecting the car 
will depend on whether or not it is necessary to read the 
license plate and an assortment of other factors.    
 

ISR allocation has a complex problem space with 
interactions among social and natural systems, natural 
systems, and technical systems [6]. In the real-world, 
decisions for ISR allocation and the effectiveness of ISR may 
depend upon (list adapted from [4: pp. 1]): 

1. Social and natural systems: Individual humans and 
groups (military, civilians, and insurgents), priorities 
such as force protection, Information Requirements,  
scheduled collection tasks, skill of the pilot or UAV 
platform operator, stress and fatigue, and time 
pressure. 

2. Natural systems: Environmental characteristics: 
Current and future weather conditions, terrain, and 
time of day.  

3. Technical systems: Sensor capabilities and platform 
capabilities, such as: speed, range, total flight time, 
and visual and acoustic detectability from the ground. 
These factors can also depend on natural systems. 
For example, flying into high wind reduces the speed, 
range, and flight time of an aerial platform.  

 
Given the wide range of factors that can be involved in 

ISR allocation and the goal of determining if decision-making 
needs to be enhanced, we developed a simplified task to 
measure objective decision-making. Moreover, objective 
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measurement is crucial to assessing actual human 
performance, especially in safety critical work domains, 
because subjective measures (e.g., observation, interviews, 
and preferences) can produce divergent data [7].  

 
The ISR allocation task here had objectively correct or 

incorrect assignments. Specifically, the task involved deciding 
if sensors on different platforms were capable of performing 
target detection or identification tasks. Because the ISR 
allocation task was objective and there was no time pressure, 
the hypotheses were motivated by the theory and empirical 
findings of Actuarial Judgments (see Table 1, 4. Actuarial 
Judgments). This theory posits objective methods (i.e., 
statistical formula or algorithms) for decision-making 
generally have greater accuracy than subjective, human 
judgments. We hypothesized the following:  

1. Decision-making will be more accurate with 
complete information on sensor capabilities  

2. Decision-making accuracy will be below algorithmic 
accuracy, despite having complete information 
available  

Results weakly supported the first hypothesis; a medium 
effect size for improvement in decisional accuracy was found 
with complete information. The second hypothesis was 
strongly supported, with a large effect size: Decision accuracy 
was below perfect algorithmic accuracy despite providing 
complete information. 

A. Theories of Decision-Making  
There is little research on empirical human decision-making 

for ISR allocation, but there are several major theories of 
human decision-making [8] and some common ground among 
theories [9], [10], [11]. Key differences between theories 
include the role of expertise and deviations, or lack thereof, 
from rationality. Because of these clear divisions there is no 
singular, unifying theory of human decision-making. Five 
major theories of human decision-making are described in 
Table 1.  

TABLE 1. THEORIES OF DECISION-MAKING   

Theory  Primary 
Discipline(s)  Description 

 
References 

 

1. Naturalistic 
Decision-
Making 
(NDM) 

Human 
Factors 
 

 
Experts make 
decisions based on 
intuition and 
analysis. The 
Recognition-Primed 
Decision model is 
part of NDM. From 
experience, experts 
form patterns that can 
be used to quickly 
make decisions 
without having to 
evaluate all options.   
 
 

 
Klein [12], 
[13] 

Theory  Primary 
Discipline(s)  Description 

 
References 

 
 
Primarily based on 
qualitative real-world 
data using 
observations and 
interviews. Limited 
quantitative lab data. 
 

2. Prospect 
Theory, also 
called 
Heuristics and 
Biases  

(Behavioral) 
Economics 
and 
Psychology 

 
Frequent systematic 
errors in human 
decision-making, 
interpreted as 
deviations from 
rationality due to 
systematic heuristics 
and biases in human 
decision-making. 
Two systems for 
decision-making, 
System 1 is slow and 
controlled and 
System 2 is fast and 
automatic. System 2 
is heuristic based, 
which is consistent 
with NDM.  
 
Primarily based on 
quantitative lab data. 
 

 
Kahneman and 
Tversky [8], 
[14]  

3. Bounded 
Rationality 
and 
Fast and 
Frugal 
Heuristics 

(Behavioral) 
Economics 
and 
Psychology 

 
To make complex 
decisions, humans 
use heuristics: 
Simple search, 
satisficing/stopping 
(i.e., “good enough”), 
and other decision 
rules. These 
heuristics are 
adaptive with respect 
to the environment. 
Similarities to NDM 
and System 2 in 
Prospect Theory, 
with exceptions. For 
example, there are 
some situations 
where novices 
perform better than 
experts. Also, this 
theory suggests that 
some findings in 
Prospect Theory are, 
at least, partially 
attributable to the 
representation of 
information 
(percentages vs. 
natural frequencies 
such as 1 out of 100) 
rather than the actual 
decision-making 
process.  
 
Based on quantitative 
lab and quantitative 

 
Simon [15]; 
Gigerenzer [9], 
[16]               



Theory  Primary 
Discipline(s)  Description 

 
References 

 
real-world data.    
 
 
 
 

 
4. Actuarial 
Judgments; 
also called 
Algoritmic or 
Statistical 
Judgements 

 
Computer 
Science, 
Psychology, 
and Statistics 

 
Actuarial or 
algorithmic/statistical 
decisions are 
generally more 
accurate than 
subjective human 
decisions. This is not 
so much a theory of 
human decision-
making as a theory of 
fallibilities in human 
decision-making and 
the value of objective 
decision-making in 
many situations.   
 
Quantitative evidence 
from the lab and real-
world: Disease 
diagnosis in health 
care, diagnosis and 
risk in clinical 
psychology, 
prediction of success 
in education, and 
investment 
performance. 
 

 
Meehl and 
others [17], 
[18] 

5. Game 
Theory 

Computer 
Science, 
(Traditional) 
Economics, 
Mathematics, 
and Statistics 

 
Generally assumes 
humans are rational 
to mathematically 
model human 
decision-making 
[19], with some 
exceptions [20]. 
Optimization of 
utility function(s) 
with respect to 
constraints. This 
theory is the same as 
Actuarial Judgments, 
except for the key 
assumption that 
human decision-
making is rational, 
and therefore is 
accurately modeled 
by mathematical or 
statistical optimality.  
 
Weak support based 
on quantitative lab 
data and some 
support from real-
world data, such as 
pricing and auctions. 
  

 
Numerous 
researchers; for 
examples see 
[19], [21]  

 
In the first three theories, decision-making may not be 

rational, and thus not mathematically optimal; hence, they are 

at odds with Game Theory. Actuarial Judgment and Game 
Theory are distinguishable by only one aspect: Actuarial 
Judgment is a theory of optimal objective decision-making, 
but does not claim to be an accurate model human judgment. 
Game Theory is generally used as a model to explain human 
decision-making under the assumption of rationality [19]. 

 
We based the hypotheses below on the theory of Actuarial 

Judgment for four main reasons. First, it has a clear 
implementation: using objective methods to enhance decision-
making. This matches our goal of determining if technology, 
arriving at recommended decisions computationally, is needed 
to enhance human decision-making. Second, there is over six 
decades of empirical research supporting Actuarial Judgment 
with findings in a wide range of domains and this work has 
shown that even when the algorithm and the human have the 
same data, the algorithm is almost always more accurate [22]. 
Third, our simplified ISR allocation task had no time pressure 
nor did it have all of the complex information likely to be 
present in the real-world. Therefore, our task was not likely to 
be amenable to the pattern recognition of NDM or the 
heuristic accounts of Theories 2 and 3. Last, Game Theory has 
repeatedly been shown to be an inaccurate model of actual 
human decision-making, see [8]. 

B. Paper Structure 
The reminder of the paper is structured as follows: Section 

II describes the ISR allocation task and statistical results and 
Section III has a discussion and conclusion, with 
recommendations using technology to enhance ISR decision-
making.  

II. ISR ALLOCATION TASK  
In this section, we discuss the subject matter expert 

Soldiers, the study procedure and materials, and the study 
results.  

A. Subject Matter Experts  
Eleven U.S. Army Soldiers with operational ISR 

experience were recruited as subject matter experts (SMEs). 
One Soldier was excluded because he indicated on a survey 
questions that he did not have operational experience with 
ISR, only experience with ISR during training. SMEs 
consisted of nine males and one female. Soldiers had deployed 
experience with ISR ranging from management, collection, 
and analysis to direct experience with the ground effects of 
ISR. The rank, Military Occupational Specialty (MOS), and 
deployed experience of the SMEs are described in Table 2.  

TABLE 2. MILITARY BACKGROUND OF SUBJECT MATTER EXPERTS  

Ranka 
Military 

Occupational 
Specialtyb 

Deployed Experiencec 

CPT 
 

35D 
 

 
BN Intelligence OIC  

 



Ranka 
Military 

Occupational 
Specialtyb 

Deployed Experiencec 

CPT 35D 

 
Platoon Leader, BN Assistant 

Intelligence OIC, BN Intelligence 
OIC, Intel/Operations Combat 

Advisor, and WMD Coordination 
Intelligence Officer 

 

CPT 35D 
 

BDE Collection Manager 
 

1LT 11A 
 

Intelligence Advisor to Host Nation 
 

1LT 11A 
 

Intelligence Advisor to Host Nation 
 

1LT 35D 

 
BN Intelligence OIC and 

Intelligence Advisor to Host Nation 
 

SSG 35F 

 
DIV Intelligence Operations 
Analyst and BDE Collection 

Management 
 

SSG 29E 
 

BN Electronic Warfare SGT 
 

SGT 35F 

 
BN Intelligence OIC, Targeting 
NCO, and Current Operations 

Analyst  
 

SGT 35F 
 

BDE ISR Operations NCOIC 
 

a. Rank descriptions: http://www.army.mil/symbols/armyranks.html 
b. Military Occupational Specialty descriptions: 

www.apd.army.mil/Home/Links/PDFFiles/MOSBook.pdf  
c. The descriptions of operational experience are generic to protect personally 

identifiable information. Acronyms for military echelons (unit sizes) are: 
DIV, BDE, BN, and CO, which respectively stands for Division, Brigade, 
Battalion, and Company. For a detailed description of military echelons, see 
http://en.wikipedia.org/wiki/Military_unit#Commands.2C_formations.2C_an
d_units OIC stands for Officer in Charge. NCOIC stands for Non-
Commissioned Officer in Charge.  

Note a., b., and c. in Table 2 were taken verbatim or with 
minor modifications from [4: Table 1, pp. 2]. Seven out of 10 
Soldiers were trained intelligence analysts (35-series MOS), 2 
were light infantry (11-series MOS), and 1 specialized in 
offensive electronic warfare (29-series MOS).                                           

Table 3 has descriptive statistics on age, military service, 
and military deployments. 

TABLE 3. DESCRIPTIVE STATISTICS OF SUBJECT MATTER EXPERTS  

Variable Mean Standard Deviation 
Age  
(years) 27.10 4.46 

Military Service 
(years) 5.50 3.13 

Deployments 
(number of times) 1.30 0.48 

B. Procedure 
SMEs were recruited using two methods:  

1. Umbrella Week: This is a scheduled week in which 
units set aside times for the research and 
development community to interview Soldiers and 
administer surveys.  

2. Asking other researchers and Soldiers for suggested 
contacts.  

There was considerable difficulty finding qualified SMEs. 
The a priori projected sample size was N = 15–20 to meet or 
exceed 80% statistical power for a large effect size with paired 
sample t-test and default assumptions, calculated using 
G*Power 3.1.7 [23]. However, we were only able to find 
10Soldiers with operational ISR experience. In the sample, 
most Soldiers with relevant experience were intelligence 
analysts; however, we estimate, based on our recruitment and 
the expert opinions of Soldiers that ~1–1.5 per 100 Soldiers 
are intelligence analysts and further estimate 1 out of 10 
intelligence analysts have ISR experience: This meant that 
only about 1–1.5 per 1,000 Soldiers met the study inclusion 
criteria. Repeated measures using multiple assignment 
decisions were used to increase statistical power. 

 
Soldiers were told that participation was completely 

voluntary, that they could withdraw at any time and for any 
reason, and responses were non-attributional. SSMEs received 
no compensation for their participation. After completing the 
decision-making task, 6 out of 10 Soldiers also participated in 
interviews to assess Human Factors in ISR (see [6]). The first 
author administered paper or electronic questionnaires with 
the simulated ISR allocation tasks. Six Soldiers participated in 
person and four Soldiers received verbal instructions and then 
sent their responses over email.  

C. Materials and Study Design 
SMEs were told the purpose of the project was to look at 

decision-making for target detection using ISR. In addition, 
they were instructed to: (1) decide which sensor(s) on ISR 
platforms were good enough or better than needed to detect a 
target, (2) assume optimal conditions (ideal weather, time of 
day, and angle) (3) typical range for target detection, and (4) 
ignore platform speed. Study materials are available from: 
http://thedata.harvard.edu/dvn/dv/jbakdash/faces/study/StudyP
age.xhtml?globalId=doi:10.7910/DVN/25583&studyListingIn
dex=0_598175c3d39df6b1cc38e2dc1de0 

 
Objective sensor capabilities were derived from 

unclassified/open-source information based on the National 
Imagery Interpretability Rating Scale (NIIRS); see 
http://www.fas.org/irp/imint/niirs.htm. NIIRS is an 
empirically validated scale based on the accuracy of human 
analysts for assessing the normative quality of data from 
different physical sensors for a variety of target detection and 
identification tasks. In addition, NIIRS and sensor capabilities 

http://www.army.mil/symbols/armyranks.html
http://www.apd.army.mil/Home/Links/PDFFiles/MOSBook.pdf
http://en.wikipedia.org/wiki/Military_unit#Commands.2C_formations.2C_and_units
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http://thedata.harvard.edu/dvn/dv/jbakdash/faces/study/StudyPage.xhtml?globalId=doi:10.7910/DVN/25583&studyListingIndex=0_598175c3d39df6b1cc38e2dc1de0
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were also used to determine objective or algorithmic accuracy, 
this constituted perfect performance.  

 
Soldiers performed the same set of decision-making tasks 

twice. First, Soldiers performed the task relying on their own 
knowledge and experience with ISR and, second, with the 
complete information on sensor capabilities and the criteria 
used to describe NIIRS. The questionnaire was structured as 
follows:  

1. Demographic, military background, and military 
experience questions  

2. Set 1: Sensor assignment decisions based on 
knowledge and experience for eight target detection 
tasks; confidence rating of overall decisions and 
strategy used to make decisions  

3. Set 2: Sensor assignment decisions based on NIIRS 
for the same eight target detection tasks; overall 
confidence rating of decisions and strategy used to 
make decisions  

In each set of assignments, SMEs completed 13 decisions on 
sensor assignments (for five assets) for the eight target 
detection tasks; a total of 104 decisions for each set and 208 
decisions total. SMEs completed the questions at their own 
pace, taking 15 –45 minutes to finish the entire task.  

 
The order of Set 1 and Set 2 was always fixed. Set order 

was not counter-balanced because providing NIIRS ratings 
could have biased decisions solely based on knowledge and 
experience. SMEs were permitted to look at their Set 1 
decisions for their Set 2 responses, but were told not to change 
their answers to Set 1. Two examples of target detection tasks 
and the required sensor capabilities, shown in parentheses, are: 

 
1. Known location, detect and identify the license plate 

on a vehicle (requires a Visual NIIRS rating 9; note 
no asset had a visual sensor capable of performing 
this task) 

2. Moving car, jeep, or Humvee (requires a Visible 
NIIRS rating 4 or higher, Radar NIIRS 4 or higher, or 
IR NIIRS 5–6 or higher; note that all assets had 
sensors capable of performing this task)   

Five different ISR platforms were available, platforms had 
visible, infrared (IR), and/or radar sensors. ISR platforms were 
selected based on the availability of unclassified/open-source 
information on sensors. The availability of sensor information 
determined the platforms; this is a limitation because of the 
similarities in NIIRS ratings. Table 4 shows the information 
provided to SMEs for Set 2 decisions, the NIIRS ratings of the 
five ISR platforms.  

 

TABLE 4. UNCLASSIFIED/OPEN-SOURCE ISR PLATFORM NIIRS 
RATINGS  

Platform Type NIIRS Rating Sensors 

Predator A (MQ-1) 

• Visible NIIRS rating 6 
• IR NIIRS rating 6 
• RADAR NIIRS rating 6 

 
• EO/IR 

Camera 
• SAR 

 

Reaper (MQ-9) 

 
• Visible NIIRS rating 8 
• IR NIIRS rating 8 
• RADAR NIIRS rating 6 

 
• EO/IR 

Camera 
• SAR 

Raven 

 
• Visible NIIRS rating 6 
• IR NIIRS rating 6 

 

• EO/IR 
Camera 

Global Hawk 
 

• Visible NIIRS rating 8 
• IR NIIRS rating 8 
• RADAR NIIRS rating 8 

 
• EO/IR 

Camera 
• SAR 

Shadow 200 (RQ-7) 

 
• Visible NIIRS rating 7 
• IR NIIRS rating 7 

 

• EO/IR 
Camera 

Note that the NIIRS were derived from actual values or estimates published 
in open-source and unclassified information, such as specification sheets, 
technical papers, and scientific papers; values were received via personal 
communication [24]. The NIIRS ratings are believed to be current as of 
January 2013. 

 
SMEs were told verbally the information may not match 

classified capabilities or current sensors on platforms, but to 
still rely on the provided NIIRS ratings. Algorithmic accuracy 
is based on these NIIRS ratings.    

D. Results 
Data were analyzed using a paired sample t-test and a one-

sample t-test. Accuracy for Set 1 and Set 2 was determined 
using mean value, across detection tasks and sensors, by SME. 
Accuracy was comprised of hits (correctly assigning a sensor 
capable of detecting the target) and correct rejections 
(correctly not assigning a sensor that was incapable of 
detecting the target). Individual SMEs made a total of 208 
allocation decisions: 104 decisions for each set. However, the 
overall sample size was small: N = 10.  

 
Because of the small sample, bootstrapping was used to 

calculate the statistical parameters for decision-making: t-test 
values, standard errors, and effect sizes and their confidence 
intervals. For small sample sizes, bootstrapping has better 
properties: (1) lower bias (absolute error in the estimator, i.e., 
the test statistics) and (2) greater efficiency (comparative 
effectiveness of the estimator for the given data relative to 
other estimators) for parameter estimation than conventional 
statistical methods that do not use resampling [25]. 



Bootstrapping is a data simulation method using random 
sampling without replacement for parameter estimation [26]. 
Analyses were performed using R [27] with bootstrapping 
implemented using the boot library [28]. One thousand 
bootstrap iterations were run for each t-test. The raw data and 
R code for reproducing the analyses are available from the 
above link for the study materials.     

 
As hypothesized, a bootstrapped paired sample t-test 

showed that decision accuracy for ISR assignments was 
slightly lower for knowledge and experience (Mean = 76.50%, 
SE = 4.06) compared with full information on NIIRS (Mean = 
81.60%, SE = 3.92), t(17.98) = 1.85, p < 0.05 (one-tailed), d  = 
0.59 (95% CI: 0.04 - 2.84 percentile bootstrap), see Figure 1.  

FIGURE 1. DECISION ACCURACY USING KNOWLEDGE AND EXPERIENCE 
(SET 1) VS. COMPLETE INFORMATION (SET 2)  

 
Error bars represent one bootstrapped standard error of the mean. 

 
The medium effect size should be interpreted with caution 
because of the wide range of its confidence interval; the lower 
bound of the confidence interval nearly reaches zero. 
Nevertheless, the results suggest that complete information, 
albeit with high uncertainty, weakly improves the accuracy of 
decision-making.   

 
A bootstrapped one-sample t-test (compared with 100%) 

indicated that pooled decision accuracy for ISR assignments 
(Set 1 and Set 2 combined) was lower (Mean = 79.05%, SE = 
3.75) than algorithmic accuracy of 100%, t(9) = 5.59, p < 
0.001 (one-tailed), d = 1.77 (95% CI: 1.42 - 4.23 percentile 
bootstrap), see Figure 2. 

FIGURE 2. POOLED DECISION ACCURACY VS. ALGORITHMIC ACCURACY  

 
Error bar is one bootstrapped standard error of the mean. The red dashed 

line indicates algorithmic accuracy (100%).  
 

Again, due to the small sample, the range of confidence 
interval on the effect size is wide. However, the lower bound 
clearly exceeds a large effect size. One could argue that nearly 
80% accuracy is reasonably good performance, but there was 
no time pressure, the task was simplified, and the information 
in Set 2 was sufficient for perfect performance. 
 

Exploratory Results. Exploratory analysis was performed 
on the free response and subjective questionnaire data, see the 
Appendix for further details. Descriptive statistics, rather than 
inferential statistics, were used to examine this data because 
there were no a priori hypotheses. The exploratory results are 
summarized as follows: 

 
1. Allocation task: Accuracy and errors varied between 

allocation tasks, suggesting differences in task 
difficulty. 

2. ISR Assets: Accuracy was comparable across ISR 
assets. 

3. Free response questions: In the first set of tasks, 
most Soldiers self-reported that they relied on their 
experience. In the second set, most Soldiers stated 
they relied upon the NIIRS ratings.  

4. Likert scale questions: Overall, Soldiers indicated 
moderate experience with ISR platforms, weak 
experience with NIIRS, moderate confidence in their 
assignments for both sets and moderate use of 
assignment decisions made in Set 1 for Set 2 
assignments; this was somewhat inconsistent with the 
free response data for decisional criteria, a reliance 
on just NIIRS was commonly reported. Last, more 
Soldiers reported that a system for ISR sensor 
assignments would often be helpful.  

III. DISCUSSION  
First, we discuss the possibility of combining actuarial 

judgments, as a form of partial automation, with human 
decision-making. Second, we cover human computer 
collaboration more generally. Third, we describe the Sensor 
Assignment to Missions (SAM) system [29], [30], which may 
be useful for enhancing human decision-making in ISR. Last, 
we explain limitations and possible future directions for the 
present work.  

A. Actuarial Judgements, Automation, and Human Decision-
Making   
Research on actuarial judgments has shown repeatedly that 

the algorithmic method will outperform subjective human 
judgments the majority of the time [17]. These results cover a 
diverse range of decisions: diagnosis and treatment in health 
care, diagnosis and risk in psychology, education success, 
investment performance, and parolee recidivism [17], [18], 
[22]. However, this does not mean all human decision-making 
should be automated because there may be information that is 
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obvious to the human but not incorporated in the algorithm, 
and novel situations that are out of the bounds of computation 
[18]. Automation raises clear safety concerns. Over and 
inappropriate automation has resulted in catastrophic 
accidents, including aircraft crashes and railroad accidents 
[31]. Decision aids can cause automation complacency and 
bias, where the humans may fail to properly monitor systems 
and/or the environment  [32].     

 
In safety critical domains, human supervisory control over 

technical systems is necessary to reduce the risk of accidents 
and loss of life [33]. Therefore, for ISR, we propose that 
algorithms provide transparent (i.e., rationale for system 
decisions) recommended decisions to Soldiers. This claim is 
bolstered by a finding that performance in simulated ISR 
tasking, for coverage and route planning, was enhanced by 
reliable, transparent automation under high task demands that 
involved multiple goals and constraints [4]. Similarly, 
computer assisted decision-making is superior to either 
humans alone or a computer alone for weather forecasting 
[34] and is often better for playing chess [35].  

B. Human Computer Collaboration 
Another approach is human computer collaboration 

(HCC), in which the human and one or more intelligent 
systems or agents work together with a common goal [36]. 
This approach is more interactive than computer assisted 
decision-making. A sizeable amount of work in this area has 
been conducted in relation to visual analytics, addressing 
analytic tasks the size and complexity of which make them 
intractable without close interplay of human and machine 
agents [37]. Recent work in the area of information fusion for 
ISR tasks has explored the use of controlled natural language 
for mission support, facilitating the interaction of human 
analysts with machine agents [5]. In terms of collaboration, in 
[38] the authors note that intelligence analysts are now well-
versed in modern collaboration environments and social 
networking. The general notion that including social 
collaboration, and more broadly HCC, can improve the 
outcome of intelligence analysts is highlighted in [39]. There 
are both benefits and challenges in social collaboration and 
HCC challenges: “A richly collaborative environment, 
whether social, HCC, or both, could be a blessing, if 
computers can help sort, filter, and manage vast amounts of 
information, or a curse if volume of information is simply 
increased.” [40, p. 12] 

 
There are additional concerns with the implementation of 

HCC that are unique to safety critical domains, especially if 
even some degree of human supervisory control is ceded. For 
example, what if the human and computer disagree? What if 
the computer increases the likelihood of biases in human 
decision-making? Despite these concerns,  there are 
compelling fictional examples of HCC for a collaborative and 
interactive interface [41] and computers can facilitate social 
collaborations.  

C. Sensor Assignment to Missions System 
One implementation of algorithmic judgments in ISR is 

SAM, a prototype artificial intelligence (AI) system [29], [30]. 
To transparently represent information, SAM builds on 
previous work [42] using an algorithmic assignments founded 
on the Military Missions and Means Framework (MMF) [43]. 
Information is formally represented using ontologies. Missions 
are comprised of operations that are in turn comprised of 
tasks. Tasks require capabilities, which are provided by assets. 
Assets include platforms and systems; systems – including 
sensors – are mounted on platforms. The relationship 
allocatedTo captures that an asset is assigned to resource a 
particular task. The interface for SAM on a mobile device is 
shown in Figure 3. 

FIGURE 3. SAM IPAD INTERFACE 

 
 

Image from [36: p. 9]  
 
The ontology is implemented in the Web Ontology Language, 
OWL DL, and is shown in Figure 4.  

FIGURE 4. MISSION AND MEANS FRAMEWORK FOR ISR ONTOLOGY 

 
Image from [29: p. 4]  



Sensor capabilities and detection tasks are characterized 
using NIIRS. Therefore, given an ISR task and a set of sensing 
assets in a particular area of interest, SAM provides the 
algorithmically optimal solution for allocating ISR resources. 
In addition, SAM for example, is capable of allocation based 
on the bearing and range of a platform to a task [45], in 
addition to matching NIIRS capabilities with task ISR 
requirements (via reasoning algorithms). Another potential 
application for SAM is training for ISR allocation based on 
NIIRS for sensors platforms and detection tasks.   

 
An interactive conversational interface is being developed; 

this will allow non-programmers such as intelligence analysts 
to modify and update information [44]. With the 
conversational interface, Soldiers could refine and update the 
knowledge and SAM adding the sensor capabilities necessary 
to detect or identify new enemy tactics (e.g., putting an 
improvised explosive device [IED] on a donkey and sending it 
towards a checkpoint). Furthermore, Soldiers would have the 
capability to edit the optimal solutions found using 
algorithmically approaches to add that previously only 
reflected in human knowledge. The prototype conversational 
interface extends beyond computer assisted decision-making. 
Instead, human-computer collaboration is implemented 
through closed-loop feedback between the human and the 
intelligent system, see Figures 5 and 6.  

FIGURE 5. CONCEPTUAL ILLUSTRATION OF CONVERSATIONAL 
INTERFACE FOR SAM 

 
Image from [36: pp. 7]  

FIGURE 6. CONCEPTUAL ILLUSTRATION OF CONVERSATIONAL 
INTERFACE FOR SAM  

 
 

Image from [36: pp. 10]  

D. Limitations  
The work was unclassified, thus the open-source derived 

sensor capabilities may not have matched actual capabilities. 
This limitation is somewhat mitigated by providing Soldiers 
with NIIRS ratings for platforms in their second set of 
allocation decisions. Another limitation is that signals 
intelligence (SIGINT), which is highly classified, was not 
included in the ISR allocation task. Anecdotally, multiple 
Soldiers have stated SIGINT is often highly valuable because 
it leads to actionable intelligence more often than other types 
of intelligence. In addition, the task does not address the 
challenges or benefits of technical and human information 
fusion in the intelligence cycle, cross-cuing (using multiple 
sensor platforms to detect or identify targets), and allocation 
decisions for coordination among multiple ISR platforms and 
multiple collection tasks.  

 
Last, the simplified but well-controlled research design of 

the task has weaknesses and strengths. The task did not 
incorporate multitude of factors that may be present in real-
world ISR decisions, such as balancing multiple priorities, 
weather conditions, terrain, travel time, and skill of the pilot or 
platform operator (discussed in the Introduction in detail). A 
few Soldiers candidly remarked that the task was artificial, 
because of the many factors mentioned above. Although this 
statement is true, this controlled research design permits 
stronger inferences about the results than methods commonly 
used in real-world research: for example, observation which 
can be highly confounded [46] or verbal reports which can be 
subject to response bias [47]. Finally, the sample was not large 
enough to analyze individual differences in MOS, experience, 
or expertise.  

 
The ISR task was designed for maximizing the accuracy of 

human decision-making and it only involved simple 
assignments for detection and identification. Nevertheless, 
sensor assignments for detection and identification are one 
dimension of ISR allocation. ISR coverage time and route 
(re)planning efficiency are other key aspects that have been 
previously investigated [4].  

IV. CONCLUSION 
The quantitative results in this paper provide supporting 

evidence for conclusions drawn in previous quantitative 
research on ISR coverage and planning [4] and qualitative 
work examining Human Factors issues in ISR [6]. The same 
recommendations we made previously, also apply here:  

“In unpredictable, dynamic work domains (such as ISR), 
we contend that enhancing human performance requires 
technical systems that are adaptive, interactive, integrated 
(as few unique systems as possible), and transparent (see 
[48], [49]). Decision aids may enhance Soldier decision-
making for ISR allocation and resource management, but 
new technical capabilities need to also be flexible (e.g., ad-
hoc and unofficial ISR requests) [6: p. 4].” 
 



ISR is fundamental to military operations. We found 
weakly increased allocation accuracy when complete 
information on task relevant platform capabilities was 
provided. More importantly, even with complete information, 
decision accuracy was below algorithmic accuracy. This is 
quantitative evidence of a need for technology to enhance 
human decision-making with ISR. SAM has potential to be 
that technology, but ultimately further empirical research is 
needed to determine how to implement computer assisted 
decision-making in ISR.  

 
The effectiveness of ISR depends on many factors. Some 

are uncontrollable factors (e.g., natural systems such as the 
weather and terrain), but decisions for ISR allocation are 
controllable. Ultimately, enhancing human-decisions for ISR 
using an implementation of computer assisted decision-
making may increase the effectiveness of ISR and in turn 
improve the outcome of military operations. 
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APPENDIX: EXPLORATORY RESULTS 
Additional analyses were performed using descriptive 

statistics rather than inferential statistics, because there were 
no a priori hypotheses. Summary statistics with hits, correct 
rejections, misses, and false alarms for the allocation tasks, 
collapsed across set, are displayed in Table 5. Misses are 
omitting the assignment of a sensor capable of performing the 
task. False alarms are assigning a sensor that is not capable of 
performing the task. 

 

 

 

TABLE 5. DECISION ACCURACY AND ERRORS BY ALLOCATION TASK 

Allocation 
Task 

Accuracy 
 

Hits (%)      Correct    
                  Rejections                     
                        (%) 
 

Error 
 
  False             Misses 
Alarms              (%) 
    (%) 
 

 
1. Moving Car, Jeep, or  
Humvee 

 

M  = 79.62 
SD = 1.89   M  = 20.38 

SD = 1.86 

 
2. Moving Military  
Support Vehicle  
w/Wheels (such as a  
Stryker, Transport  
Truck, or Semi-Truck) 
 

 
M = 79.23 
SD = 2.03 

 
 

 

  

 
M = 20.77 
SD = 2.00 

 
 

 
3. Known Location,  
Detect, and Identify a  
Person with a Hand-Held  
Missile Launcher 
 

 
 

M = 27.69 
SD = 2.03 

 
 

M = 34.23 
SD = 1.66 

 
 

M = 27.31 
SD = 1.43 

 
 

M = 10.77 
SD = 0.01 

 
4. Known Location,  
Detect and Identify a  
License Plate on a  
Vehiclea 
 

 
 

M = 83.85 
SD = 1.67 

 

 
M = 16.15 
SD = 1.52 

5. Stationary Tank or  
Other Vehicle w/Tracks 

M = 83.08 
SD = 2.04 

  

 
M = 16.92 
SD = 2.08 

 
6. Deployed Scud  
Missile Site, Not  
Covered by Camouflage 
 

M  = 68.08 
SD = 3.07   M  = 31.92 

SD = 3.03 

 
7. Hole from Digging (1  
meter by 1 meter or  
larger) 
 

 
M = 35.77 
SD = 1.48 

 
M = 26.92 
SD = 0.01 

 
M = 11.54 
SD = 1.14 

 
 

M = 25.77 
SD = 1.48 

 
8. Heat from a Running,   
but Stationary Car 
 

 
M = 33.08 
SD = 0.01 

 
M = 56.54 
SD = 1.33 

 
M = 5.00 
SD = 2.45 

 
M = 5.38 
SD = 1.13 

Empty cells had no responses classified as the respective type of accuracy or 
error. Standard deviations were calculated by allocation task across 
participants.  

a. No ISR platform was capable of reading a license plate. Thus, correct 
rejection was the only accurate answer.  

 
  



Mean accuracy (hits and correct rejections) by ISR asset type, 
collapsed across set and sensor type for brevity, is presented in 
Table 6.  

TABLE 6. DECISION ACCURACY BY ISR ASSET 

Asset 
 

Accuracy (%) 
 

 
Predator A (MQ-1) 
 

M  = 75.83 

Reaper (MQ-9) 
 

M = 77.08 

Raven 
 

M = 76.88 

Global Hawk 
 

M = 75.21 

 
Shadow 200 (RQ-7) 
 

 
M = 75.00 

 
A summary of free responses to subjective questions is shown 
in Table 7. Data in Table 7 is presented in a generic aggregate 
form here and are not shared because some data contains 
personally identifiable information.  

TABLE 7. FREE RESPONSE SUBJECTIVE QUESTIONS 

Questiona Responsesb  

 
Set 1: What was your strategy 
for making these decisions 
(Examples: Used your gut or 
intuition, guessed, etc)?  

 

 
Experience: 8 out of 10 

No Response: 1 out of 10 
Some guessing: 2 out of 10 

Training: 3 out of 10 
  

 
Set 2: What was your strategy 
for making these decisions 
(Examples: Looked at NIIRS 
ratings, guessed, went off of 
previous decisions, etc)?  

 

 
Experience: 1 out of 10 

Prior Decisions: 1 out of 10 
NIIRS ratings: 8 out of 10 
No Response: 1 out of 10 

General comments about the 
project? 

 
Allocation task not representative of the 
real-world (e.g., operating conditions 

such as time of day or weather, operator 
skill, and updates to sensor packages): 

 3 out of 10 
No comment: 7 out of 10 

Video is least operationally valuable 
type of sensor information: 1 out of 10 

a. Note because some participants had multiple responses the numbers do not 
sum to 10. 

b. Responses categorized into general, paraphrased descriptions. 

Tables 8, 9, and 10 summarize responses to the subjective 
Likert scale questions.  

TABLE 8. ISR AND NIIRS  

Questiona Not at 
All 

A Little 
Bit 

 
Moderately 

 

 
Highly 

 
Expert 

 
1. Are you 
familiar with the 
capabilities 
(sensors, speed, 
etc) of air ISR 
platforms (such 
as UAVs)? 
 

0 
 

1 
 

3 
 

3 
 

0 
 

 
2. Are you 
familiar with the 
National 
Imagery 
Interpretation 
Reconnaissance 
Scale (NIIRS) 
Ratings for 
ISR? 
 

1 
 

6 
 

2 
 

1 
 

0 
 

TABLE 9. PREVIOUS DECISIONS AND CONFIDENCE RATINGS  

Question 

 
No  

Confidence 
(Guessing) 

 
Low 

Confidence 

 
 

Moderate 
Confidence 

 

 
 

High 
Confidence 

 
 

Full 
Confidence 
(Certain) 

 
 
1. Did you 
use your 
previous 
decisions? 
(referring to 
using 
responses in 
Set 1 for Set 
2) 
 

1 2 1 5 1 

 
2. Set 1: 
What is your 
overall 
confidence 
in the sensor 
assignments 
to targets? 
 

1 
 

1 
 

5 
 

3 
 

0 
 

 
3. Set 2: 
What is your 
overall 
confidence 
in the sensor 
assignments 
to targets? 
 

0 
 

1 
 

2 
 

3 
 

4 
 

 



TABLE 10. ISR SYSTEM USEFULLNESS   

Questiona Never 

 
Once 
in a 

While 
 

 
 

Sometimes 
 

 
 

Often 

 
 

Always 

 
Would you find a 
system that 
recommended or 
suggested optimal 
ISR 
platforms/sensors 
for target 
detection tracking 
helpful? 
 

0 
 

1 
 

2 
 

3 
 

4 
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