

U.S. Army Research, Development and Engineering Command

Providing Agility in C2 Environments Through Networked Information Processing: A Model of Expertise

Kevin Chan, Jin-Hee Cho, US Army Research Laboratory	ICCRTS 2014
Sibel Adali, Rensselaer Polytechnic Institute	Track # 4
Jennifer Mangels, Olta Hoxha, Ksenia Lila, CUNY Baruch College	Paper # 33
Damon Abraham, CUNY Graduate Center	June 17, 2014

- Decision making in command and control (C2) environments requires gathering, processing and sharing of all available information to establish intelligence and to increase situation awareness.
- Complex criteria play a role in such a decision:
 - trustworthiness (reliability, benevolence) of the sources
 - ability (expertise) of analysts to analyze and filter the information
 - underlying difficulty/complexity of the decision space
 - other network level factors like social influence

- Summarized experiments by CUNY that study the expertise of individuals who answer general knowledge domain questions in an experimental setting
- Studied the expertise and difficulty component of this process
- Incorporated an initial mathematical model of expertise and difficulty into an agent model for information processing in networks

Connections to C2 and ELICIT

Command and Control (C2)

- Developed distributed information sharing framework that enhances situation awareness
- Predicted correctness of information sharing, given specific level of problem difficulty

Agent Models

- Developed ELICIT- based and other agent based models for information sharing scenario
- Predicted correctness of information processing, given various levels of problem difficulty

ARL

• Set of 120 questions, titrated to achieve initial accuracy of .33

Test	Treatment	Abbreviation	# of subjects
(1 - a)	One alternate answer with no time pressure	alt1off	33
(1 - b)	One alternate answer with time pressure	alt1on	39
(3-a)	Three alternate answers with no time pressure	alt3off	39
(3-b)	Three alternate answers with time pressure	alt3on	37

Table 1: Description of experiment treatments and number of subjects tested.

• Cleaning of data, titration breakers, confused participants

UNCLASSIFIED / APPROVED FOR PUBLIC RELEASE

Experiment Setup

Demographics

- College students
- Expertise of domains

Metrics

- Initial and Final Accuracy
- Initial and Final Confidence

Treatments

- Alternate answers: {1, 3}
- Time pressure: {on, off}

Mean difficulty of correct accuracy vs. expertise for each treatment

Correct answers don't exhibit significant differences when it comes to self-reported expertise

- Initial and Final accuracy versus problem difficulty
- Data Cleaning: Initial accuracy (removed wrong|wrong for alt1)

Based on the number of alternate choices vs. problem difficulty, we see an increase in accuracy

- Kolmogorov-Smirnov test (K-S test) determines if two empirical distributions are from the same distribution
- CDFs, $F_1(x)$ and $F_2(x)$

$$D = \sup_{x} |F_1(x) - F_2(x)|$$

• Q_{KS} is a measure of the probability that the distributions are the same

$$\Pr(d > \text{observed}) = Q_{KS} \left(D\left(\sqrt{\frac{n_1 + n_2}{n_1 n_2}} + .12 + .11 / \sqrt{\frac{n_1 + n_2}{n_1 n_2}} \right) \right)$$

• Initial Accuracy (less significant difference in performance)

	alt1off	alt1on	alt3off	alt3on
alt1off		.0535	.2306	.2264
alt1on			.2220	.2212
alt3off				.0309
alt3on				

• Final Accuracy (significant difference in performance)

	alt1off	alt1on	alt3off	alt3on
alt1off		.0999	.4577	.4769
alt1on			.4865	.5054
alt3off				.0546
alt3on				

Minor statistical significance between accuracy for different expertise

• Initial Accuracy (little statistical significance)

	High exp	Med exp	Low exp
High exp		.0167	.0359
Med exp			.0266

• Final Accuracy (little statistical significance)

	High exp	Med exp	Low exp
High exp		.0715	.0354
Med exp			.0751

- Significance is observed:
 - when comparing the *alt1* and *alt3* cases
 - between the initial and final accuracy
- No significance is observed with respect to the function of time pressure and expertise

 Regression of initial and final accuracy can inform agent models of accuracy given problem difficulty

Data	Regression	R
Initial accuracy	-1.2d ² + .56d + .77	.034
alt1 final accuracy	.069d + .84	.01
alt3 final accuracy	55d ² 04d + .86	

- Use IRT to understand how problem difficulty can predict accuracy of responses to specific questions
- Three-parameter logistic (*3PL*) model

$$p_i(x) = c_i + \frac{1 - c_i}{1 + e^{-a_i(x - b_i)}}$$

- b difficulty
- a discrimination, slope
- c-pseudo-guessing

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ARL

- Expertise / training impacts decision making ability; however, observations do not show any statistical significance in decision making performance
- Problem difficulty vs. decision making performance shows statistical significance
- Mathematical model based on experimental parameters provides capability to configure software agents to match the trends observed in the human experiments

Military Relevant Experiments

- Create a military relevant study
- Compare against existing normative study

UNCLASSIFIED / APPROVED FOR PUBLIC RELEASE

Thank You!

Contact us at: Kevin Chan U.S. Army Research Laboratory kevin.s.chan.civ@mail.mil

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ARL

CLASSIFIED / APPROVED FOR PUBLIC RELEASE