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ABSTRACT 
 

A key concept in congruent organizational design is the so-called Strategic Grouping, which 
involves the aggregation of task functions, positions, and assets into units. Group technology has 
emerged as a manufacturing philosophy for improving productivity in batch production systems, 
while retaining the flexibility of a job shop production. In this paper, we propose a methodology to 
group tasks and assets into several clusters (DMs, command cells) which uses concepts from group 
technology and genetic algorithms to minimize the weighted total workload, measured in terms of 
intra-DM and inter-DM coordination workload. An outcome of strategic grouping is a near-optimal 
layout of the organization, i.e., the assignment of platforms to tasks and the patterns of coordination. 

 

1. Introduction* 

Each organization, as a whole, displays a degree of fit or 
a degree of overall congruence with its environment. The 
greater the total degree of congruence, or fit, among the 
various components in an organization is, the more 
effective the organization will be [Nadler 1997]. In a 
military operation, an organization is said to be 
congruent with its mission, if its structure and processes 
are matched to the environmental parameters ([Levchuk 
2003], [Burton 1998], and [Mackenzie 1986]). The 
“match” between an organization and a mission can 
assume a performance-based or structure-based concept. 
The performance-based congruence is a relative concept: 
to find the degree of congruence to a mission, the 
performance of an organization is compared to the 
performance of an optimal organization for executing the 
same mission.  

Our previously developed mission modeling and three-
phase organizational design methodology overcame the 
computational complexity of operationalizing 
                                                 
* This work was supported by the Office of Naval Research under 
contract # N00014-00-1-0101. 
 

organizational design by synthesizing a command 
structure via an iterative solution of a sequence of 
smaller and well-defined optimization problems 
[Levchuk 2002a,b]. Application of different 
optimization algorithms at different stages of the design 
process leads to an efficient matching between the 
mission structure and the structure of an organization 
and its resources/constraints, thereby obtaining an 
acceptable trade-off among multiple objectives and 
constraints, as well as between the computational 
complexity and solution efficiency (desired degree of 
sub-optimality). 

Phase I of our 3-phase organizational design process 
[Levchuk 2002a, b] finds the optimized schedule and the 
concomitant platform-task allocation, and Phases II and 
III identify an organization suitable for this schedule. 
The schedule obtained in Phase I utilizes a heuristic list 
scheduling procedure, which does not account for the 
workload of inter-DM coordination (DMs are not yet 
defined in this phase). Thus, allocation of platforms to 
DMs in Phase II can potentially lead to a high degree of 
sub-optimality, since it is based on the previously 
obtained platform-task allocation.  This is due to the fact 
that the optimization problem has been decomposed into 
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several sub-problems, which are not separable. 
Furthermore, the 3-phase design process does not take 
into account the task execution accuracy; it assumes that 
all the task requirements can be fully satisfied. 

The aforementioned problems can be overcome by first 
clustering tasks into groups that have similar processing 
requirements, and then assigning platforms to the 
corresponding task groups, such that the resource 
requirements of tasks in each group are satisfied. In the 
resource allocation phase, we assign platforms to tasks 
to minimize platform transfer delays and to maximize 
the task processing accuracy. Tasks that can not be 
processed by a single DM will be coordinated with other 
DM nodes based on the same objective. The clustering 
of tasks and platforms, as well as resource allocation, 
using such a methodology can significantly improve the 
organizational performance by reducing the local nature 
of optimization in Phases I and II of our 3-phase design 
process. 

The rest of the paper is organized as follows. Section 2 
outlines the Group Technology (GT) algorithms, as well 
as the relationship between the concept of GT and that of 
congruence. Section 3 formulates the organizational 
design problem. The solution approach, using GT and a 
nested genetic algorithm (NGA), is proposed in Section 
4. Section 5 presents an example of congruent 
organizational design. The paper concludes with a 
summary and future research directions in Section 6. 

2. Group Technology: 

2.1 Group Technology Overview 

The emerging threats of the 21st century are 
characterized by high variability in missions and the 
need for focused and rapid deployment of resources to 
counter the threats. The design of flexible and 
responsive organizations to meet the emerging threats is 
a scientific challenge. Group technology (GT) is one of 
“recognizing and exploiting similarities in three distinct 
ways: (1) by performing similar operations together, (2) 
by standardizing similar tasks, and (3) by efficiently 
storing and retrieving information about recurring 
problems” [Hyer 1989].  Group technology can be 
operationalized by dividing a C2 system into several 
manageable subsystems or cells, responsible for 
managing tasks, assets (platforms), and information 
flow. The advantages of introducing group technology 
into C2 systems are: 

� Improved speed of command, 

� Reduced task latencies (execution delay), 

� Reduced resource requirements, 

� Reduced mission inefficiencies, 

� Reduced synchronization delays, 

� Reduced response time, and 

� Improved flexibility. 

2.2 Grouping Algorithms 

Grouping analysis is concerned with clustering of 
objects into homogeneous groups (cells) based on the 
object features [Kusiak 1990]. Several categories of 
clustering algorithms are possible and are discussed 
below. 

A. Matrix-based clustering 

The platform-task dependency is represented by a matrix 
[ ),( jia ] consisting of ‘0, 1’ entries, where an entry 1 (0) 
indicates that platform i is used (not used) for processing 
task j. Most matrix-based algorithms, such as Bond 
Energy Algorithm (BEA) [McCormick 1972] and Rank 
Order Clustering (ROC) [King 1980], resort to 
transferring the initial matrix into a structured matrix, 
such as a block-diagonal one. The clustering of a binary 
incidence matrix may or may not result in separable 
clusters. Those tasks that cannot be clustered into any 
group are called exceptional tasks. These are the major 
determinants of clustering efficiency, which is defined as 
the ratio of the number of separable tasks (i.e., the 
difference between the total number of tasks and the 
exceptional tasks) to the total number of tasks. 

B. Hierarchical clustering 

A hierarchical clustering method is a procedure for 
transforming a proximity (distance or similarity) matrix 
into a sequence of nested partitions [Joines 1996]. A 
hierarchy of clusters or partitions is produced in terms of 
similarity or distance; the proximity measures can 
incorporate platform-task dependency data, rather than 
just the binary incidence matrix. The hierarchical 
clustering methods involve two stages. The first stage 
calculates similarity coefficients (or distances) between 
pairs of tasks/platforms. Then the second stage clusters 
tasks/platforms into groups based on a threshold. For 
simple missions with a few tasks and platforms, an 
analyst can approximate such a threshold. However, 
when the mission is too complex to estimate an initial 
value for the threshold, hierarchical clustering becomes 
infeasible. 

C. Graph-Theoretic Clustering 
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In the graph formulation, the incidence matrix [ ),( jia ] 
is represented by a graph. Three types of graphs are 
used: bipartite graph, transition graph, and boundary 
graph. Among these graphs, the bipartite structure is 
used most often. The tasks and platforms are assigned to 
two distinct sets; an edge between a (task, platform) pair 
represents that the task is processed by the concomitant 
platform.  

D. Clustering based on Artificial Intelligence 

Artificial neural networks (ANNs) and Fuzzy Logic 
have been applied to group technology. ANNs have 
emerged in recent years as a major means for pattern 
recognition, and it is this particular capability that has 
made ANNs a useful addition to the tools and techniques 
applicable for group technology and for the design of 
cellular systems [Suresh 2000]. The ANN involves 
supervised learning that performs pattern classification 
(task/platform cluster formation) from task-platform 
incidence matrix. Because clusters may overlap, fuzzy 
logic techniques, such as Fuzzy c-mean Clustering, have 
been applied to solve the grouping problem. When the 
input contains both analog and binary numbers, a 
method combining fuzzy logic and Adaptive Resonance 
Theory (ART), termed Fuzzy-ART, can be applied. 

E. Evolutionary Clustering Methods 

Genetic Algorithm (GA) and Simulated Annealing (SA) 
are two evolutionary clustering methods applied to 
group technology. Both of them are stochastic search 
algorithms that have been successfully used to solve 
combinatorial optimization problems. They have been 
widely used to formulate the cell formation problem of 
assigning tasks/platforms to different clusters. The 
stochastic nature of these two algorithms enables them to 
escape the local minima, and to offer promising 
solutions for large-scale problems. In Section 4.1, we 
will provide an overview of GA and apply it to solve the 
task/platform grouping problem in Section 4.2. 

F. Mathematical programming methods 

The cell formation problem can be formulated as a linear 
or nonlinear optimization problem with different 
objectives and constraints. McCormick et al. 
[McCormick 1972] formulated it as a quadratic 
assignment problem. Steudal and Ballakru [Steudal 
1987] developed a dynamic programming approach for 
the grouping problem. Nagi et al. [Nagi 1990] 
considered routing and capacity allocation formulation 
of the cell formation problem, and employed a branch 
and bound method to solve the problem. Kusiak [Kusiak 

1987] developed the p-median model to assign n tasks 
into p cells.  

2.3 The GT and congruent organizational design 

The philosophy behind the group technology is the 
concept of a congruent organization. D. Nadler and M. 
Tushman [Nadler 1997] proposed a Congruence Model 
of Organizational Behavior. This model views an 
organization as a collection of interacting components. 
These components, including the environment (e.g. 
mission, tasks, etc.), formal organization (e.g. groups, 
coordination structures, command structures, etc.), 
informal organization (e.g. strategy, management, 
culture, etc.), and agent (e.g. resources structures, assets, 
capabilities, etc.) should “fit” with each other. They also 
proposed a three stage of congruent organizational 
design process: strategic grouping, structural linking, 
and system/process design. 

A. Strategic Grouping 

Grouping involves the aggregation of task functions, 
positions, and individuals into units. Grouping explicitly 
places some tasks, resources, and people together in the 
same units, and implicitly separates some tasks and 
resources. Resources belonging to the same group are 
able to be allocated and scheduled more efficiently. 
People (one type of resource) will become more skilled 
and specialized as they dedicate their efforts to a limited 
range of operations. It also influences the organization’s 
information-processing capacity. However, information 
becomes easier to process within grouped boundaries 
(“internal coordination”), although it will also require 
more effort to communicate and cooperate between 
groups (“external coordination”).  

B. Structural Linking 

By grouping, the communication and coordination 
become easier within the group. However, the barriers 
are built up between different groups, thereby making 
information sharing and cooperation more difficult. The 
design of structural linking is one of setting up 
mechanisms that facilitate the information and resource 
flows among groups in order to help each group process 
its tasks and achieve its objectives. Since the cross-
boundary coordination is costly (in terms of delays), 
extensive cooperation will introduce additional “external 
workload” among groups; this will hinder the flow of 
information and resources. The key to successful 
organizational design is to discover a linking structure 
that optimally balances the needs for coordination. 

C. System and Process Design 
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Systems and processes are designed with groupings and 
structures in mind to support the movement of 
information among groups. These can range from 
information, control, and reward systems to formal 
processes and meetings.  

The group technology is based on the congruent model 
introduced earlier. It groups homogenous tasks and 
resources together in the same cells in order to facilitate 
task planning and execution. If we regard tasks as the 
information flow in an organization, then, within a 
group, the efficiency of information-processing is 
maximized. In addition, coordination among different 
groups is appropriately assigned, considering both the 
necessity of coordination for certain tasks, and the 
increased cost of such coordination due to information 
(or resource) flow “barriers” among different DM cells. 
In this paper, we group tasks and assets (platforms) into 
several cells (DM nodes) using concepts from group 
technology to minimize the weighted total workload, 
measured in terms of intra-DM and inter-DM workload. 

3. Problem Formulation  

3. 1 Motivation 

A task, derived from mission decomposition, is an 
activity that entails the use of relevant resources, and is 
carried out by one or more decision makers (DMs) to 
accomplish the mission objectives. The DM is an entity 
with information-processing, decision-making, and 
operational capabilities that can control the necessary 
resources to execute tasks. A DM also communicates 
with other DMs, and cooperates on task execution by 
sharing his resources. The resources are carried by 
platforms or assets with given resource capabilities, 
ranges of operation and velocities. The organization 
consists of a set of DMs, the assignment of platforms to 
DMs, and the coordination structure among DMs.  

The process of mission execution is as follows.  A set of 
tasks with specified resource requirements, locations, 
and precedence relations need to be processed by the 
organization. The tasks are assigned to DMs based on 
the fit between the resource requirements of tasks and 
the resource capabilities of DMs. The assigned DMs 
select and send their platforms to the locations where 
tasks appear in order to execute them with minimum 
lead time and maximum accuracy. In the situation, 
wherein a DM assigned to a task must utilize the 
assets/platforms from another DM, they must coordinate 
to synchronize the operations of their platforms (e.g., 
arrival time of platforms at the task location). Only when 
all the platforms needed to process a task have arrived, 

the task execution begins. Therefore, the delays in task 
execution are primarily due to synchronization. In order 
to minimize the overall task completion time, the 
synchronization delays should be minimized. In 
addition, the task execution accuracy should be 
maximized. We note that minimizing the inter-DM 
coordination delay (“between group delay”) outweighs 
the intra-DM coordination delay (“within group delay”), 
since there is a “barrier” between any two DM cells.  
However, there are always some exceptional tasks that 
need to be processed by more than one DM. Due to these 
exceptional tasks, the inter-DM coordination delays are 
inevitable. A tradeoff between internal and external 
coordination workload is a key aspect of our design 
approach, and is formalized next. 

3.2 Mathematical Formulation 

The design parameters are: 

� Number of DMs, M 

� Task-DM assignment matrix, TD  

� Platform-DM assignment matrix, PD  

� Task-platform assignment matrix, TP  

The ranges of indices are as follows: tNi ,,1 �= ; 

pNj ,,1�=  ; Mm ,,1�= , where, tN and pN  are the 

number of input tasks and the number of available 
platforms, respectively. Also, assume that there are L 
resource types (e.g., weapons, sensors) distributed 
among the pN  platforms. The entries of the above 

incidence matrices are defined as follows: 

�
�
�

=
otherwise,0

 DM  toassigned is  task if,1
),(

mi
miTD  

�
�
�

=
otherwise,0

 DM  toassigned is  platform if,1
),(

mj
mjPD  

�
�
�

=
otherwise,0

 Task   toassigned is  platform if,1
),(

ij
jiTP  

The input parameters are 

� The total number of resource types,  L 

� The task-resource requirement matrix 

),,1 ;,,1(   )],([ LlNilirR tTT �� ===  

� The platform-resource capability matrix  
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),,1 ;,,1(    )],([ LlNjljrR pPP �� ===  

� The vector of velocities of platforms 

},,1|)({ pNjjvv �==  

� The vector of task locations 

},,1|))(),({(),( tTTTT Niiyixyx �==  

The aggregated workload of each DM, which takes into 
account both the intra-DM and the inter-DM 
coordination workloads, is given by: 

)()1()()( mWmWmW InterIntra αα −+= , (3.1) 

where )(mWIntra  is the intra-DM coordination workload 

of DM m, )(mWInter is the inter-DM coordination 
workload, andα  is the weight assigned to the intra-DM 
workload. The value of α should be less than 0.5, 
because the inter-DM workload is more costly than the 
intra-DM workload. 

Although our objective is to minimize the total 
aggregated workload of the organization, minimizing 

)(mW  alone, when α  is small, will lead to smaller 
number of DMs in the organization with unbalanced 
workloads. Consequently, we seek to minimize the root 
mean-square (RMS) value of the aggregated workload, 
which is given by: 

Min: �
=

=
M

m

mW
M

WRMS
1

2 )(
1

  (3.2) 

subject to  

t

M

m

NimiTD ,,2,1for       1),(
1

�=≥�
=

  (3.3) 

p

M

m

NjmjPD ,,2,1for       1),(
1

�==�
=

  (3.4) 

The objective function in Eq. (3.2) minimizes both the 
mean and variance of workload across the team 
[Levchuk 2003]. The first constraint in Eq. (3.3) ensures 
that at least one task is allocated to a DM. The second 
constraint in Eq. (3.4) implies that each platform can 
only be allocated to one DM. Although the problem is 
not separable, for ease of solution, we decompose this 
optimization problem into two sub-problems: intra-DM 
workload minimization, and inter-DM workload 
minimization. 

A. Minimize Intra-DM Workload 

For a given task/platform grouping, the tasks allocated to 
a particular DM, m, are given by  

}},,1,1),({|{ tim NimiTDiTT �===∈=  

The platforms allocated to DM m are given by 

}},,1,1),({|{ pjm NjmjPDjPP �===∈=  

A.1 Platform Transfer Delay ),( imt for Task iT  

Our model assumes that the center of the DM 
location, )]( ),([ mymx DD  is the center of all tasks 
allocated to DM m, that is, 

�

�

�

�

=

=

=

= ==
t

t

t

t

N

i

N

i
T

DN

i

N

i
T

D

miTD

iymiTD
my

miTD

ixmiTD
mx

1

1

1

1

),(

)(),(
)(   ;

),(

)(),(
)(

      (3.5) 

The model also assumes that all the platforms allocated 
to this DM are initially located at the center of the DM 
location, termed the base. When a platform executes a 
task, it travels from its initial position (base) to the task 
location, and then travels back to its base after the task is 
executed. Consequently, the distance between the 
platform and the task is the distance between the base 
and the task, defined as 

22 ))()(())()((),( myiymxixjid DTDT −+−=  

for mj PP ∈∀   (3.6) 

Thus, the transfer delay for executing task iT  by DM m 
is given by 

�
∈

=
mj PP jv

jid
jiTPimt

)(
),(

),(),(    (3.7) 

 

A.2 Task Accuracy 

We adopted the concept of task accuracy from [Levchuk 
2003], in which the task accuracy for a task iT  executed 
by DM m is defined as 

�
�

�
�
	


 ⋅= �
=

),(),(~
1

),(
1

miTDlia
L

imA
L

l
Intra ,    (3.8) 
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where 
),(
),(~

),(
lir
lir

lia
T

T= , L
~

 is the number of resource 

requirements of task iT  over all types, i.e., 

�
=

=
L

l
T lirL

1

),(
~

, and ),(~ lirT  is the number of resources 

of type l actually used to process task  iT  : 

[ ]
��

�

�

��

�
�
�

⋅= �
∈ mj PP

PTT ljrjiTPlirlir ),(),(),,(min),(~     (3.9) 

Here, ),( lia is task accuracy for iT  in terms of each 

resource type l. The task accuracy for iT  is the average 
task accuracy over all L resource types. 

A.3 Task Accuracy Significance (TAS) 

The task accuracy significance of task iT  is defined as   

TASi = 1)],([ ρimAIntra     (3.10) 

where 1ρ  is the task accuracy significance index (TASI) 

for intra-DM workload.  The smaller 1ρ is, the less effect 
task accuracy has on the intra-DM workload. On the 
other hand, if 1ρ  is large, task accuracy contributes 
significantly to the intra-DM workload. 

A.4 The Minimization of Intra-DM Workload 

The objective function for this sub-problem is a 
separable problem (for each DM Mmm �1,2,  , = ) 

Min:  ��
∈∈

==
mimi TT IntraTT i

Intra imA
imt

TAS
imt

mW
1)],([

),(),(
)( ρ  

subject to: }1,0{),( ∈jiTP    (3.11) 

B. Minimize Inter-DM Workload 

B.1    Candidate Platform Selection 

Based on the minimization of intra-DM workload, we 
obtain a tentative platform-task assignment matrix, 

)],([ jiTPTP = , and a task accuracy matrix for each 

resource type, { }LlNiliaA t ,,1 ; ,,1 | ),( �� === . 

The unfinished task set is given by: 

{ }},,1 ,0),( & 1),(0|{|ˆ LllirliaiiTT Ti �=><≤∈=

Consider a  TTi
ˆ∈  that is allocated to DM m.  Then, the 

candidate platforms that can process the task iT is given 
by  

{ }0),(),( ; |)(ˆ >⋅∉= lirljrPPPiP TPmjj  

In other words, only those platforms that are from 
different DM cells and that have full or partial capability 
to process task iT  are selected as candidate platforms. 
The design variable is the final platform-task assignment 
matrix )],([ jiTPTP = . 

B.2 Platform Transfer Delay )(ˆ it for Task iT  

Suppose )(ˆ iPPj ∈ is from a DM k, mk ≠ .  The 

distance between jP and iT  is given by 

22 ))()(())()((),(ˆ kyiykxixjid DTDT −+−=  

for )(ˆ iPPj ∈∀    (3.12) 

Thus, the transfer delay for inter-DM task execution is 
given by 

�
∈

=
)(ˆ )(

),(ˆ
),()(ˆ

iPPj
jv
jid

jiTPit .    (3.13) 

� Task accuracy 

Due to inter-DM coordination, the task accuracy of task 

iT ( TTi
ˆ∈ ) is updated as follows: 

�
�

�
�
	


= �
=

L

l
Inter lia

L
iA

1

),(ˆ~
1

)(ˆ     (3.14) 

where 
),(
),(ˆ

),(ˆ
lir
lir

lia
T

T= , where ),(ˆ lirT is given by 

}),(),(),,(min{),(ˆ
)(

�̂
∈

=
iPP

PTT

j

ljrjiTPlirlir  (3.15) 

B.3 Task Accuracy Significance (TAS) 

The task accuracy significance of task iT for inter-DM 
coordination is defined as   

TASi = 2)](ˆ[ ρiAInter     (3.16) 

where 2ρ  is the task accuracy significance index (TASI) 
for inter-DM workload.   

B.4 Minimization of Inter-DM Workload 
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The sub-problem of minimizing the inter-DM workload 

InterW  is given by 

Min: ��
∈=

==
TT Inter

M

m
InterInter

i
iA

it
mWW

ˆ1
2)](ˆ[

)(ˆ
)(

ρ
 (3.17)  

subject to }1,0{),( ∈jiTP . 

Although these two sub-problems of minimizing the 
intra-DM workload and inter-DM workload are not 
separable, we can approximately optimize the objective 
function in Eq. (3.2) by sequentially minimizing the two 
sub-problems. Intra-DM sub-problem in Eq. (3.11) is 
minimized first and then, conditioned on the tentative 
results from this sub-problem, the inter-DM sub-problem 
in Eq. (3.17) is minimized.  

4. Solution Approach—Nested GA (NGA) 

4.1 Overview of GA 

Genetic algorithms utilize stochastic search techniques 
based on the mechanism of natural selection and 
genetics. Various authors have applied genetic 
algorithms to the solution of cell formation problem. 
J.A. Joines et al [Joines 1996] developed a genetic 
algorithm to solve integer programming formulations of 
the cell design problem. The algorithm was tested on 
seventeen data sets from the literature and was able to 
find as good solutions as, if not better than, those in the 
literature. M. Kazerooni et al [Kazerooni 1995] used 
genetic algorithm to solve the cell formation problem 
based on the machine chain similarity coefficient matrix. 
[Gupta 1995] proposed a genetic algorithm to minimize 
the inter-cell and intra-cell moves in cellular 
manufacturing. [Gravel 1998] developed an efficient 
double-loop genetic algorithm to solve the cell formation 
problem with multiple routings. All these efforts have 
shown that the genetic algorithms are one of the most 
successful approaches for solving clustering problems 
with various objectives and constraints.  

4.2 Nested GA  

We employ a nested GA to solve the task/platform 
grouping problem associated with the platform-task 
assignment problem. The nested GA consists of two 
loops: the outer-loop GA (OLG) and the inner-loop GA 
(ILG). 

A. Outer-loop GA (OLG) 

The outer-loop GA seeks to find an optimal or near-
optimal task/platform grouping, such that both the intra-
DM and inter-DM workloads are minimized. The 

algorithm begins in the outer-loop with a randomly 
generated initial population of task/platform groupings. 
For each of these groupings, the inner-loop GA (ILG) 
determines the task-platform assignment matrix that 
minimizes the weighted workload. After the fitness 
values corresponding to the groupings are fed back from 
the inner-loop GA (ILG), the OLG employs the genetic 
operators until the termination criteria are satisfied. The 
chromosome representation of task/platform grouping 
and parameter selection for the OLG are as follows. 

A.1 Chromosome Representation 

A chromosome representation scheme is determined by 
the structure of problem. Good representation can 
greatly improve the performance of GA. The individual 
or chromosome is made up of a sequence of genes from 
a certain alphabet. Binary and floating number 
representations are used primarily for numerical 
optimization. For the task/platform grouping problem, 
which is basically a combinatorial optimization problem, 
both binary and floating number representations are not 
efficient, since there is too much redundancy in the 
search space. Specifically, for the task/platform 
grouping, an integer alphabet },,2,1{ M� is employed, 
where M is the maximum number of DMs in the 
organization. The larger the value of M, the larger is the 
search space.  In the representation of a chromosome, the 
task and platform should be considered simultaneously. 
Therefore, the representation is given by a 

)(1 tp NN +×  vector, where the first Np genes represent 

platforms, and the last Nt genes represent tasks: 

��� ���� ��
�

��� ���� ��
�

Tasks

N

Platforms

N tp
TTTPPP ])[,],[],[,][,],[],([ 2,121  

Here  },..,2,1{][ MPj ∈ and  },..,2,1{][ MTi ∈  are the 

DMs assigned to platforms and tasks.  Suppose we have 
three platforms (P1, P2, P3), three tasks (T1, T2, T3), and 
two DMs (i.e., two groups). The representation 
( 1,1,2,1,2,1 ) corresponds to the task/platform grouping 
(DM cells) shown in Figure 4.1 

  
Figure 4.1 Illustration of the chromosome representation 

A.2 Initialization of the Population 

DM1 

DM2 

P1 

P2 

P3 

T1 

T2 T3 

Platform Assignment Task Assignment 
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The initial population is randomly generated so that the 
value of each gene in a chromosome is between a lower 
bound and an upper bound. If some of the randomly 
generated chromosomes are not feasible (e.g., some of 
the DMs are not assigned any tasks or platforms), the 
fitness values of those individuals are set to minus 
infinity. Such solutions are not allowed to be selected for 
the new generation. 

A.3 Selection and Evaluation Strategy 

During each generation, chromosomes are evaluated 
using a measure of fitness. The following four major 
steps are included in the evaluation and selection phase: 
(i) convert chromosomes to the task-DM assignment 
matrix and the platform-DM assignment matrix, (ii) 
obtain the task-platform assignment by running the 
Inner-loop GA (IGA), (iii) calculate the objective 
function values for these tentative solutions, (iv) convert 
the objective function values into the corresponding 
fitness values. 

Since minimizing the objective function in Eq. (3.2) is 
equivalent to maximizing the negative of the objective 
function, we adopted the normalized Geometric 
approach as the selection procedure because it can 
handle negative numbers. The chromosomes are ordered 
according to their fitness values. The probability of 
selecting a chromosome is based on its rank: 

P [Selecting the rth chromosome] = ,)1(' 1−− rqq    (4.1) 

where q is the probability of selecting the best 
individual, r is the rank of the individual, N is the 

population size, and 
Nq

q
q

)1(1
'

−−
= .     

A.4 Crossover and Mutation Operators 

There are two basic considerations when designing 
crossover operators: (i) make fewer changes when 
crossing over so as to inherit the parents’ features as 
much as possible, (ii) make more changes when crossing 
over so as to explore a new pattern of allocation and 
thereby enhance the search’s ability to find a global 
optimum [Cheng 1999]. The crossover operators we 
used for the OLG are the arithmetic crossover, two-point 
crossover (problem specific), and multi-point crossover 
(problem specific). All of these operators are modified 
for integer representation of chromosomes used in our 
work. 

Arithmetic crossover produces two complimentary linear 
combinations of parents. Suppose 10 ≤≤ a ; )(1 ip and 

)(2 ip are ith gene of two parents.  Then, the children are 
given by 

� �
� ��
�
�

+
>+

=+
otherwiseibpiap

ipipibpiap
ibpiap

)()(

)()()()(
)()(

21

2121
21 . 

     (4.2) 

where ab −= 1  ; � �x is the smallest integer greater than 

or equal to x (i.e., the ceiling function); � �x is the largest 
integer less than or equal to x (i.e., the floor function). 

Two-point crossover swaps sections of two parents 
according to the partitions of platforms and tasks.  

Multi-point crossover is similar to the Two-point 
crossover. The difference is that both sections of 
platform and task are cut into two or more quarters 
according to one or more randomly generated numbers. 
The children are created by reassembling the different 
quarters. The swapping of quarters of two parents only 
happens to the corresponding parts, that is, the quarters 
in the platform part of parent 1p can only swap with the 

quarters from the platform part of 2p .   

Mutation operators alter one parent by changing one or 
more variables (genes) in some way, or by some random 
amount, to form an offspring [Joines 1996]. The 
mutation operators we employed in our algorithm are 
uniform mutation, boundary mutation, non-uniform 
mutation, and multi-non-uniform mutation. 

Uniform mutation randomly selects one variable i, and 
sets it equal to a uniform random integer 
number ) ,( ii ulU , where (li, ui) are the lower bound and 
upper bound of variable i, respectively. 

Boundary mutation randomly sets variable i equal to 
either its lower bound or upper bound.  

Non-uniform mutation randomly sets variable i equal to 
a non-uniform random integral number: 

� �
� ��

�
�

≥+−
<−+

=
5.0 )()(
5.0 )()(

1

1'

rifGfxlx

rifGfxux
x

iii

iii
i  (4.3) 

where 

,)1()(
max

2

b

G
G

rGf ��
�

�
��
	



−=    (4.4) 
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where r1 and r2 are uniform random numbers in [0, 1], G 
is the current generation, maxG is the maximum number 
of generations, and b is a shape parameter. 

Multi-non-uniform mutation applies the non-uniform 
operator to all of the variables in the parent. 

Some operators, such as the two-point or multi-point 
crossover operators inherit the parents’ features more 
than other operators, such as non-uniform mutation and 
multi-non-uniform mutation operators. We applied a 
combination of the above mentioned operators for 
different numbers of times. Thus, by adjusting the 
repetition numbers, an analyst can control the genetic 
evolutionary process, so that the algorithm can obtain 
the best possible solution.  

A.5 Termination Criterion 

When the GA reaches a pre-specified number of 
generations, it terminates.  

B. Inner-loop GA (ILG) 

The ILG is responsible for (i) finding the platform-task 
assignment for a given grouping; (ii) evaluating intra-
DM and inter-DM workloads, given the task/platform 
grouping provided by the OLG. The ILG is comprised of 
two stages. In the first stage, search for optimal or near 
optimal platform-task assignments for each DM cell is 
conducted to minimize the intra-DM coordination 
workload by employing GA. Because some tasks require 
coordination among DMs, in the second stage, the 
algorithm allocates multiple DMs and platforms to these 
tasks by minimizing the inter-DM coordination. The 
outcome of the ILG process is a platform-task 
assignment matrix. We name the two stages of ILG as 
inner-loop 1(ILG 1) and inner-loop 2 (ILG 2). Both of 
the inner-loops have similar chromosome 
representations and similar parameter settings for GA. 
The following discussion is suitable for both loops, 
unless specified otherwise. 

B.1 Chromosome Representation 

A platform can only process certain types of tasks 
according to its resource capability and task-resource 
requirements. Since the tasks and platforms are 
randomly grouped in the outer-loop, a pre-selection of 
candidate platforms for each task should be performed. 
After the pre-selection, each task has a certain number 
(may be zero) of candidate platforms related to it. Based 
on that, a binary chromosome contains 

�
=

=
|ˆ|

1

|)(ˆ|
T

i

iPQ genes. Each gene stands for the 

assignment status of each platform to each task. If its 
value is ‘1’, it indicates that the platform has been 
allocated to this task. For example, for a three-task and 
three-platform instance, a chromosome taking the form 
[(1 0), (1 0 1), 1] indicates the task-platform assignment 
shown in Figure 4.2 

 

 

 

 

 

 

 

Figure 4.2 Illustration of the chromosome representation 

 

B.2 Initialization of the Population 

The initial population is generated by randomly 
assigning ‘0’ or ‘1’ to the genes in chromosome. 
However, some of them may not be feasible. For 
example, suppose there are three platforms and three 
tasks assigned to one DM cell and the first task 1T  can 
be processed by all of the platforms. If we obtain one 
chromosome of the form [(0 0 0) (1 0 0) (1 1 0)], then 
there is no platform allocated to 1T , which is not the 
assignment we expect. To avoid this, we modify it in the 
following way to ensure feasibility: (1) randomly select 
integers from the set {1, 2, 3}; (2) set the corresponding 
gene of 1T  to one. By doing this modification, all 
chromosomes will be feasible. 

B.3 Selection and Evaluation Strategy 

Similar to OLG, the normalized Geometric approach is 
employed for selection function. 

B.4 Crossover and Mutation Operators 

Since both ILG 1 and ILG 2 have binary chromosome 
representations of their solutions, the following two GA 
operators are applied to produce the offsprings. 

Multi-point crossover randomly generates numbers for 
each task section of the chromosome. These random 
numbers split each task section into 2 quarters. The 
children are created by reassembling different quarters in 
corresponding task sections.  

Platform Assignment 

T1 

T3 

P1 

Task  

T2 P1 P3 

P2 
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Inverse mutation flips the genes in the randomly selected 
task section into their complements ( 01 or, ,10 →→ ).  
For example, the parent p,   

�
�

�

�

�
�

�

�
= �

�����
� ,0 1, 1, 0, ,1,

for  Platforms. iT

p  

 produces a child shown below: 

�
�

�

�

�
�

�

�
= �

�����
� ,1 0, 0, 1, ,0,

for  Platforms. iT

c  

B.5 Termination criterion 

The ILG terminates when a pre-specified generation 
number is reached. Due to the binary representation of 
the solution, generally, the ILG needs less number of 
generations than the OLG.  

The NGA is illustrated in Figure 4.3. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 4.3 Nested GA for organizational design 
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Figure 5.1 Example of task precedence graph 
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5. Numerical Example 

5.1 Description of the example 

In this section, we consider an illustrative example of 
designing an organization to execute a mission scenario 
consisting of 18 tasks. The mission includes capturing a 
seaport and an airport to allow for the introduction of 
follow-on forces. There are two suitable landing beaches 
designated: “North” and “South”. The commander 
devises a plan for the mission that includes the 
completion of tasks shown in Figure 5.1. The following 
8 resource requirements/capabilities are modeled: AAW, 
ASUW, ASW, GASLT, FIRE, ARM, MINE and DES. 
The reader is referred to [Levchuk2003] for details of the 
scenario and a description of resources and platforms.  

Mission tasks, platforms, resource requirement vector 
for each task, resource capability vector for each 
platform, and other relevant parameters are presented in 
Figures 5.2 and 5.3. From Figures 5.2 and 5.3, we note 
that each task can be processed by a combination of 
platforms, as long as at least one of the required 
resources matches any one of the resource capabilities of 
platforms. The task-platform dependency matrix, 
illustrated in Table 5.1, is quite dense, that is, most of 
the entries in the matrix have value ‘1’. This implies that 
the search space for the NGA is potentially very large. 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1
5 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1
15 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
16 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1
17 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

 

Table 5.1 Original task-platform incidence matrix 

 

Tasks Resource Requirement VectorLocations Processing Time

1 5 3 10 0 0 8 0 6 3070 15

2 5 3 10 0 0 8 0 6 3064 75

3 0 3 0 0 0 0 0 0 1015 40

4 0 3 0 0 0 0 0 0 1030 95

5 0 3 0 0 0 0 10 0 1028 73

6 0 0 0 10 14 12 0 0 1024 60

7 0 0 0 10 14 12 0 0 1028 73

8 0 0 0 10 14 12 0 0 1028 83

9 5 0 0 0 0 5 0 0 1028 73

10 5 0 0 0 0 5 0 0 1028 83

11 0 0 0 0 0 10 5 0 1025 45

12 0 0 0 0 0 10 5 0 105 95

13 0 0 0 0 0 8 0 6 2025 45

14 0 0 0 0 0 8 0 6 205 95

15 0 0 0 20 10 4 0 0 1525 45

16 0 0 0 20 10 4 0 0 155 95

17 0 0 0 0 0 8 0 4 105 60

18 0 0 0 8 6 0 4 10 205 60

CVBG

ARG

Resupply Port N

Resupply Port S

Encounters N&S

HILL

NORTH BEACH

SOUTH BEACH

Defend N. Beach

Defend S. Beach

S/P Road

A/P Road

SAM SeaPort

SAM AirPort

SEAPORT

AIRPORT

GTL

Blow Bridge

 
Figure 5.2 Parameters of tasks in the example 

Platforms Resource Capability Vector Velocity

1 10 10 1 0 9 5 0 0 2

2 1 4 10 0 4 3 0 0 2

3 10 10 1 0 9 2 0 0 2

4 0 0 0 2 0 0 5 0 4

5 1 0 0 10 2 2 1 0 1.35

6 5 0 0 0 0 0 0 0 4

7 3 4 0 0 6 10 1 0 4

8 1 3 0 0 10 8 1 0 4

9 1 3 0 0 10 8 1 0 4

10 1 3 0 0 10 8 1 0 4

11 6 1 0 0 1 1 0 0 4.5

12 6 1 0 0 1 1 0 0 4.5

13 6 1 0 0 1 1 0 0 4.5

14 0 0 0 0 0 0 10 0 2

15 0 0 0 0 0 0 0 6 5

16 0 0 0 0 0 0 0 6 7

17 0 0 0 6 6 0 1 10 2.5

18 1 0 0 10 2 2 1 0 1.35

DDG

FFG

CG

ENG

INFA

SD

AH1

CAS1

CAS2

CAS3

VF1

VF2

VF3

SMC

TARP

SAT

SOF

INF (AAAV – 1)

19 1 0 0 10 2 2 1 0 1.35INF (AAAV – 2)

20 1 0 0 10 2 2 1 0 1.35INF (MV22 – 1)

 
Figure 5.3 Parameters of platforms in the example 
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5.2 Performance measures  

In this section, we outline the organizational and 
algorithmic performance measures used to evaluate the 
results obtained from the NGA. 

A. Average Platform Transfer Time 

p

M

m TTTT

N

itimt

t imi

� ��
= ∈∈

+
= 1 ˆ

)(ˆ),(

   (5.1) 

B. Clustering Efficiency 

The clustering efficiency seeks to find the effectiveness 
of the grouping algorithm. It has a value of one when 
there are no exceptional tasks. It is given by 
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C. Average Task Accuracy 
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D. Average Platform Utilization 

Platform utilization is related to resource usage in the 
organization. The average utilization of platform jP  is 

defined as 

�
�
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where L̂  is the number of non-zero resource capability 

of platform jP , �
=

=
L

l
P ljrL

1

),(ˆ , and ),(ˆ ljrP  is the 

resources of type l being used on platform jP  
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The average platform utilization is given by 
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5.3 The settings of GA parameters 

The values of GA parameters for the OLG and the ILG 
are listed in Table 5.2. 

60

300-500

0.25

0.1

2-6

4

8

7

6

4

6

OLG

No. of multi-point crossover operators6

Value

Parameters ILG2ILG1

40

200-300

0.25

0.1

7

4

4

50Population size12

300-400The maximum number of generations11

0.25
a  (The parameter used in arithmetical 
crossover10

0.1
q (The probability of selecting the best 
individual)9

Maximum No. of DMs8

7No. of arithmetical crossover operators7

No. of two-point crossover operators5

4No. of inversion mutation operators4

4No. of non-uniform mutation operators3

No. of uniform mutation operators2

No. of boundary mutation operators1

 Table 5.2 Settings of GA parameters 

 

5.4 The organization obtained from NGA and its 
performance evaluation 

In this section, we discuss the results of applying the 
NGA for the organizational design problem using four 
cases. In Cases 1 and 2, different value of 1ρ and 2ρ  
combinations are tested in order to explore the effect of 
TASI on the performance of NGA. The number of DMs 
is fixed at 4 for these two cases. The sensitivity of design 
for different numbers of DMs is explored in Case 3 and 
is used to determine the optimal number of DMs for the 
organization. In Case 4, we changed the value of intra-
DM workload weight α  from 0.1 to 0.5 to test its 
influence on the performance of NGA. 

Case 1:  M=4, ρρρ == 21 , α =0.2 

Both ILG 1 and ILG 2 use the same task accuracy 
significance indices (TASI).  The results for different 
values of ρ  are listed in Table 5.3. 
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Case 2:  M=4, 21 ρρ ≠ , α =0.2 

ILG 1 and ILG 2 use different task accuracy significance 
indices (TASI).  The results for this case are listed in 
Table 5.4 

� Tran. Time Clu. Effi. Task Accu. Plts. Util.

1 6.13 0.56 0.892 0.447
2 4.37 0.71 0.865 0.529

2.5 7.63 0.52 0.851 0.531
3 7.92 0.85 0.992 0.562

3.5 7.14 0.84 0.994 0.792
4 4.85 0.96 0.996 0.734  

Table 5.3 Performance measures for Case 1 

 

�� �� Tran. Time Clu. Effi. Task Accu. Plts. Util.

2 4.45 0.47 0.816 0.447
3 13.88 0.42 0.96 0.593
4 19.77 0.35 0.985 0.643

2 4.42 0.73 0.864 0.54
3 5.54 0.84 0.93 0.616
4 7.6 0.91 0.948 0.703

1

1

 

 Table 5.4 Performance measures for Case 2 

Discussion of Cases 1 and 2:  When 21 ρρ = =4, we 
obtain moderate average platform transfer time, the 
highest average task accuracy, reasonable platform 
utilization, and the highest clustering efficiency. The 
clustered task-platform incidence matrix is presented in 
Table 5.5 for 21 ρρ = = 4. 

From Table 5.5, we note that there are 4 blocks on the 
diagonal of the matrix. They represent the task/platform 
grouping. The first row of the Table is the task ID and 
the first column represents the platform ID. There are 
only 2 exceptional tasks, T5 and T18; they can not be 
processed by a single DM. The coordination pattern 
resulting from the external coordination workload (inter-
DM workload) is shown in Figure 5.4. DM2 and DM3 
(DM3 operates autonomously and is not shown in Figure 
5.4) can execute their assigned tasks independently, 
while DM1 and DM4 need to coordinate with DM2.  
The amounts of external coordination between 
DM2�DM1 and DM2�DM4 are shown on the links.  
These correspond to WInter(1) and WInter(4) computed 
from Eq. (3.17). 

Case 3:   421 == ρρ , α =0.2 

The solution generated by NGA depends on the specified 
organization size (i.e., number of DM cells).  Although 
we did not consider workload constraints on each DM in 
this paper, a reasonably balanced workload results from 
the NGA.  This is because the WRMS criterion minimizes 
both the mean and variance of workload across DM 
cells.  We define the average aggregated workload as: 

M

mWmW
w

M

m
InterIntra�

=

+
= 1

)]()([
  (5.8)  

3 15 16 18 6 11 12 13 14 17 1 2 4 5 7 8 9 10
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
17 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0
20 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1  

Table 5.5 Clustered task-platform incidence matrix 

 

- Aggregated Coordination Workload

DM4

DM2

9.27

DM1

3.73

- Aggregated External Coordination

 
Figure 5.4 Coordination pattern of the organization 

In Table 5.6, we compare the performance measures of 
each DM when we vary the number of DMs in the 
organization.  Although increasing the number of DMs 
in the organization may potentially reduce the workload 
on each DM, the frequent inter-DM coordination will 
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impose an additional external workload for DMs in 
larger organizations. From Table 5.6, we find that when 
M=4, we obtain the best solution in terms of the average 
aggregated workload, as well as other measures. 

Tran. Time Clu. Effi. Task Accu. Plts. Util. Avg. W.L.

M=3 5.69 0.95 0.992 0.71 42.78
M=4 4.85 0.96 0.996 0.732 28.68
M=5 5.91 0.87 0.986 0.716 29.7
M=6 9.31 0.68 0.943 0.77 35.1

 

Table 5.6 Performance measures for case 3 

Case 4:  421 == ρρ , M=4 

The impact of weight α  on the performance and 
workload distribution is shown in Tables 5.7 and 5.8, 
respectively. 

Tran. Time Clu. Effi. Task Accu. Plts. Util. WRMS

α=0.1 5.38 0.82 0.994 0.69 32.64
α=0.2 4.85 0.96 0.996 0.732 30.99
α=0.3 6.73 0.95 0.998 0.599 45.24
α=0.4 11.94 0.72 0.972 0.744 93.3
α=0.5 14.69 0.79 1 0.697 90.66

 

Table 5.7 Performance measure of NGA for case 4 

 

α=0.1 α=0.2 α=0.3 α=0.4 α=0.5
D1 0 224.8 17.3 0 0
D2 274.5 101.8 119.4 177.9 235.3
D3 367.9 141.4 106.7 388.6 264.5
D4 0 53.6 207.7 0 0
D1 19.6 3.7 3.3 59.1 73.9
D2 17.3 0 0 25.8 0
D3 0 0 0 7.6 0
D4 30.3 9.3 20 36.2 25.8

Intra

Inter

 

Table 5.8 Workload distribution for case 4 

From Table 5.7, we note that both α = 0.2 and α = 0.3 
achieve good results. When α = 0.2, the WRMS in Eq. 
(3.2) is significantly lower than that for α = 0.3.  This 
implies that, when α = 0.2, workload is much better 
balanced among the DMs. Table 5.8 shows that an 
appropriate weight should be chosen. If α  (e.g., 0.1) is 
too small, the task/platform grouping tends to produce 
less number of DMs in order to reduce the inter-DM 
workload; if α is large (e.g., 0.4 or 0.5), the 

minimization of inter-DM coordination workload is not 
guaranteed.  

 

6. Conclusions and Future Extensions 

In this paper, we proposed a novel congruent 
organizational design methodology based on group 
technology and a nested genetic algorithm to cluster the 
tasks and platforms into several DM cells to minimize 
the intra-DM and inter-DM workloads and maximize 
task execution accuracy. Different from our previous 3-
phase organizational design, this algorithm solves the 
clustering problem and assignment problem 
simultaneously.  Another advantage of this algorithm is 
that the scheduling of tasks and platforms, which is 
based on task/platform clustering and platform-task 
assignment, can be easily determined, which avoids the 
problem of solving a complicated mission scheduling 
problem during organizational design phase.  

This algorithm needs to be extended along two 
directions.  First, it does not take into account task 
precedence structure. Usually this will not affect the 
final results significantly. However, if there are too 
many simultaneously processed tasks at a single DM, 
some platforms may be overloaded. In our future 
research, task precedence constraints will be considered. 
How to extend the design approach to include flexibility 
and robustness criteria in the design process is another 
extension that will be addressed in our future work.   
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