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Abstract 
 
The amount of information and the diversity of sources of information in tactical environments 
continue to grow, increasing the requirement of intelligence analysts to filter the valuable 
information from the noise. Information is often gathered by individuals of differing expertise in 
a given topic area. Furthermore, it might be inherently more difficult to determine signal from 
noise in some topics. Hence, it would be crucial to understand how both the level of expertise 
and the level of difficulty of a problem impact the ability of a person to correctly classify it. By 
understanding the distribution of errors, it is possible to create methods to overcome them. To 
accomplish this, we analyze the results of an experimental study and develop a mathematical 
model for expertise. To the best of our knowledge, no such model exists. Based on this model, 
we show how we can develop an agent simulation that mimics the expected performance of a 
human agent under different conditions. 
  



1. Motivation 
 
Decision making in command and control (C2) environments requires gathering, processing and 
sharing of all available information to establish intelligence and to increase situation awareness. 
Given the amount of limited time and vast amounts of information and intelligence, it is 
necessary to understand how accurately one may make decisions on information given particular 
circumstances. Often complex criteria play a role in such a decision: trustworthiness (reliability, 
benevolence) of the sources, ability (expertise) of analysts to analyze and filter the information, 
the underlying credibility of the findings, and other network level factors like social influence. In 
this paper, we study the expertise component of this process. We develop a mathematical model 
of expertise based on an experimental study and discuss how this model can be incorporated into 
an agent model for information processing in networks.  
 
Expertise is one of the main determinants of how well information will be judged as correct or 
incorrect by an analyst. In a networked decision making scenario, this results in the information 
to be disseminated or filtered out at individual nodes. Any errors that are propagated within the 
network will lead to both extra work and also to possibly false conclusions. Hence, it is 
important to understand how different factors impact accuracy in decisions at differing levels of 
expertise. There are various models of expertise, but these models tend to be qualitative: they 
describe in which way an expert’s decision making differs from a person with no expertise in a 
topic. However, such models do not provide a good insight into how expertise can be modeled 
mathematically in an agent simulation. How can we model the errors a person makes based on 
their level of expertise? What mathematical model best approximates the type of errors 
expected?  
 
To solve this problem, we choose a data driven approach. We analyze results from a set of 
ongoing experimental studies on information processing, and various results of these 
experiments are studied to answer these questions. In particular, we consider three main 
moderating factors: difficulty of a given problem domain, the amount of information available to 
make a decision and time pressure. We also consider the impact of self-reported domain 
expertise in these experiments. We look at experiments that vary these factors to understand the 
impact they have on the accuracy of decisions. The results presented here are an initial analysis 
of the experimental results and a development of the model for expertise and information sharing 
and processing in C2 environments. We first describe the military relevance and connections to 
intelligence gathering of this study. We then describe the experimental paradigm and some of the 
initial insights obtained from earlier experiments conducted using this paradigm. The next 
section discusses an initial analysis of the experiments and development of a model for agents in 
intelligence scenarios. 
 

1.1. Information Sharing Scenario 
 
The increased variation and volume of sources in intelligence operations is resulting in the 
increased complexity and difficulty to process information correctly and efficiently. This has 
been an area of active research, particularly within the C2 research community. One example of 
an experimental approach is ELICIT (Experimental Laboratory for Investigating Collaboration, 



Information-sharing, and Trust), a platform designed to study organizational behavior and 
performance [1]. Further, this work has resulted in the development of software agent models to 
perform similarly to human participants in ELICIT experiments. Currently, the software agents 
indiscriminately accept the accuracy and value of the factoids coming from cooperating agents in 
the experiments. In operational situations, there is undoubtedly variation in the expertise and 
capability of information sources. Understanding the behavior and tendencies of both human and 
automated sources of information and intelligence to make mistakes will allow both analysts and 
commanders to improve their decision making performance. Such information sharing scenarios 
are present in tactical situations. Two commonly referenced networked environments are COIST 
(Company Intelligence Support Team) and coalition networks. In both of these situations, there 
is a large variation in the trust and capability of entities with which commanders must interact to 
accomplish their mission. The experiments run will provide insight into how well individuals are 
able to process information based on the previously mentioned experimental parameters. This 
will affect the rate of information flow  
 

1.2 Background and Related Work 
 
In the research domains of computer science and artificial intelligence, expert systems or expert 
locator systems have been developed to maximize efficiency and effectiveness for the use of 
expertise in networks. Yagi et al. [4] propose a decision-making system based on expertise 
knowledge in orthodontics. Meyer and Booker [5] discuss the techniques for eliciting and 
analyzing expert judgment for various unique situations and work areas. In addition, Booker and 
Meyer [6] introduce probabilistic and fuzzy logic based theories that have been adopted to make 
decisions under various uncertain situations where information and source credibility is critical. 
Chu-Carroll and Carberry [8] present a computational framework that initiates expert-
consultation sub-dialogues to solve a problem on whether or not an agent accepts or rejects a 
proposal by the other agent.  
 
In addition, Huang et al. [11] propose expertise management systems in organizations to support 
expertise information collection, processing, and distribution by developing a visualization 
technique exploring the expertise space. Li et al. [14] identify expertise networks in online 
communities based on textual information describing users’ feedback and social connections. For 
designing customized expert locator systems, Nevo et al. [15] examine different experts’ 
attributes in two different contexts of expertise seeking: knowledge allocation and knowledge 
retrieval. When expert seekers retrieve knowledge from the knowledge retrieval, they place 
higher emphasis on the expertise level of a source. On the other hand, when expertise seekers 
choose an expert to transfer knowledge to the knowledge allocation, they pay more attention to 
the expert’s benevolence. As seen in [4], [5], [6], [8], [10], [12], [13], [14], [15], although it is 
proposed that diverse intelligent expertise locator systems find the correct expertise in particular 
domains, little work has been done to examine the relationship between the expertise of an agent 
and its decision making ability. 
  
In information systems research, information-sharing behaviors have been studied. According to 
Constant et al. [7], in work settings, information can be perceived as product (like a commodity; 
often called ‘tangible information’ if it is a written document) or expertise (called ‘intangible 
information’ if it is an unwritten information based on individual experience/background). In 



work environments, information sharing behavior can be based on reciprocal relationships. 
However, expertise can mean more than a simple commodity and imply a person’s ‘identity’ and 
‘self-worth.’ Sharing expertise provides pragmatic benefits as well as the expression and 
consistency of the individual’s identity and value. In this sense, sharing expertise can provide 
personal benefits promoting self-esteem, pride, self-efficacy, personal identification with 
colleagues and organizations, obtaining a better reputation and increasing commitment. The 
authors’ experiments support the idea that sharing tangible information in work settings may be 
affected by prosocial attitudes and norms of organizational ownership while sharing expertise is 
more related to people’s own self-expressive needs. 
 
In management/marketing research, relationship between expertise, source credibility, and 
information sharing behaviors have been studied. Thomas-Hunt et al. [9] examine how social 
connectedness and perceived expertise affect the emphasis of unique and shared knowledge 
within functionally heterogeneous groups consisting of experts and non-experts. When an expert 
is less socially connected, he/she is more likely to share unique knowledge. On the other hand, 
socially connected experts tend to emphasize shared knowledge and other members’ unique 
knowledge contributions. Harmon and Coney [23] look at how source credibility can affect 
persuasiveness in buy and lease situations. They show that the impact of source credibility on 
attitude and behavioral intention depends on the situation. In marketing research, the correlation 
between trustworthy source and information credibility is commonly assumed. However, Wiener 
and Mowen [21] show in their experiments that expertise has more influence on information 
credibility than trustworthiness of sources as expert sources affect perceptions of the product’s 
qualities. Similarly, the significant relationship between source credibility and expertise / 
attractiveness is also studied by McGinnes and Ward [22]. Although [9], [21], [22] provides 
good insight on the relationship between expertise and social connectedness or information 
credibility, there has been little effort that investigates how an entity’s expertise affects decision 
making performance.  
 
In organizational behavior and human decision making research, interesting findings on 
relations between trust, expertise, confidence, and accuracy have been explored. Sniezek and 
Buckley [18] study the impact of advice on a judge’s own initial choice. The experiments are set 
up with teams consisting of one judge and two advisors. They are given by a task exposed of 70 
items with two alternatives each, to make a final choice. Judges make final team choices and 
provide confidence assessments under one of the following conditions: dependent, cued, and 
independent. Dependent is a condition that a judge has no basis for choice; cued is that a judge 
selects only after an advice is given; and independent means that a judge makes his/her own 
tentative choice before an advice is given as well as subsequent final choice. Their findings show 
that independent judges performed the best and dependent judges performed the worst. Conflict 
of advisors’ opinions generated less confidence in the advice, which affected the judge’s final 
choice. Consensus of advisors’ opinions increased the judge’s confidence in the advice and 
increasingly affected the judge’s choice. In Sniezek et al. [16], judges make a final decision 
based on all information provided by advisors. If an advisor has high confidence in his/her 
expertise, a judge has high trust in the advisor and is more likely to take the advice from the 
advisor. Yaniv [17] investigates the impact of advice on judgment and the consequences of the 
use of the advice for judgment accuracy. In the experiments, respondents are asked to give final 
judgments based on their initial opinions and an advice is presented to them. The results show 



that (1) the respondents weighted their own opinion more than the advice; (2) the respondents 
with more expertise discounted the advice more; (3) the respondents weighted the advice that is 
more distant from their initial opinion less; and (4) using the advice has improved accuracy 
significantly but not optimally. This work is similar with our work in that a user can use an 
alternative answer to make a final decision. However, in our experiments, in addition to 
providing one alternative answer, three alternative answers are also given as another condition. 
Besides, we vary the difficulty of a problem and time pressure under these two cases of 
providing alternative answers. 
 
In psychology, Perfect et al. [20] study the relation between confidence and accuracy for general 
knowledge and eyewitness memory. Their findings show that there exists correlation between 
confidence and accuracy for general knowledge but not for eyewitness memory. Similarly, 
Sporer et al. [19] support the weak relationship between confidence and eyewitness memory in 
their study. They conduct a meta-analytic review of 30 studies based on staged-event methods 
with “target-present” and “target-absent” lineups. The results show that when choosers make 
positive identification, the correlation between confidence and accuracy was consistently high. 
Besides correct choosers have a higher mean confidence level than incorrect choosers for all 
studies. Similar to [19], [20], our work also looks at the relation between confidence (as a 
measure of expertise) and accuracy. But our work uses two different ways of capturing 
‘confidence’ as a measure of expertise in terms of self-reported expertise and recall expertise 
(i.e., average accuracy in the initial recall phase of the experiment) in order to enhance validity 
of measuring ‘confidence’ related to actual expertise. 

2. Experimental Paradigm 
 
In this paper, we consider an experimental platform to study the expertise of individuals within a 
question answering setting involving general knowledge domain questions. While this situation 
does not replicate the operational situations, this focuses on the individual and its ability to 
accurately solve problems under certain situations. The experimental paradigm that we study 
here is developed by CUNY (City University of New York) Baruch College over many years 
and has been used in many different studies. The experiments make use of a set of general 
knowledge questions, 433 in total. Each question is carefully phrased so that there is only a 
single answer and the answer consists of a single word. The questions have differing difficulty. 
The general difficulty of the questions has been established using a normative study in which the 
questions were asked to a group of 283 students from Baruch College. The question difficulty 
(dj) metric obtained from this study corresponds to the percentage of subjects who answered the 
question correctly. Higher values mean higher difficulty (dj = 1 means 0% of the participants 
answered the question correctly, while dj = 0 means 100% of the participants answered the 
question correctly). As this normative data is obtained from the Baruch College students, all the 
subsequent experiments are also conducted using the same subject pool.  
 
The experiment is setup such that each participant is asked a series of questions. For each 
question, the subject is asked to give an initial answer. This initial answer corresponds to a cued 
recall test. The only retrieval cue the subjects have at this stage is the question. After the subject 
answers the question, they are asked for their confidence in their answer. Next, the participant is 



given either one or three alternate answers from “other players” who have performed the task 
previously. They are allowed to keep their initial answer or choose one of the alternate answers 
as their final answer. The subject is asked for their confidence in their final answer. Finally, the 
subject is shown the correct answer. If their final answer is correct, the subject is notified that it 
has received points for a correct answer. An incorrect answer is not awarded any points. Then, 
the next question is asked (Figure 1). 
 
The choice of alternative answers comes from a database of answers collected using a set of 
experiments prior to the ones we report on here. These early experiments were highly similar to 
the present experiment in their initial recall phase. The database contains the relative frequency 
with which specific answers, both the correct and incorrect answers, are given to a specific 
question. Because questions in the database were not asked equally often, answer frequency was 
normalized within each question. The database was manually cleaned to exclude answers that 
were truly noise, such as “I don’t know,” slang and repeats of words in the question that 
obviously were not possible answers to the question.  
 
We are especially interested in the distribution of incorrect answers. In fact, there are quite a lot 
of questions in our database for which the most frequent answer is not the correct answer. Hence, 
one can argue that a source of difficulty for questions is that they have a very strong lure (i.e., a 
very plausible answer). Overall, high frequency wrong answers tend to be strongly related to the 
correct answer. They may also be high frequency words in the lexicon, and therefore, have 
greater retrieval fluency in general. Another source of difficulty for questions is the number of 
possible answers. For example, a question asking for a continent has only few possible answers 
that are easy to enumerate. However, a question asking for a proper first name may have many 
possible answers. Such a question may be inherently difficult unless one knows the correct 
answer. Quantifying problem difficulty is an ongoing research problem. In this paper, we will 
concentrate on an overall quantitative measure of difficulty as the proportion of times the correct 
answer was given and investigate other qualitative factors leading to this difficulty in future 
work. 
 
In the experiments that we report on here, the questions are organized into three main categories: 

 
• Math & Sciences 
• Arts & Humanities 
• History & Geography 

 
These categories are tuned carefully so that the various statistics for each category is very 
similar. These include the mean and standard deviation of difficulty, and the total number of 
questions within the category. Before any questions are asked, the experiment subjects are first 
asked to rank their own expertise in the three topics: from the topic they feel most 
knowledgeable into the topic they feel the least expert in.  The subjects judge their own expertise 
by ordering these three topics. Three most frequent incorrect answers are chosen for each 
question as possible alternate answers. These answers are associated with a level of credibility 
based on the frequency with which that answer had been given in the answer database.  
 



The participants receive raffle tickets based on the total number of correct answers that they 
receive. We vary two different factors. Experiments can be “timed” or not. In the “timed” 
version of the study, participants lose earnings the longer it takes them to choose their final 
answer (timer starts when alternative answers are first presented). Hence, there is a level of time 
pressure that potentially impacts how they choose their final answer. The task-wide accuracy of 
the initial answer is titrated to 33% correct, by varying the difficulty of the questions presented. 
The titration in these experiments has been very successful. Hence, the overall performance of 
the subjects remains roughly similar for initial answers, but their underlying difficulty changes. 
 
The second factor we vary is whether one or three alternate answers are shown after the initial 
recall phase. In the one alternative answer scenario, the alternative following an incorrect initial 
answer is correct 50% of the time, such that the maximum final success rate is 66%. One third of 
the time both the participant and the alternative are incorrect. In the three alternate answer 
scenario, one of the four answers on the screen (including the three alternatives and the 
participant’s own answer) is always correct, so it is possible in this scenario for the final success 
rate to reach 100%. Thus, in order to make final accuracy data for the one and three alternative 
versions of the task comparable, we will focus our analysis on trials in which the correct answer 
was an option (66% of one alternative trials, 100% of three alternative trials).  
 
 

 
Figure 1. Screen shot of Trivia Experiment seen by the subject. 

 
Figure 1 is a screen capture of the application, where the question is “In what city was the 1962 
World’s Fair?” with the initial response of “MOSCOW”. The initial confidence of this subject 
was 5 out of 7. The subject is given three alternate answers of “PARIS”, “CHICAGO”, and 
“SEATTLE”. The final answer chosen was “MOSCOW” (subject chose not to switch from their 
initial answer) and the confidence remained at 5. However, the correct answer was “SEATTLE”. 
Note that the initial answer and alternative are greyed out during the presentation of the correct 
answer and winnings outcome in order to focus attention on that part of the screen. These 
sections are lit brightly during the initial answer and final decision phases. 



 
In this paper, we present results from all four different versions of the experiment discussed. The 
experiments were run at Baruch College in 2013. Each experiment is conducted for as long as 
the participants need to answer all 120 questions and the total number of subjects tested for each 
treatment is in Table 1. Also note that different subjects were used for each of the variations. 
 
Test Treatment Abbreviation # of subjects 
(1-a) One alternate answer with no time pressure alt1off 33 
(1-b) One alternate answer with time pressure alt1on 39 
(3-a) Three alternate answers with no time pressure alt3off 39 
(3-b) Three alternate answers with time pressure alt3on 37 

Table 1: Description of experiment treatments and number of subjects tested. 

2.2. Definition of Expertise 
 
We have a number of different possible definitions of expertise based on this experimental data. 
 

• Self reported expertise: a scale of 1-3 depending on whether the subject chose the topic 
as his or her top, next lowest choice. Score 1 corresponds to the highest level of expertise. 

• Recall expertise: Average difficulty of questions answered correctly in the initial recall 
phase of the experiment. 

• Meta-cognitive recall expertise: To which degree the reported level of confidence for 
the initial response correlates with the probability that the answer is correct.  

• Selection expertise: The accuracy of the final answer in the three answer version of the 
experiment. In this case, we have chosen the test cases in which they are guaranteed to 
have seen the correct answer. Hence, their expertise corresponds to their ability to pick 
the correct answer from a set of answers, including their own.  

• Meta-cognitive selection expertise: The correlation between the accuracy in the final 
answer and the reported confidence, in the three answer version as well. 

 
Note that each measure has certain drawbacks. For example, a number of measures do not take 
into account the difficulty of the question. Similarly, the self reported expertise lacks precision. 
A person may have two topics of expertise, but they are forced to use only one in this setting. 
Also our setting is limited in modeling expertise in a few dimensions. The subject pool is not 
guaranteed to have individuals who are truly experts in a given topic. Furthermore, the setting of 
trivia questions limits the type of expertise considered. For example, this setting is not 
appropriate for modeling expertise in analytical problem solving that would be required in some 
settings. An example of such a setting would be ranking different options by considering 
different pros and cons. However, it allows us to consider cases where individuals have to judge 
information as fact or noise with varying levels of familiarity with the underlying problem 
domain.  
 
In the remainder of this paper, we will focus on the self-reported expertise and recall expertise. 
The study of meta-cognition expertise related to confidence is a topic of future study. 
 
 



3. Analysis of Experimental Results 
 
In this section, we study the relationship between expertise, problem difficulty, time pressure, the 
amount of information available and accuracy of answers. We will consider different definitions 
of expertise. We then propose a mathematical model of expertise that builds on our findings. 
 
In terms of filtering of the results, we consider question difficulty dj in bins of 0.2 increments. 
The questions with the highest difficulty have difficulty between 0.8 and 1.0. In particular, we 
would like to understand how question difficulty impacts accuracy of decisions, given the other 
factors. Note that we will make no distinction between questions with strong lures and questions 
with a large range of responses. This is a topic we would like to study in future work.  
 

3.1 Accuracy and Problem Difficulty 
 
First, we look at the accuracy of the responses as a function of problem difficulty. We are to 
expect a negative correlation between accuracy and problem difficulty. In looking at the initial 
accuracy, we would also expect that the results are identical for each of the treatments, as at this 
stage the experiments are identical. Figure 2 (a) is a plot of this relationship, which shows the 
negative correlation and identical relationships. Obviously the time pressure and alternate 
answers are not a factor at this point of the experiment. This phase of the experiment is simply a 
recall task.  
 
One can also look at the final accuracy for each of the treatments, where we may be able to start 
to identify potential impact of the experimental variables. We can consider the difference 
between performance when considering the number of alternate answers shown, time pressure 
and the regions of problem difficulty.  For example, looking at questions of high difficulty, we 
see that there is a sorting of performance between alt1 and alt3, where the 1 alternate answer 
experiments show higher performance than the 3 alternate experiments. In the case of alt3, this is 
a form of selection expertise, selecting the correct answer from the four possible answers. It is 
expected that selection accuracy expertise in alt1 case will be better than alt3 because the subject 
is choosing between two answers rather than four answers, which inherently provides increased 
odds. In the alt3 situation, the participant can learn from the feedback provided after each final 
response that the correct answer will also be present as one of the four answers. In the alt1 
situation, they will learn that for the majority of items the correct answer will be one of the two 
options, but it is not always the case.  Also, the “time pressure on” results have a lower 
performance for tests with both numbers of alternate answers.  
 
The number of alternatives makes a difference in final accuracy only for the difficult questions. 
For very difficult questions, it is likely that the initial answer is wrong and that the subject knows 
it is wrong, which increases the likelihood that the correct answer will be provided by the 
alternative and would motivate them to switch to that alternate. In alt1, only 50% of the time that 
switch will yield a correct outcome, yet final accuracy was greater than 50% for the very difficult 
questions. Thus, subjects had some information available to them that resulted in their ability to 
answer correctly more than just the random 50% by switching every time. In contrast, for the 
alt3 condition, final accuracy for the most difficult questions was close to chance (25%), 
indicating that subjects perceived that they had little information guiding them to which of the 3 



alternatives was the correct answer. By adding information, performance was reduced for these 
difficult items. In addition, we filtered out the cases in the alt1 experiments where the initial 
accuracy was 0 and the final accuracy was 0. This case resulted in a bias in the data when 
comparing it with the alt3 data. 

  
 

Figure 2. Initial accuracy (left panel) and final accuracy (right panel), as a function of item 
difficulty, for each of the four treatments. 

3.2 Influence of Self-reported Domain Expertise 

We now consider the impact of self-reported domain expertise of the participants (i.e., labeling a 
smaller number value for high expertise; 1 for highest, 2 for the medium, and 3 for the lowest) 
and their performance in terms of accuracy. We show the relationships between initial and final 
accuracy and problem difficulty. 

  
  

Figure 3. Four treatments (L- initial accuracy, R- final accuracy) showing average 
difficulty of correct initial or final responses for each treatment (high exp =1, med exp = 2, 
low exp = 3). 
We do not see, in Figure 3, significant variation in the mean difficulty of the initial accuracy 
between the time pressure parameter, despite an expected increase in performance without time 
pressure. This is seen in the slight variation in the alt3on and alt3off cases with regard to overall 
difficulty. This aspect of the data requires further study. The next section contains statistical 
analysis of the significance of these data. 
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3.5. Statistical Analysis 
 
We consider the various treatments and their impact on the accuracy of the participants. To study 
the statistical significance of these results, we use the Kolmogorov-Smirnov test (K-S test) [24]. 
This test can be used to determine if two empirical distributions are from the same distribution. 
These tests require a cumulative distribution function, which was obtained by considering the 
cumulative accuracy metrics over question difficulty in .01 increments (i.e. difficulty from 0 to 1 
in steps of .01). The K-S test generates a K-S statistic, D. This is defined for functions F1(x) and 
F2(x), which have n1 and n2 sample sizes.  

𝐷 = 𝑠𝑢𝑝𝑥|𝐹1(𝑥) − 𝐹2(𝑥)| 
 
Then, significance level of the observed value of D to disprove the null hypothesis 
 

Pr(𝑑 > observed) = 𝑄𝐾𝑆 �𝐷 ��
𝑛1 + 𝑛2
𝑛1𝑛2

+ .12 +  .11/�
𝑛1 + 𝑛2
𝑛1𝑛2

�� 

 
So, QKS provides a measure of the probability that the distributions are the same. Below, we 
present the K-S statistics for several relationships.  
 

Table 2: K-S statistics for expertise over all of the trials  
(top: initial accuracy, bottom: final accuracy). 

 High exp Med exp Low exp 
High exp  .0167 .0359 
Med exp   .0266 

 
 High exp Med exp Low exp 
High exp  .0715 .0354 
Med exp   .0751 

 
We consider the distribution of the initial and final accuracy of the difficulty of for each level of 
self-reported expertise. In Table 2, we show the K-S statistics over all of the trials, only 
separated by expertise. We find that there is low significance between each of the expertise, 
overall. That is, there is little difference between the distributions of the difficulty of correct 
responses across each level of expertise. 
 

Table 3: K-S statistics for initial vs. final accuracy for each level of expertise. 

 High exp Med exp Low exp 

Initial vs final .5712 .6561 .2132 

 



 
Figure 4: CDF of initial and final accuracy vs. question difficulty  

for the three expertise levels. 
 
Over all of the responses, we see Figure 4 to illustrate Tables 2 and 3, where the initial and final 
accuracy difference is seen, but the lack of significance of the expertise parameter is shown. This 
plot shows the CDF of the initial and final accuracy of the responses as a function of difficulty. 

 
Table 4: K-S statistics for high expertise over the four treatments against each treatment 

(top: initial accuracy, bottom: final accuracy). 

 
alt1off alt1on alt3off alt3on 

alt1off  .0535 .2306 .2264 
alt1on   .2220 .2212 
alt3off    .0309 
alt3on     

 
 

alt1off alt1on alt3off alt3on 
alt1off  .0999 .4577 .4769 
alt1on   .4865 .5054 
alt3off    .0546 
alt3on     

 

In Table 4, we see the K-S statistics between the four treatments and high expertise. Here, we do 
not see a significant impact due to time pressure. We see slight significance between the alt1 and 
alt3 cases. We also see similar trends for medium and low expertise (not shown).   
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In Table 5, we show the K-S statistics between the initial accuracy for each of the treatments. As 
expected, there is statistically significant difference between the alt1 and alt3 cases, but not for 
time pressure. Table 5 (bottom) also shows the statistics for final accuracy. We would expect a 
larger difference/significance between alt1 and alt3. We see the largest significance when time 
pressure is on. Last, we show in Table 7, the statistics between final and initial accuracy for each 
treatment. Here, the K-S statistics between the initial and final accuracy indicate a significant 
distinction between the two cases, as also shown in Figure 2. The difference in alt1 is greater, 
which may have a larger impact due to lack of confidence in their initial answer or having more 
confidence in the alternate answer. In the alt3 case, guessing between the 3 alternate answers if 
the individual has low confidence in their initial answer results in choosing between the 3 
choices. This is perhaps a reason for the less significant deviation or increase in performance. 

 
Table 5: K-S statistics for initial accuracy for the 4 treatments against each other treatment 

(top: initial accuracy, bottom: final accuracy). 

 alt1off alt1on alt3off alt3on 
alt1off  .0287 .2034 .2048 
alt1on   .2152 .2164 
alt3off    .0235 
alt3on     

 
 alt1off alt1on alt3off alt3on 
alt1off  .1581 .4612 .4733 
alt1on   .5452 .5618 
alt3off    .0351 
alt3on     

 
Table 6: K-S statistics for each treatment, comparing between initial and final accuracy. 

 alt1off alt1on alt3off alt3on 
Initial vs. Final .5873 .7163 .2156 .2225 

 
 
In short, we see significance in the data when comparing the alt1 and alt3 cases, but the 
difference between initial and final is not statistically significant. Additionally, as expected there 
is significance between the initial and final accuracy. According to these statistics, we observe 
that there is significance between the performance between alt1 and alt3, but not as a function of 
time pressure and expertise. In the next section, we will adapt these findings to a model with 
foundations in test theory. 
 

 
  



3.4. Expertise Mathematical Formulation  
 
To form a model of expertise and performance into a mathematical formulation, it is necessary to 
come up with reasonable approximations for the data and then find mathematical representations 
of these relationships. First, we take the initial accuracy (same for both alt1 and alt3) and the 
final accuracy for alt1 and alt3 and find linear and quadratic approximations to the data. This is 
shown in Figure 5.  

Table 8: Regression for initial accuracy and final accuracy for alt1 and alt3,  
expressions as a function of difficulty d and error. 

Data Regression R 
Initial accuracy -1.2d2+.56d+.77 .034 
alt1 final accuracy .069d+.84 .01 
alt3 final accuracy -.55d2-.04d+.86 .03 

 

 

Figure 5. Initial and final accuracy for alt1 and alt3 with  
linear and quadratic approximations. 

We borrow a concept from item response theory (IRT) model [25] to understand how problem 
difficulty can predict accuracy of responses to specific questions. The experiments from which 
this data came used problems with a wide range of difficulty. However, it is likely that in 
operational scenarios, subjects will encounter a larger variation in the difficulty of problems 
tested. Therefore, this model provides a means to model the likelihood of an individual being 
able to correctly identify the solution in various circumstances. A three-parameter logistic (3PL) 
model is used, where the probability of a correct response is determined by difficulty (bi), 
discrimination (ai), and a guessing parameter (ci). We also modified the range r of problem 
difficulty. Based on this 3PL model, we choose to fit the parameters of the following expression 
for the probability of a correct response given subject x: 
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𝑝𝑖(𝑥) = 𝑐𝑖 +
1 − 𝑐𝑖

1 + 𝑒−𝑎𝑖(𝑥−𝑏𝑖)
 

We then take the linear approximation of the accuracy vs. difficulty curves and find the 
parameterization of the impulse response function (IRF) curve that fits each of these 
approximations. The results are shown in Figure 7 and the parameter values are in Table 6. 
Mapping of the experimental results to the IRF will allow for extrapolation of problems and 
expertise outside of what was tested in the experiments. We see a difference between the 
probability of correctly answering a question initially and when provided alternate answers in 
MSE (mean squared error). The implications of such a model are that given the difficulty of a 
question in an agent model, this can be used to predict the accuracy of the assessment of the 
agent for a particular task. Further, mapping of this task to IRF allows for comparison across 
other tasks in this class of questions. 

   

Figure 7.  Initial (left) and alt1 (middle) and alt3 (right) final accuracy vs. problem 
difficulty with data and parameterized IRF best fit. 

Table 9. Best fit parameters for IRF function for initial and final accuracy 

 MSE ai bi ci r 
Initial 3.23 5 0.25 0.0 1 
alt1 Final 0.23 4.5 0 0.3 1 
alt3 Final 1.21 5 0.25 0.1 3 
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4. Conclusion 
 
In this work, we considered a set of experiments to study the impact of expertise on decision 
making ability. Characterization of this metric is important in C2 environments to assist in the 
design of networks to help the commanders and ultimately the organizations maximize their 
efficiency and decision making performance. We have characterized the probability one would 
expect to correctly answer a problem, given question difficulty and explored the impact of recall 
and selection expertise. The analysis of the data shows that there is no significant difference in 
performance in terms of different treatments and self reported expertise levels. The main effect appears to 
be problem difficulty. The only other difference in the final accuracy with 1 or 3 alternate answers, but 
that is hard to compare because the situations are not exactly comparable. One attempt to approach this 
issue is the construction of a mathematical model based on these parameters we have studied. Given data 
to characterize various expertise conditions, this provides us the capability to model such 
behavior in software agents. This serves as a beginning point to the modeling of expertise for 
agents in an information processing task. 
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