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Abstract

The ability to represent complex, arbitrary situations in terms of labeled graphs has profound implications
for situational awareness across domains. However, such graphs are fundamentally difficult for manual
processing by experts; although our visual system typically outperforms all algorithms for pattern detection,
a graph with a few as several hundred nodes and edges reveals very little upon visual inspection. Thus,
we are forced to rely on pattern- matching algorithms to extract meaning from graph representations where
nodes, labels and edges represent specific entities, general categories, and relationships. Algorithms,
such as Complex Event Processing (CEP), search a graph for a particular set of relationships between the
categories that make up the ontology of the situation.

In this paper, we will present an empirical method for determining the likelihood that a pattern search will
return a false positive for a given pattern, ontology, and graph. This likelihood is analogous to the signal-
to-noise ratio in traditional sensing schemes. We demonstrate our method using algorithmically generated
datasets and in datasets with known ground truths. We also show scale-free (power-law) behavior in several
graph types, which allows for estimation of maximum graph size before false positives are expected to occur.
Finally, we present a preliminary analytical study that describes the number of arbitrary pattern matches
expected to appear by chance in a larger labeled graph.

In any operationally relevant situation, assigning a confidence or quality metric to data used for decision
making is crucial. The method presented in this paper is one of the first methods for doing so with com-
plex patterns detected in large, highly-interrelated datasets. We believe that an improved understanding of
pattern match quality will improve the usefulness of search techniques applied to social media, operation in-
telligence, and tactical intelligence, while helping to encourage the adoption of modern analysis techniques
for non-human-readable information.
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Introduction

Situational awareness and understanding presents one of the most important challenges for the
modern military. Even as recently as World War II [1], the amount of intelligence information ac-
quired via all available streams was small enough that individuals and small teams were able to
process, understand, and synthesize that information to make informed decisions. This process
used peer review (although not always effectively [10] [12]) as a method of establishing the qual-
ity of both the intelligence and the recommendations [15]. However, this process has become
substantially more difficult as the military has shifted to network-centric warfare [11] [3] [8]. The
number of sensors, the number of platforms, and the speed of information transmission have all
substantially increased; this results in a tremendous mass of continuously acquired measurements
that must be converted into a situational description, and then analyzed to create situational un-
derstanding. The amount of information overwhelms the capacity of individual trained analysts,
and continues to grow. Worse, attempting to parallelize the work among many analysts may not
solve the problem; by dividing a set of interconnected items among many individuals, the criti-
cal links that lead to a full understanding may be arbitrarily severed. The problem becomes a
form of Catch-22: we need to analyze intelligence to identify important links, but to analyze the
intelligence, we need to know which links are important.

A possible solution to this paradox is to analyze the entire set of information simultaneously [9]
[13] [17] [14] [16]. A full description of an arbitrary situation can be represented by a mathematical
structure called a labeled graph, in which the relationships between arbitrary entities (represented
as nodes) are indicated by pairwise links. In a labeled graph, a known event of interest will appear
as a specific structure (i.e. a specific set of labeled nodes and edges). By defining an ontology
(a hierarchical set of categories) to which the labels belong, an unknown event of interest can be
identified by matching an event pattern to a specific set of nodes and edges in the graph. These
event patterns are defined by structural relationships between the elements of the ontology (the
categories of the labels). Thus, a pattern describes a class of event that is to be identified, without
naming the specific entities that might make up that event, and a pattern match occurs when the
specific structure and categories in the data graph match the general pattern. [5]

An example describing a hypothetical event pattern is shown in Figure 1A with a diagram of a cor-
responding ontology. This pattern would be an extremely generic example, in which any incoming
ship carrying anything that could be construed as a threat would trigger a warning on arrival to a
military port. A data graph with a set of unique nodes and edges whose categorical types match
the pattern (Fig. 1A) is shown in Figure 1B. However, even in this simple example, the analysis
can become complicated. Figure 1C shows a similar data graph for which there are no subsets of
graph node and links matching the pattern exactly. We can extend the search by defining a range
of neighbors in which to search; for example, two nodes might be defined as a match if they are
neighbors-of-neighbors and belong to the correct category, even if the interstitial nodes are not
part of the pattern. In Figure 1C, a pattern match is found by allowing one interstitial node in the
result, thus creating a virtual edge shown as a dashed red line. This increases the sensitivity to
events of interest, such as the arrival of a suspect at a particular port coinciding with the departure
of a ship at that port as shown in the example.

Although these examples can be quickly interpreted, large graphs (more than ≈ 50 - 200 nodes,
Figure 1D) become fundamentally difficult for the human eye to process. These hairballs reveal
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very little on visual inspection, and require computational tools to understand. We are thus forced
to rely on pattern-matching algorithms to extract meaning in the form of specific subgraphs match-
ing a general search pattern. This is not a critical flaw; the ability to represent complex, arbitrary
situations in terms of labeled graphs has profound implications specifically because it is amenable
to computational analysis. After a pattern is successfully identified, a new problem arises. Within a
given labeled graph, with labels drawn from a specific set of categories, what is the likelihood that
a search pattern will result in a successful match by chance? This problem becomes extremely
difficult as the graph size increases. Conceptually, the false positive likelihood is related to the
level of connectivity of the graph, the size of the graph, the number of label categories, and the
number of allowed interstitial nodes in the pattern. False positives may arise from a pattern that
is too simple, a graph that is too small, or a category set which does not successfully resolve the
entities. It is also entirely possible that in a situation where many pattern matches do exist, they
could be interpreted as false positives without additional analysis or comparison to guide the user.

In this paper, we investigate the dependence of subgraph isomorphism count (the number of
pattern matches) as a function of ontology and graph size for several canonical graph types. Our
results show scale-free (power-law) behavior, which may in certain cases may allow for estimation
of maximum graph size before false positives are expected to occur. Our research suggests an
empirical method for determining the likelihood (analogous to signal to noise ratio) that a pattern
search will return a false positive for a given pattern, ontology, and graph structure. This empirical
method may prove useful in assigning confidence boundaries to pattern search results, providing
a valuable tactical decision aid in the context of modern situational awareness.

Methods

Algorithmic generation of graphs and ontologies. Graphs were generated using the open
source graph analysis software Gephi 0.9 (https://gephi.org/about/). The plugin program Com-
plex Graph Generators (https://gephi.org/plugins/complex-generators/) was used to generate the
specific graph structures. Three graph types were explored; Erdős–Rényi [6] random graphs,
Barabási–Albert preferential attachment graphs [2], and Watts–Strogatz [18] small world graphs.
The ER graphs were given a fixed edge probability of 0.05. The parameters for the Barabási–
Albert were one edge added or rewired per step, and a 0.45 probability of adding or rewiring. The
parameters for the SW graphs were alpha = 0.05, average degree 4. Each graph was generated
in an unlabeled state with 50, 500, 1000, and 2500 nodes. Each node and edge was assigned a
unique two-letter name drawn in sequential order.

A series of ontologies were then produced in the form of branching tree structures generated by
the Gephi program. The sizes and label distributions of the ontological trees are shown in Table
1. Each ontology represents a different level of expressiveness or resolution; the more unique
categories and divisions between categories, the more accurate a situational description will be.

Surrogate data generation. To assign categorical meaning to the labeled graphs, categories
were assigned to nodes and edges in the graph from the ontologies according to a uniform distri-
bution, using a custom Java program based on the Gephi API. For each graph size and ontology

4



Ship ID: 01

Ship ID: 
02

Location:San 
Diego Port

Passenger:
Suspect

Cargo: 
Bananas

Location:
Los Angeles

Arrival Delay: 
< 5 hours

Ship ID: 
03

Ship ID: 
04

B.

Ship ID: 01

Ship ID: 
02

Location:San 
Diego Port

Passenger:
Civilian

Cargo: 
Bananas

Location:
Los Angeles
Port

Arrival Delay: 
< 5 hours

Ship ID: 
03

Passenger:
Suspect

C. D.

Entity

Relationship

Pattern Match

Distal pattern 
match

Ship

Military Port

Threat

ShipShip

A.

Vehicles

Locations
People

Civilian

Suspect

Airport

Ship Port

ShipPlane

Pattern Ontology

Figure 1. Pattern search of artificial labeled graphs. (A) An
example of a pattern suitable for searching a graph for a complex
event. This pattern is contructed from the elements in an ontology,
a simplified form of which is shown at right. (B) An example of a
hypothetical data graph containing the event of interest described
in (A). The event is present as an isomorphic subgraph and is
highlighted in red. The other nodes and edges are confounding
information in the search that must be discarded. (C) An example
of a hypothetical data graph containing a non-isomorphic event
of interest. In this case, there is an interstitial node between ele-
ments that match the pattern. When pattern search is performed
allowing matches within 2 nodes, the pattern highlighted in red is
found. The dashed line represents the distal pattern match, and
indicates a virtual edge that would appear in the result. (D) A
larger dataset with pattern matches highlighted. Datasets of this
size or larger are very difficult to label and describe.
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Resolution Nodes Branches
Minimal 16 13
Low 32 28
High 64 28
Ultra 256 56

Table 1. Ontology resolution. Each ontology had a specific
number of described categories, defining an effective resolution.
Note that only the minimal and low resolution ontologies, shown in
Fig. 2, produced enough pattern matches for further analysis.

resolution, this process was repeated four times. This created four trials for each configuration on
which the pattern matching algorithm could be run.

A search pattern was created in the form of an acyclic triangular graph. For each ontology shown
in Table 1, this graph was relabeled with categories drawn from a uniform distribution in the same
manner as for the data graphs. Thus for each set of categories, the search pattern was both
random and unique. This method represents the creation of surrogate graph data retaining the
same statistical properties as the original data.

Pattern search algorithm. To perform pattern searches of our labelled graphs, we used the
method of Complex Event Processing, an implementation of the method described by [7]. Details
about the algorithm may be found in [9]. Briefly, the algorithm can be written in pseudocode as

Inpute: Pattern graph P = (Vp,Ep), Data graph G = (V,E), and ontology O.

Initialize by determining shortest path between all pairs.

1. Find descendent nodes of each pattern graph node, Dvp = desc(Vp), in the ontology O.

2. Compute potential matches Mvp in G for each node in Dvp.

3. Transverse paths in Mvp, while storing path length and edge type.

4. Remove nodes that are not connected.

5. Remove nodes that do not meet path length (interstitial node distance) constraints.

6. Remove nodes that do not have the correct edge type in the ontology O.

At the conclusion of the algorithm, the search results contains all nodes and edges that match the
pattern. This search result does not separate individual subgraph isomorphisms, but rather pro-
duces at least one graph which may be composed of several linked isomorphisms. To determine
the specific number of fully matching subgraphs, a brute force subgraph isomorphism separation
algorithm (http://networkx.github.io/index.html, [4]) was run on the pattern match result.
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Figure 2. Results of pattern search on algorithmically gen-
erated random labeled graphs. Erdős–Rényi (ER, circles),
Barabási–Albert (BA, crosses) and Watts–Strogatz (WS, trian-
gles) graphs were generated with sizes ranging from 50 to 2500
nodes, and labeled algorithmically with an ontology. For each
graph type and ontology, pattern search was performed using the
CEP algorithm with the interstitial node limit set to 1, 2 or 4 (cyan,
orange, and green, respectively). (A) shows the results for a low
resolution ontology, shown above the plot. Each point is the aver-
age result for four randomly generated graphs with equivalent pa-
rameters. Grey lines indicate a power-law fit to the measurements.
Dashed sections indicate extrapolation of the fit. (B) indicates the
same measurement as (A) for a more descriptive ontology, shown
above the plot. The inset of (B) shows the measurement again for
an even more branching ontology, and indicates that the number
of random matches decays catastrophically as the ontology size
increases. Error bars are standard error of the mean.
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For each graph and each ontology, pattern search was performed using the CEP algorithm. The
CEP radius (number of interstitial nodes) was set to 1, 2, and 4 to explore the dependence of
pattern detection on pattern flexibility. This created a total of 36 different search results for each
ontology, with each result composed of the average of four trials (3 graph types × 4 sizes × 3
radii). For each graph type at each ontology resolution, the results were fit using a power-law
distribution ( f (x) = γxr ). The results are shown in Figure 2. The average R2 values of the fit were
0.80 (including the direct BA search, with low numbers of matches) or 0.95 (without the direct BA
search results) for the minimal ontology, and 0.99 for the low-resolution ontology.

For graph and ontology combinations in which search results were found for > 3 of the graph
sizes, our results indicate that the number of pattern isomorphisms found in an algorithmically
generated graph can be modeled by a power law. Further, different graph types exhibit different
fit coefficients, suggesting that certain graph and ontology combinations may have characteristic
power-law parameters. Note that in several simulated parameter sets, fitting could not be per-
formed due to the lack of detected pattern matches in the search data; this was the case for
heavily branching (i.e. high resolution) ontologies. An example of the pattern matches found for a
high resolution ontology can be seen in the inset of Figure 2B. The lack of pattern matches indi-
cates that for even relatively small ontologies, graphs must be very large or very widely searched
(i.e. with many interstitial nodes) before events begin to match patterns by random chance. Future
work will incorporate additional ontologies to refine the analysis.

Expected number of subgraphs in random models

Although the general question ”how likely is it that this pattern appears by chance?” is extremely
challenging in directed, labeled tactical networks associated with arbitrary ontologies, we can gain
some insight into this problem by examining some simpler cases. The prevalence of simple pat-
terns (such as triangles) in network models has been studied before and the standard clustering
coefficient of a network is one measure of this [18]. Triangles have a particularly straightforward
interpretation in social networks: if nodes represent people and links represent friendship, then
closed triangles represent the situation where two friends have a mutual friend in common. Open
triangles indicate two friends who dont know each other, or know and antagonize each other.
Comparing these calculations between different social networks, or social networks and other in-
teraction networks such as citations or organization charts, could relate to the way that information
is disseminated. It also applies to tactical networks, in which instead of friends, the elements are
transmitters. An open triangle then might indicate a link with no redundancy, or a link under attack.
And as we discuss elsewhere in this paper, considering patterns that are more complex than tri-
angles has important ramifications for intelligence analysis. Here we review how to calculate the
expected number of triangles in the ER model, and show how this can be extended to an arbitrary
pattern.

It is helpful to introduce a few formal definitions at this point. A graph G has a set of nodes N and
a set of links E with corresponding sizes N and E. Two graphs are the same if they have the same
nodes and the same links. Suppose graph G has two nodes a and b with one link a−b, and graph
H has two nodes α and β with one link α−β . Because they do not have the same nodes, these
two graphs are not equivalent, even though they do have the same structure. The process used to

8



generate the surrogate data in our empirical method is a form of renaming in which the names are
drawn from a predetermined library of elements. If there is a naming f such that f (G) = H, then
G and H are isomorphic. A naming such that f (G) = G is an automorphism of G. A subgraph of G
is any graph that has some of the nodes and some of the links from G. We care particularly about
induced subgraphs, which contain some set of the nodes in G, S, and all the links that connect any
pair of nodes in S. The subgraph induced by S is G|S.

Number of triangles in Erdős–Rényi graphs The classic random graph model, Erdős–Rényi
graphs, is formed from either one of two closely related probability distributions, G(n, p) and
G(n,M). G(n, p) is constructive: start with n labeled nodes and iterate through every pair of nodes;
for each pair (i, j), add a link i− j to the graph with equal probability p. G(n,M) is declarative:
consider the ensemble of all graphs on n labeled nodes with exactly M links; choose one graph
from this ensemble at random. It is clear that these two models are not identical (two selections
from G(n, p) won’t necessarily have the same number of links, for example), but in general they
behave the same way as n. In the empirical analysis, we use the G(n, p) form, but for probability
analysis we use the G(n,M) form.

We begin by picking (uniformly and at random) one graph from G(n,M). In this graph, the proba-
bility that any particular i, j,k triple of nodes is a closed triangle is

# of graphs where i,j,k is a triangle
# total

(1)

How many graphs are in the ensemble? Since there are
(n

2

)
distinct pairs of nodes and M are

connected, there are in total
((n

2)
M

)
different graphs in the G(n,M) ensemble. In how many of those

is i, j,k a closed triangle? Imagine pulling all such cases out of the stack of graphs. In each of
these selected graphs, three of the M links have been fixed, but the other links are unrestricted.
There are

((n
2)−3
M−3

)
ways to arrange the “un-fixed” links among the unused pairs of nodes.

This lets us write the probability that any particular triple is a closed triangle as

f∆ =

((n
2

)
−3

M−3

)
/

((n
2

)
M

)
(2)

Since there are
(n

3

)
distinct triples, the number of labeled triangular graphs we expect to see in a

random graph of size n is (
n
3

)
· f∆ =

4
3

M(M−1)(M−2)
n3−5n−4

(3)

What about G(n,p)? Since each link is included at random independently of the others, the prob-
ability that any particular triple of nodes is a closed triangle is just

(p
3

)
. This is an easier analysis,

but is only easier because the graph itself is an easier model. For most real systems, they are not
modeled well with Erdős–Rényi graphs, and the analysis of G(n,M) is easier to extend to other
graph models.

Arbitrary patterns Triangles form a useful example for studying, but we are more interested in
arbitrary patterns of node size k. Suppose I draw a data graph from G(n,M) and have an arbitrarily
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specified pattern graph P which contains k nodes and l links. Pick some particular subset S of the
nodes of G such that the size of S is k. The probability that G|S is isomorphic to P is, as in Eq. 1,

# of graphs where the graphs are isomorphic
# total

(4)

How many members of the ensemble exist such that G|S∼= P? This question becomes easier if we
introduce the concept of naming. A naming f is just a mapping or one-to-one function from one
set of node labels to another. We write f (G) to indicate the new graph that you get by renaming
all the nodes and links in G according to f . Namings are invertible: f−1 · f (G) = G.

If we pick some particular naming f from the nodes of P to the nodes in S, then how many members
of the ensemble exist such that G|S∼=P? As before, a certain number of links and a certain number
of node pairs are fixed, so the number of graphs satisfying this condition is equal to the number of
ways to arrange the remaining links among the remaining node pairs, which is((n

2

)
−
(k

2

)
M− l

)
(5)

where M is defined as before. This is the number of graphs in the ensemble that have G|S equal
to P under one particular naming. There are k! different namings, and if if we consider a different
naming, say g instead of f , then it might point to a different subset of the ensemble, although this
is not necessarily required. The total number of possible automorphic namings for a particular
pattern P is the size of the automorphism group of the pattern graph, Aut(P).

Computing the automorphism group Aut(P) is currently thought to be as hard as the graph iso-
morphism problem. For real-world graphs, analytical results will not be easily derivable, and there
are no particularly efficient algorithms for computing it. But, since we expect pattern graphs to
be moderately sized compared to the data graphs, this may be more difficult from a theoretical
perspective than from a practical one. For a small pattern graph, computing Aut(P) will likely be
feasible. The calculation of Aut(P) leads us to the final result, which states that the probability that
the induced subgraph for any particular set of nodes S is isomorphic to P is

fp =
k!

|Aut(P)|
·
((n

2

)
−
(k

2

)
M− l

)/((n
2

)
M

)
(6)

This is the likelihood that for a remapping or renaming, a pattern graph P would be remapped
to an automorphism; in other words, it defines how likely a particular subgraph of size (k, l) is to
appear by chance in a random graph of size n. This analysis is not yet general enough to map to
the arbitrary pattern form used in our empirical analysis, but it provides a starting point for further
theoretical understanding of the phenomena of labeled graph automorphisms being generated by
random relabeling.

It is important to note that this analysis does not address the question of ontological resolution, and
therefore cannot be directly applied to our empirical results. However, we believe that fp is a useful
metric for future analytical research into the behavior of pattern finding in labeled graphs. Future
work in this area will include the influence of the ontology on the statistical prediction, as well as
analyzing the influence of attribute on the likelihood of pattern matches. The difficult analytical
nature of this problem underscores the need for an operationally useful empirical method.
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Applications and operational relevance

In our empirical analysis, random graph structures were generated for both the pattern and the
graph data, which were then imbued with ”meaning” by assigning categories drawn from an arti-
ficial ontology. Although this may not appear to have immediate operational relevance, the ability
to make surrogate data has the potential to provide a valuable confidence measure in real-world
situations. In a surrogate data set, the output graphs have the same number of nodes, links and
edges, with the same distribution of category labels. However, the connectivity of the entities
themselves are different each time the process is applied, as the node receiving a particular name
and label will vary for each application of the naming function f . Essentially, the bulk statistics of
the graph are maintained, but the fine structure of the graph is randomized. When this process
is applied to a real-world situational description, the probability of a rare (and hence interesting)
event appearing in the randomized graph is low (see previous section for an analytical descrip-
tion of a similar problem). Our method represents a first step toward computing an operationally
feasible confidence bound on pattern matches found in labeled graphs.

To implement this method, a dataset (tactical, network, social, or other) and a search pattern are
chosen. The pattern search function is a binary operation: either the event of interest described
by the pattern is found or not. To determine the confidence of a match, many data surrogates
are created with the same statistics; this could be performed empirically by reassignment of the
original label set after shuffling. Each surrogate graph is then searched for the pattern of interest,
and the number of subgraph isomorphisms counted. The appearance of a pattern match in the
surrogate data would represent a match by chance, equivalent to a false positive. After the search
is completed in each graph, the statistics of the number of subgraphs detected at each iteration can
be used to compute a confidence interval, describing the expected number of statistically random
pattern matches for the specific situation under analysis. We propose a definition of pattern match
false positive likelihood as

p f =
n̂s

n̂s +n0
(7)

where n̂s is the average number of pattern matches in the surrogate data, and n0 is the number
of pattern matches in the original data. p f is the likelihood that any particular pattern found in the
original data is the result of random occurrences.

For a large set of surrogate data graphs, this empirical method may result in one of three outcomes:
there may be the same number of average pattern matches in the surrogate data, substantially
fewer, or substantially more. In the first case, p f = 0.5, it is equally likely that a pattern match in the
original graph is real or false; this indicates that the pattern match is likely a natural, random oc-
currence and is characteristic of the data set and ontology chosen. In cases for which the number
of pattern matches in the surrogate data is substantially fewer and Equation 7 approaches zero,
it indicates that the pattern match in the original data is likely genuine. If hundreds or thousands
of surrogate graphs are explored, and a pattern match is never found, then it is unlikely that a
detected match in the original data is a false positive. Finally, in cases for which there are substan-
tially more pattern matches in the surrogate data, p f will approach 1; this may be an indicator of
active deception or sensor failure. If many matches are found in the surrogate data, then a reduced
number of appearances in the measured data is unlikely to occur naturally. These three cases are
shown in Figure 3. Each of these three possible outcomes provides guidance for additional action.
The appearance of similar numbers of matching subgraphs in the surrogate data indicates that the
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p f is computed from Eq. 7. The false positive likelihood will range
from 0 to 1. A value of 0 indicates that an event detected in the
original dataset is not detected in any of a large number of surro-
gate datasets. A value of 0.5 indicates an equal number of events
identified in the original and each surrogate data is equal, mean-
ing that a detected event is indistinguishable from a chance event.
As p f approaches 1, it indicates that an unusually low number of
events was detected in the real data, and that there may be active
interference with the measurement set.

event being searched for cannot be uniquely located in the data. This implies that the pattern must
be made more specific, the ontology must be refined with additional categories, or that the data
graph must be made larger by gathering of additional intelligence. When few pattern matches are
found in the surrogate data, it provides justification with a quantifiable confidence for action based
on the intelligence set. When many matches are found in the surrogate data, it may indicate the
presence of a situation more complex than previously assumed or interference with the intelli-
gence gathering. Crucially, the method presented here may provide guidance for the very difficult
question of ”when is enough intelligence enough?” - a question that is not currently addressed with
objective measurement techniques. By extrapolating the power-law fit of pattern matches vs graph
size, it is possible to identify a range of graph sizes for which no pattern match would be expected
to occur randomly. The center of this range is indicated by x-intercept of the solid lines in Figure
2. During operational use of this method, analysis of which canonical graph types best simulate
real data could provide additional guidance on the amount of intelligence needed to observe an
event while minimizing the chance of detecting a false positive. Conversely, the observation that
more specific ontologies lead to fewer random pattern matches (see Figure 2) suggests that in an
operational environment, the ability to scale up or down the specificity of an ontology would be
useful - we could gain confidence about a pattern match in observed data by checking to see if
the match is still there under a more specific ontology.

There are several important extensions of this preliminary research that warrant further study
based on our results. First, it would be valuable to apply this method to a wider variety of graph
sizes and ontology sizes. This would provide a stronger indication that the power-law models
used are the best model for the data. This validation may eventually be provided by further math-
ematical analysis. Additionally, larger datasets based on ”real” (in the sense of generated by hu-
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mans, whether during an exercise or an operation) are needed, especially those that contain some
ground truth that is not readily visible by inspection. Although our analysis focused on a series of
canonical graph types that are easily generated by application of an algorithm, a real-world situa-
tional description in graph form with thousands of nodes may not conform to one of these specific
graph types. From an empirical standpoint, this point is not particularly important; any randomiza-
tion of graph labels produces a valid surrogate. From a theoretical standpoint, it is possible that
for unusual graph connectivities, the isomorphisms vs size curve may be non-monotonic. In such
a situation, a power-law fit would no longer be valid, and the indicated false positive rates could
be misleading. Further study of real-world datasets should reveal if such graphs appear within the
typical scope of pattern-finding applications. Additionally, a complete analytical model of labeled
graphs linked to ontologies could potentially result in more rapid algorithms for determining pattern
match confidence.

Summary

The empirical analysis of pattern matches in surrogate data graphs provides a traceable confi-
dence metric for environments in which graph-based pattern matching will be used as a decision
aid. We demonstrated our method in the analysis of algorithmically-generated randomly labeled
graphs, and have shown that the need for confidence metrics becomes critical as graph sizes
increase. The metric presented in this analysis is clearly valuable in tactical situations, in which
commanders may be asked to make rapid decisions based on large sets of intelligence data which
are not intuitively accessible. It is also likely to be valuable for applications in counter-ISR, counter-
terrorism, maritime objects of interest, business strategies, and wherever else multiple data types
are fused into a graph and searched for patterns.

Confidence metrics also provide guidance for additional actions to be taken as the result of an
event pattern detection. This could help to minimize risk to assets and personnel by preventing
over-collection of data in the field. The use of our metric has the potential to reduce risk caused by
decisions based on undeterminable questions, in which a chance occurrence of an event pattern is
assumed to be a real event. We believe that implementation of confidence bounds will make graph-
based search more useful, more appealing to end users, and contribute less risk to evidence-
based decision making.
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