

A Probabilistic Ontology Development Methodology

International Command & Control Research & Technology Symposium June 16-19, 2014

Richard J. Haberlin Jr.(EMSolutions)Paulo C.G. da Costa (George Mason University)Kathryn B. Laskey(George Mason University)

Background

An ontology is an explicit, formal representation of knowledge about a domain of application. This includes

- Types of entities that exist in the domain;
- Properties of those entities;
- Relationships among entities;
- Processes and events that happen with those entities;

where the term entity refers to any concept (real or fictitious, concrete or abstract) that can be described and reasoned about within the domain of application [Costa, 2005].

"An ontology is an explicit specification of a conceptualization [Gruber, 95]."

- Ontologies provide a hierarchical structure of entity classes and a formal way of expressing their relationships
 - First-order expressivity
 - Supports logical reasoning
- There is significant literature on engineering traditional ontologies
- Ontologies lack built-in, principled support to adequately account for uncertainty
 - Annotating ontologies with simple probability annotations fails to convey structure of probabilistic representation
 - Less expressive probability schemes do not convey ontology structure, and so are inadequate

Probabilistic Ontology Defined

Incertainty Ontology

A *probabilistic* ontology is an explicit, formal representation of knowledge about a domain of application. This includes

- Types of entities that exist in the domain;
- Properties of those entities;
- Relationships among entities;
- Processes and events that happen with those entities;
- Statistical regularities that characterize the domain;
- Inconclusive, ambiguous, incomplete, unreliable, and dissonant knowledge related to entities of the domain;
- Uncertainty about all the above forms of knowledge;

where the term entity refers to any concept (real or fictitious, concrete or abstract) that can be described and reasoned about within the domain of application [Costa, 2005].

A probabilistic ontology extends a traditional ontology to represent uncertainty.

Probabilistic Ontology

- Integrates inferential reasoning power of probabilistic representations with first-order expressivity of ontologies
- Provides a means to represent and reason with uncertainty
- Limited literature on construction

Comprehensively describes knowledge about a domain and the uncertainty embedded in that knowledge in a principled, structured and sharable way [Brisset, 2003]. *"It would be interesting to have a tool guiding the user on the steps necessary to create a probabilistic ontology and link this documentation to its implementation [Carvalho, 2011]."*

 Suppose an ontology of organisms contains the following classes and relationships:

- Humans *usually* have:
 - 2 arms & 2 legs
 - 10 fingers & 10 toes
- However, if a man loses a limb....

– Is he no longer human? **EMSolutions**

Premise of an argument can be uncertain (e.g. Humans have 2 legs): (in)validity of the argument imposes no condition on the certainty of the conclusion (an amputee is Human).

The Problem

- The Semantic Technologies (ST) community needed a comprehensive methodology for the development, implementation, and evaluation of probabilistic ontologies
 - Ontology use is on the rise
 - A means to incorporate uncertainty is a necessity
 - Limited literature on production of probabilistic ontologies
- Ontological engineering ensures ontologies developed for knowledge-sharing and reuse are explicit, logical and defensible
- Standard ontological engineering methods provide insufficient support for complexity of probabilistic ontology development

A similar methodology is needed for development of probabilistic ontologies

Create a systematic approach to probabilistic ontology development

- Facilitated through a reference architecture
 - Formalizes the application of the methodology
 - Extensible to various domains
- Follows an iterative methodology applicable to any Systems Engineering development process
 - Allows continuous expansion and evaluation
 - Simplifies development and logic checking through spiraling
- Ensures the implemented design meets requirements

The Process of Probabilistic Ontology Development

Reference Architecture for PO Development

PO Development Methodology (PODM)

Probabilistic Ontology Development Methodology (PODM)

- PODM addresses evolution of requirements into an ontology that is probabilistically-integrated
 - Explicitly describes the iterative tasks required to produce a PO with in-situ evaluation steps
- Suitable for both spiral and waterfall development processes
- Application of PODM
 - Specific decision problem
 - Grounded in an inclusive ontology representing its entities
 - Incorporates probabilities to represent uncertainty

Establishes a solution grounded in an inclusive ontology representing its entities and incorporation of probabilities to represent uncertainty

PODM in Spiral Development Cycle

	Plan Next Spiral (UP: Inception)		Ana	lyze and Design UP: Elaboration)
	Project Planning		Analysi Phase	s Design Phase
	SDLC Phase			
	PODM Activity	Waterfall	Spiral	Unified ament Process attrib
	Frame	Planning Analysis Design	Plan Analyze & Design	Inception Elaboration
	Ontology Development Probability Incorporation Refinement Evaluation	Implementation	Develop & Test	Construction
	Operation	Support	Operate & Support	Transition
	Maintain system Upgrade system Support users Evaluation			Ontology development Probability incorporation Refinement Evaluation
Or MSO	UP: Transition)		Develo	op and Test Mode JP: Construction)

Probabilistic Ontology Development Methodology

Maintenance, improvement and operational support tasks to maintain currency on the current build and support user operation.

processes

 Ensures interim steps evaluated for valid relationships and correct logic

Frame Activity

- Based on the Overarching and Spiral Objective Statements
- Defines the Spiral Core Model
 - Prime Queries
 - Tier-one Attributes
- Scopes the spiral with the stakeholder's requirements and constraints

The Prime Queries and their associated Tier-one attributes define the spiral Core Model iterated in the construction cycle to create the necessary PO for inferential reasoning

Ontology Development Activity

- Summarizes engineering tasks required to produce a working ontology
- Selection of an ontological engineering methodology is context dependent
- Fidelity of the ontological model is context dependent
- There are tasks and products common to each of these processes

Probability Incorporation Activity

Prime Query + *Tier-1 Attributes* = *Spiral Core Model*

Completed Military Ship PO

From an AOR-specific library (ontology), the MilShip PO infers the warship cass of an unknown contact based on limited or conflicting reports of varying pedigrees (uncertainty).

Evaluation Activity

Problem

- Ontological engineering methodologies are unsuitable for production of probabilistic ontologies.
- The literature on probabilistic ontology development is extremely limited.

Solution

- Reference Architecture for Probabilistic Ontology Development
- Probabilistic Ontology Development Methodology

A Probabilistic Ontology Development Methodology

Richard Haberlin Paulo Costa Kathy Laskey