ICCRTS 2014
Agile and Adaptive IT Ecosystem, Results, Outlook, and Recommendations (paper 011, track 4)

Harvey Reed (MITRE)
John "Nano" Nankervis (Joint Staff J6)
LtCol Jordon Cochran (OUSD / AT&L)
Rajeev Parekh, US BICES Chief Engineer, (MITRE)
Fred Stein, Col. U.S. Army (ret) (MITRE)
Vision: Assemble IT Capabilities

IT Capabilities can be assembled, by a Capability Assembler, from components offered in Markets. An Authorizing Official uses the assessment of a mission component to authorize it for inclusion in a previously accredited boundary.

LEGEND

<table>
<thead>
<tr>
<th></th>
<th>Mission Component e.g. WebApp</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Core Component e.g. Server</td>
</tr>
<tr>
<td>C</td>
<td>Infrastructure Component e.g. Cloud</td>
</tr>
<tr>
<td>I</td>
<td>Assessment of mission component</td>
</tr>
<tr>
<td></td>
<td>Accreditation boundary for assembled capability</td>
</tr>
</tbody>
</table>
Agile and Adaptive Ecosystem

GENERATE THE FORCE

1. Provide components
2. Offer components in markets
3. Certify components to shared agreements

Multi-Party Engineering grows the AAE:

OPERATIONS

End User Feedback

1. Provide components
2. Offer components in markets
3. Certify components to shared agreements
4. Use Components to assemble capabilities
5. Solicit and respond to feedback from users

Adapt Capabilities to Match Mission Needs
Results 1 of 2

<table>
<thead>
<tr>
<th>Type of Effort</th>
<th>Description</th>
<th>Activity Level</th>
<th>Examples</th>
</tr>
</thead>
</table>
| **IT Capability** | Use a variety of mission and core infrastructure components to assemble an IT capability | Significant | • Joint Logistics Enterprise Data Sharing (JLEDS), complete
• C-130 Electronic Flight Bag, in progress |
| **New components; components harvested by deconstructing legacy components** | Employ methods that range from community-wide data calls to identify new and/or potentially reusable services, to harvesting as a result of legacy deconstruction. Some components are traded across joint and/or family of systems organization boundaries. | Significant | • Global Command and Control System – Joint (GCCS-J) and ACF (Agile Client Framework), complete
• Defense Intelligence Information Environment-Framework (DI2E-F), in progress
• Theater Battle Management Core System-Unit Level (TBMCS-UL), Command and Control Information Systems / Command and Control Air Operations Suite (C2IS/AOS), in progress |
| **Hosting, platform** | Engage in efforts ranging from classic hosting to cloud migration | Significant | • Global Combat Support System – Air Force (GCSS-AF), complete
• Federal Risk and Authorization Management Program (FEDRAMP), complete
• CIO Cloud Strategy, complete
• Defense Information Systems Agency (DISA) Cloud Broker, in progress |
Results 2 of 2

<table>
<thead>
<tr>
<th>Type of Effort</th>
<th>Description</th>
<th>Activity Level</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Mobile | Effort to use smartphones and other mobile devices | Very significant | • CIO Mobility Strategy, complete
 | | | | • National Geospatial-Intelligence Agency (NGA) Geospatial Intelligence (GEOINT) App Store, in progress
 | | | | • DoD Mobility, in progress |
| Marketers and federation | Broad need to trade components across Title 10 and other organization boundaries. | Emerging | • Combatant Commands (COCOMs) and Services, in progress |
| Component cybersecurity reciprocity | Ability to trade components across designated Authorizing Official (AO) boundaries | Emerging | • DoD Widget Working Group (WG), in progress |

© 2014 The MITRE Corporation. All rights reserved.
Derived from ICCRTS 2014 paper 011 of same title, MITRE public release 14-1857
Maturity Scale (1 of 2)
Based on Multi-Party Engineering Tenets

<table>
<thead>
<tr>
<th>Multi-Party Engineering Tenet</th>
<th>Example Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Provide Components</td>
<td>Both the Agile Client and Ozone Web Framework marketplaces demonstrate that program offices can build and/or acquire a component for their own use.</td>
</tr>
<tr>
<td>2. Certify components to Shared Agreements</td>
<td>Ongoing activities within DI2E-F aim to understand what it means for the community to agree (certify) that a service (component) is suitable for reuse, at least within the certifying community. Activities within DISA and NSA are seeking approaches to standardize vetting of mobile apps.</td>
</tr>
<tr>
<td>3. Offer Components in markets</td>
<td>Some markets are relatively mature, such as the NGA GEOINT app store; other markets are only beginning to develop. In some tactical cases, the DoD does not use markets in order to prevent changes to component configuration in the field.</td>
</tr>
</tbody>
</table>
Maturity Scale (2 of 2)
Based on Multi-Party Engineering Tenets

<table>
<thead>
<tr>
<th>Multi-Party Engineering Tenet</th>
<th>Example Activity</th>
</tr>
</thead>
</table>
| 4. Use components to assemble capabilities | • GCSS-AF presents a very mature example of full-service hosting
• Some early examples of dedicated function-assembled capabilities (e.g., JLEDS) are appearing.
• For dashboards, a server hosts several instances of web apps that are visualized as tiles in a browser for the purpose of organizing data for the user
• Rapid assembly of mobile apps is gaining popularity. The DoD CIO and DISA are establishing strategies. |
| 5. Solicit and respond to feedback from users | MPE grows an AAE over time, at many scale levels by using feedback from end users as input to the requirements and governance of markets. No central planning takes place; however, developers receive feedback from users through local and community centers of federated governance. Some feedback loops are emerging at the direct, community, and enterprise levels. The feedback loops are ultimately the most important feature of the ecosystem |
Challenges

1. Cybersecurity reciprocity for mission-oriented software-only components.
2. Create a business model(s) that enables repeatable and rapid acquisition of components and assembled capabilities.
3. Market federation to enable trading of components via markets across Title 10 and other boundaries.
4. Build a community(s) that facilitates highly matrixed sharing of practices and case studies across direct, community, and enterprise efforts.
5. Create and maintain a baseline of infrastructure and platforms that host various types of components.
Outlook

- **JIE**
 - Currently the bulk of direct, community, and enterprise efforts using Multi-Party Engineering are developed, deployed, and operated in the context of the U.S. and regional and mobile networks that are evolving to the JIE.

- **Mission Partner Environment**
 1. The components, markets, and assembled IT capabilities are starting to add value in the JIE. The value will be fully realized once DoD programs can deploy assembled capabilities to operational networks, including the Mission Partner Environment.
 2. The agreement structure required for assembling IT capabilities resembles the agreement structure in Mission Partner Environment
Changing Perspectives

Today:
Each system requires
One dedicated program office

Tomorrow:
Each assembled capability requires
Multiple program offices

Competencies: Provide components, Assemble capabilities, Manage dependencies
Recommendations

1. Create a nominal component lifecycle:
 – Foster agreement among stakeholders across direct efforts as to the generic and repeatable nature of cybersecurity actions.

2. Create agreed 8510.01 product-level Security Assessment Reports (SARs) for each component type:
 – This is in contrast to current 8510.01 SAR templates, which are oriented toward system development.

3. Create a nominal component adoption “organizational readiness” scale:
 – Ensure organizations are aware of the change of perspectives, and challenges to meet.

4. Create an enterprise roadmap for enabling adoption of components and assembling capabilities:
 – High-level goals for the enterprise, such as that expressed by JIE.
 – Must be guided by feedback from end users and direct efforts.
Conclusion: 2014 is a “Tipping Point”

- **Increasing need**
 - World events happen at an accelerating pace
 - Adversaries increasingly agile

- **Compelling Vision**
 - Commercial industry creating component technology at an accelerating pace
 - Practices starting to come into focus, i.e. Multi-Party Engineering which grows an Agile and Adaptive Ecosystem

- **Closing of Current Options**
 - Declining budgets
 - Very few “new starts” for big systems

- **Increasing Momentum**
 - DoD starting to adopt and understand necessary changes
 - Industry organizing to understand, partner and help drive change, i.e. Industry Advisory Group (part of AFEI/NDIA)
Vision: Assemble IT, Assemble C/JTF

IT Capabilities can be assembled and then populated into a federated mission network of a C/JTF; where the mission network is itself assembled via JMEI (Joining, Membership, Exiting Instructions).

C2 Agility
Enabled by:
- MPE Tier 2
- Agile & Adaptive Ecosystem
- Multi-Party Engineering
Team

- **Authors**
 - Harvey Reed, Multi-Party Engineering, MITRE, hreed@mitre.org
 - John Nankervis, Mission Partner Environment, CIV Joint Staff J6, john.t.nankervis.civ@mail.mil
 - LtCol Jordon Cochran (USAF), OUSD(AT&L), jordon.t.cochran.mil@mail.mil
 - Rajeev Parekh, US BICES Chief Engineer, MITRE, rparekh@mitre.org
 - Fred Stein, Col. U.S. Army (ret), Network Centric Warfare, MITRE, fstein@mitre.org
- **POC**
 - Harvey Reed, hreed@mitre.org
- **Contributing**
 - Robert (Pat) Benito, Multi-Party Engineering, MITRE, rbenito@mitre.org
 - Chris Magrin, DISA PEO-C2C Chief Engineer, MITRE, cmagrin@mitre.org
 - Diane Hanf, Multi-Party Engineering, MITRE, dhanf@mitre.org
 - Michelle Casagni, Multi-Party Engineering, MITRE, mcasagni@mitre.org
Multi-Party Engineering is emerging from Community and Direct Efforts