The Best of All Possible Worlds: Applying the Model Driven Architecture Approach to a JC3IEDM OWL Ontology Modeled in UML

Dr. Francisco Loaiza
Dr. Steve Wartik
Dr. Dale Visser
Mr. John Thompson
Mr. Edward Kenschaft

19th ICCRTS, 2014
Background

• Traditional information modeling – as exemplified by data modeling for database implementations – is focused on *processes*, which generally leads to a tight coupling between the resulting model and how an organization uses information to support its operations.

• These models are driven by the current state of *how* things are done, instead of expressing *what* the objects involved are.

 • This causes data interoperability problems due to procedural variability – there are many ways to skin the *procedural cat*.

• A modeling approach that emphasizes the *what* – the nature of the objects in the domain being modeled – can better support information models with constructs of broader applicability and durability across the enterprise.
Desired Capability

- Ability to model information more flexibly than with standard ER notation, and, at the same time, be able to leverage the gains provided by the application of the Model Driven Architecture (MDA) approach

- Issue:
 - Semantic modeling well supported with OWL but MDA requires UML

- Approach investigated:
 - Use Ontology Definition Metamodel (ODM) to model OWL in UML
 - Treat resulting model as an MDA Platform Independent Model (PIM)
 - Apply the MDA tool set (i.e., Query-View-Transformation language) to the OWL PIM to automatically generate desired MDA Platform Specific Model (PSM)
 - Use standard CASE tool capabilities to automatically produce executable code
Task: Capture a tree-like decomposition of container contents
RDBMS Use Case

OWL Modeling
ObjectItemAssociation Subview

OWL UML PIM
RDBMS Use Case

OWL Modeling
objectProperties for ObjectItemAssociation subview

OWL UML PIM
OWL Modeling
dataTypeProperties for ObjectItemAssociation subview
RDBMS Use Case

OWL UML PIM Finalized
Resulting RDBMS PSM after QVT Transformation
RDBMS Use Case

CASE Tool Generation Capability
RDBMS Use Case

```
SET FOREIGN_KEY_CHECKS=0;

DROP TABLE IF EXISTS `objectItem` CASCADE
DROP TABLE IF EXISTS `objectItemAssociation` CASCADE
DROP TABLE IF EXISTS `objectItemStructure` CASCADE

CREATE TABLE `objectItem`
(
  `objectItemID` DECIMAL(20) NOT NULL,
  `categoryCode` VARCHAR(6) NULL,
  `nameText` VARCHAR(255) NULL,
  PRIMARY KEY (`objectItemID`)
) TYPE=InnoDB

CREATE TABLE `objectItemAssociation`
(
  `objectItemAssociationID` DECIMAL(20) NOT NULL,
  `categoryCode` VARCHAR(6) NULL,
  `subcategoryCode` VARCHAR(6) NULL,
  `objectItemSubjEID` DECIMAL(20) NULL,
  `objectItemObjEID` DECIMAL(20) NULL,
  `ActionTaskEID` DECIMAL(20) NULL,
  PRIMARY KEY (`objectItemAssociationID`),
  INDEX `objectItemObjEID` (`objectItemObjEID` ASC),
  INDEX `objectItemSubjEID` (`objectItemSubjEID` ASC),
  INDEX `ActionTaskEID` (`ActionTaskEID` ASC)
) TYPE=InnoDB

CREATE TABLE `objectItemStructure`
(
  `objectItemStructureEID` DECIMAL(20) NOT NULL,
  `nameText` VARCHAR(255) NULL,
  `primaryKeyword` VARCHAR(255) NULL,
  PRIMARY KEY (`objectItemStructureEID`),
  INDEX `objectItemEID` (`objectItemEID` ASC)
) TYPE=InnoDB
```

Executable SQL Script
XML/XSD Use Case

Goals

- Support interoperability among DoD systems
- Improve information consistency and correctness
- Demonstrate the value of Model Driven Architecture in XML-based message exchange
Resulting XSD Model after QVT Transformation

XML/XSD Use Case

19th ICCRTS 2014
Resulting XSD Model after QVT Transformation
XML/XSD Use Case

Package hierarchy generated by the QVT transformation
XML/XSD Use Case

CASE Tool Generation Capability
<xs:element name="ObjectItemAssociation"
type="mird:ObjectItemAssociationType">
 <xs:annotation>
 <xs:documentation>A relationship of an Object Item as a subject with another Object Item as an object.</xs:documentation>
 </xs:annotation>
</xs:element>

Generated XSD
<xs:complexType name="ObjectItemStructureDetailType">
 <xs:documentation>The identification of a specific Object Item Association as an element in a specific Object Item Structure.</xs:documentation>
</xs:complexType>

<xs:element name="ObjectItemStructureDetail" type="mird:ObjectItemStructureDetailType">
 <xs:documentation>The identification of a specific Object Item Association as an element in a specific Object Item Structure.</xs:documentation>
</xs:element>

Generated XSD
Conclusions

• The ODM profile enables use of UML for OWL modeling of business domains, e.g., C2
• Resulting OWL UML model can be treated as a PIM
• MDA approach can be applied to generate PSMs
• Current CASE tool capabilities adequately support generation of executable code for a number of implementations of general use: RDBMS, XML/XSD
• Other implementations may require development of appropriate UML profiles which, although not trivial, are technically feasible