Advances in Systems and Technologies Toward Interoperating Operational Military C2 and Simulation Systems

Dr. Mark Pullen, George Mason University C⁴I Center, USA mpullen@c4i.gmu.edu

Lionel Khimeche Direction Générale pour l'Armement (DGA), France lionel.khimeche@dga.defense.gouv.fr

Presentation Overview

- Introduction: the need for C2SIM
- Early prototypes
- NATO MSG-048
- NATO MSG-085
- Future work
- Conclusions

NOTE: This is about capabilities, not experiments.

Introduction: The Need for C2SIM

Vision

- We are working toward a day when the members of a coalition interconnect their networks, command and control (C2) systems, and simulations simply by turning everything on and authenticating, in a standards-based environment.
- This will be major step forward in C2 for coalition agility.

BML Purpose and Operation

- Facilitates C2-Simulation interoperation
 - Exchange of Orders and reports in standard format
- Current architecture uses a repository service to hold state submitted by client C2 and Simulation systems
 - Web service with XML input Network Centric
 - Real-time database enables schema translation
- Now using SISO Coalition BML (C-BML) Phase 1 standard
- Mechanism for shared initialization of all systems required

Roots of C-BML

- "Train as you fight" requires using operational C2 systems as interface to simulations
 - Implemented with human "puckster" or "stove pipe" computer interface
- US Army SIMCI conducted a successful experiment to remove ambiguity at the C2SIM interface by replacing the free text of military orders and reports with a standardized vocabulary
- US Defense M&S Office supported a broad effort in Web technologies for interoperation
 - Including C2SIM based on MIP C2IEDM (now JC3IEDM)

Scope of SIMCI Experimental BML

Figure 1: Scope of SIMCI Experimental BML in 2003

Roots of C-BML Multinational

- France DGA developed C2SIM capability using
 - APLET simulation for mission planning
 - faster than real time
 - SICF C2 system
- NATO ET-016: France and USA
 - Interoperation of national prototypes stimulated NMSG interest
- SISO
 - Convened a Study Group to consider standardizing BML

Proof of Principle: MSG-048

NATO MSG-048

- ET-016 stimulated a multinational effort to show technical feasibility of Coalition BML (C-BML)
 - Canada, Denmark, Germany, the Netherlands, Norway, Spain, Turkey, UK and USA
 - Open framework to establish coherence between C2 and M&S
 - New open, system-independent, community standards and protocols.
- Work areas:
 - Establish requirements for the C-BML standard
 - Assess its usefulness and applicability of C-BML in support of coalition
 - Educate and inform the C-BML stakeholders

MSG-048 Technologies

- Server-based architecture
 - Simplifies development environment each client can be tested individually
 - Provides a measure of fault-tolerance does not require that all C2SIM system-of-systems are constantly available
- C2 systems
 - Battle View (Canada), SICF (France), ISIS (Netherlands), NORTaC-C2IS (Norway), ICC (UK), ABCS (USA)
- Simulation systems
 - UAV-SIM (Canada), APLET (France), SIMBAD (Spain),
 JSAF (UK), OneSAF (USA)
- Supporting software
 - C2LG GUI (Germany), SBMLserver (USA)

MSG-048 2009 Architecture

MSG-048 Results

- Parallel activity by SISO C-BML PDG to define a standard
 - Progress made but not as smoothly
 - Slower than most stakeholder found satisfactory
 - Produced results during following phase
 - MSG-085 used schema from a US effort
- Final Experimentation 2009
 - Work with operational military SMEs acting as brigade staff
 - Intensive preparation over Internet (new approach at the time)
 - Integration events in Portsmouth, UK and Paris, France
 - Counter-insurgency scenario with Canadian, French, Norwegian, UK, USA simulated units
- Succeeded as Proof of Principle despite difficulties
- Won NATO Scientific Achievement Award 2013

MSG-048 Example: French COA

Proof of Concept: MSG-085

NATO MSG-085

- Chartered near end of MSG-048 due to high promise
 - To support standardization and show operational relevance
 - Added participating nations: Belgium and Sweden (also interest by Italy and Australia)
 - Also added operational military expertise
- Organized into Technical and Operational Subgroups
 - Also, orthogonally, Common Interest Groups:
 - Autonomous/Air, Land, and Maritime Operations; Joint Mission Planning, and Infrastructure
- Recognized need to add MSDL to C-BML
 - In first year (2010), participants implemented MSDL
 - Which in turn showed MSDL/C-BML incompatibility

MSG-085 and SISO

- MSDL standard was approved in 2009
- In 2012 SISO completed balloting C-BML Phase 1
- Two versions approved:
 - "full" intended to address very wide range that can be represented by the JC3IEDM
 - "light" facilitates rapid implementation
- Standard approved May 2014
- Delays in approval resulted in MSG-085 nations having 4 different schemas implemented

MSG-085 activities and events

Multiple Server Implementations

- MSG-048 Scripted BML (SBML) server from GMU had added features:
 - integrating multiple MSDL scenario files
 - translating among various semantically-equivalent schema
 - web-based coordination
- VMASC developed high-throughput CBMS documentbased server
- FKIE implemented document-based server independently
- Commercially based WISE-SBML server builds on SBML (10x or better performance)
- FKIE and WISE-SBML servers interoperate to distribute communications and load

Linked Server Architecture

MSG-085 Final Demonstration

- Conducted at Fort Leavenworth Kansas
 - In collaboration with Mission Command Battle Lab
- Featured Joint and Combined Mission Planning
- Complexity similar to MSG-048 but with major differences:
 - Network sophistication: two linked servers; three schemata; two sites participated via Internet
 - Setup process: MSG-048 was chaotic; MSG-085 "just worked"
 - Audience impression: MSG-085 worked very well
- Proved the concept that C2SIM in the form of MSDL and C-BML is ready to be tested in real coalition operations.

MSG-085 Final Demonstration Architecture

Conclusions / Way Forward

- C2SIM concept has made steady progress over the last decade
- Both NATO and SISO have continued progress toward the day when military coalitions will be able to "plug in" their C2 and simulation systems to interoperate
- However, much remains to be accomplished:
 - Engage the operational military community as users
 - Expand the compatibility and scope of MSDL and C-BML

