
SmartSwarms: Distributed UAVs that Think

Dr. Armand Prieditis
Dr. Mukesh Dalal
Andrew Arcilla

Brett Groel
Michael Van Der Bock

Richard Kong
Lookahead Decisions Incorporated
prieditis@lookaheaddecisions.com

Abstract
Unmanned Aerial Vehicles (UAVs) have demonstrated

tremendous capability in recent military operations.
Recently swarm technology has been suggested as a
possible solution to automatically control and coordinate
multiple UAVs. The idea behind a swarm is that simple
local rules that govern the behavior of individual entities
can lead to complex emergent behavior of the system as a
whole. Although such systems have achieved limited
success in simulated applications, finding good rules can
be difficult for humans. Moreover, such rules can result in
odd behavior or unnecessarily long missions. This paper
describes a swarm-based multi-UAV system, called
SmartSwarms, using a radically different approach:
instead of operating with human-defined rules, each
individual reasons using Simulated LookAhead (SLA),
thus incorporating a model of its world and nearby
entities in decision-making. Our results show that this
approach can improve swarm behavior in UAVs. SLA is
affordable, scalable to a large number of UAVs,
deconflicts in real-time, learns over time, is interoperable,
reusable, fault tolerant, and error tolerant, and can handle
uncertainty.

Keywords: computer generated forces, agent-based
combat modeling, real-time decision-making, swarms,
UAVs, UGVs.

Introduction and Motivation

 Unmanned Aerial Vehicles (UAVs), including
Predator, Hunter, Shadow, and Pioneer, have
demonstrated tremendous capability in recent military
operations. They offer several advantages, typically
categorized as “the dull, the dirty, and the dangerous.”
They can increase unit effectiveness and multiply force by
surveying an area better than ten or more human sentries
and have longer persistence (“the dull”); they can
reconnoiter in areas contaminated by nuclear, chemical,
or biological agents without risk to humans (“the dirty”);
they can suppress enemy air defenses in high risk
operations currently flown by manned EA-6’s or F-16s
with less support aircraft, thus eliminating the risk of loss
of life of an air crew (“the dangerous”). Moreover, UAVs
cost less to acquire and support, have a greater potential

for survivability, enable new CONOPS, and can act in
parallel as an extended sensor network, providing a more
accurate picture of a larger battlespace. In short, UAVs
are poised to offer significant change in the way the
military conducts operations.

However, pilots who fly the UAVs are often
overwhelmed with sensory information and have
difficulty deconflicting a UAV while focusing on the
mission at hand. At the same time, the pilot is not able to
receive the right sensory cues—cues that are normally
available to the pilot, but are lacking at the remove
location.—to aid in deconfliction. This can result in
mishaps and failure to complete the mission.

Worse still, current UAVs require at least one operator
per UAV, despite technological advances that make it
possible to deploy hundred (if not thousands) of
inexpensive. This requirement not only increases expense,
but makes coordination among UAVs more difficult.

Recently swarm technology has been suggested as a
possible solution to automatically control and coordinate
multiple UAVs. Swarms consist of a large number of
distributed, parallel-acting individual entities coupled
with primitive communication mechanisms such as
chemical markers. The idea behind a swarm is that simple
local rules that govern the behavior of individual entities
can lead to complex emergent behavior of the system as a
whole. For example, it might be possible to conduct a
search and destroy operation. Rules include ideas such as
“avoid areas already searched” or “avoid UAVs within a
certain radius.”

Although such systems have achieved limited success in
simulated applications, finding good rules can be difficult
for humans. Moreover, such rules can result in odd
behavior or unnecessarily long missions.

This paper describes a swarm-based multi-UAV system,
called SmartSwarms, using a radically different approach:
instead of operating with human-defined rules, each
individual reasons using Simulated LookAhead (SLA),
thus incorporating a model of its world and nearby

entities in decision-making. In short, the individuals in
our approach are capable of limited thinking rather than
responding with reactive rules. Our results show that this
approach can improve swarm behavior in UAVs. SLA is
affordable, scalable to a large number of UAVs,
deconflicts in real-time, learns over time, is interoperable,
reusable, fault tolerant, and error tolerant, and can handle
uncertainty.

Previous Approaches to Simulating Intelligent
Behavior

The primary approach to intelligent behavior is rule-
based. In the rule-based approach, an interpreter attempts
to match the current situation to a particular rule, which
then “fires.” This “firing” can either result in a direct
action in the simulation system or subgoals in the
interpreter, which are then matched for other rules. In
either case, the ultimate result is an action that it taken.
Current rule-based approaches to modeling behavior
include:

• Production Rules. Production rules are
declarative rules with triggers and actions
associated with the triggers. The actions may be
local to the production rules—actions necessary
to decide what to do in the application. TacAir-
Soar is based on such rules. Using a fixed-size
memory and a forward-chaining rule-based
interpreter (Soar), it simulated fixed-wing and
rotary-wing aircraft pilots flying combat and
reconnaissance missions for STOW-E 1995 and
STOW-97.

• Finite-State Machines (FSM). A finite state
machine consists of a list of states, commands
that can be accepted at each state, actions
associated with each command, and triggers for
each action. The triggers are in the form of rules.

• Agent-Based. An autonomous agent capable of
making decisions and communicating with other
agents. The agents themselves are driven by
rules. In fact, most autonomous agents are
nothing more than a set of distributed production
rules firing in parallel.

• Logic-Based. This approach uses propositional,
predicate, or higher-order logic to represent
rules. Sometimes theorem proving is used to
produce a decision based on multiple rule
“firings” much as with production rules. Most
practical logic-based systems use the Horn
Clause form of rules, the most complex yet
tractable representation. As such, Horn Clauses
have severe limits in expressiveness.

Situations grow
exponentially with

depth

5 1

decision2 decision 1

2 4

best choice

8 4 2 7 6 1 5 9

cost of each decision sequence

simulation

1
Figure 1 Lookahead Explicitly Builds a Decision Tree; The Best
Choice is One that Minimizes Backed-Up Cost
• Neural Networks. This approach uses non-
linear decision functions to choose actions.
Inputs from the state are encoded as real-valued
data; the output represents the action choice. The
neural net is typically trained from data
consisting of inputs and appropriate decision.
The rule is implicitly encoded as a non-linear
decision surface.

• Genetic Algorithms. This approach uses the
process of evolution to choose the “fittest” set of
inputs. The result is a rule that represents the best
choice for a given set of inputs. In short, the
Genetic Algorithm is not necessarily used to
make decisions; it produces rules, which are then
used to make decisions.

Our Approach to Intelligent Behavior
In contrast to the rule-based approach for decision-

making, our approach to decision-making is model-based.
This approach involves the forward application of a model
of each decision—its conditions and effects—and events
that can take place in the world. In other words, the model
is the simulation model, which has already been
developed for the application. Used by world-
championship chess-playing programs, this approach can
be summarized in the following three steps:

1. Simulate the effects of each decision
forward in time by building a lookahead tree
of possible decisions.

2. Evaluate the expected cost of each decision
sequence in that tree.

3. Choose a decision that minimizes the
expected cost.

For example, Figure 1 shows a lookahead tree where the
object is to minimize the expected cost. The nodes of the

tree represent situations and the arcs represent decisions
or events that change the situation. Simulation predicts
the expected outcomes below each of the two major
decisions (at the top); the tree is generated explicitly
through the application of decisions, which change the
situation. The leaf nodes (nodes at the bottom of the tree)
represent outcomes in terms of cost. According to
decision-theory, the second decision is the best one to
make. In short, model-based decision-making combines
forecasting (predicting what the future might be like
based on the model) with decision theory. For example, a

weather forecast might call for rain; the decision to make
is whether or not to take along an umbrella; decision
theory says that the best decision is the one with the
maximum expected utility (in this case not getting wet).

Advantages of Our Approach

Our approach has several advantages over the rule-
based approach. Specifically, it is:

• Telescopic. It takes into account the future
impact of each decision. In contrast, rules are
myopic and often result in poor long-term
decisions. For example, a three step lookahead in
Figure would show that the final arrival time for
both vehicles will be faster if the right vehicle
takes a seemingly longer path to its destination
(x). This is because the shaded node is a
congestion point: according to the standard
shortest-path dispatch rule, both vehicles will
attempt to move into that node and one will end
up waiting for the other to vacate that position.
As such congestion frequently occurs with
multiple vehicles, lookahead can automatically
choose vehicle routes that avoid congestion
because it can anticipate congestion. The more
vehicles, the more likely the congestion and the
more lookahead helps. Intuitively, lookahead is
better able to evaluate the long-term impact of a
decision. Mathematically, lookahead is able to
overcome local minima in the objective function.
For example, Figure shows that a two-step
lookahead suggests a seemingly uphill move in
anticipation of the global minimum, which lies
beyond the peak. In contrast, a single-step
lookahead will suggest a downhill move, which
appears good, but will result in a local minimum.

• Expressively Powerful. It incorporates a model
of uncertainty—decisions that have uncertain
effects or random events. In contrast, rules have
extreme difficulty expressing how to deal with
such situations.

• Real time. It can make decisions within the time
constraints of the underlying application.
Complex rules, especially those requiring
theorem proving or an interpreter, might not be
real-time and hence have limited applicability.

• Anytime. It looks ahead as far as decision-
making time permits: the more time available to
make the decision, the better the decision.
Greater decision-making time allows a deeper
lookahead, which better gauges the long-term
impact of each decision. For example, Figure 2
shows that chess ranking increases with chess
lookahead for chess programs. In contrast, rules
do not take advantage of any additional decision-
making time that might be available.

• Principled. It operates from the underlying
principles of the simulation model rather than ad
hoc rules, which may not match the model. In
general, it is difficult for a finite set of rules to
capture a complex simulation system. We
sidestep this problem by actually running the
simulation system forward in time to make

Local minimum

Global minimum

Current situation

Objective Function
Landscape

1

x

2

y

Figure 2 Rule-based vehciles (1 & 2) will
attempt to move along the shortest path to
their destination (x); model-based vehicles

recognize that both will arrive at their
destination faster if the second vehicle moves
along a seeminlgy longer path (y) rather than
take a shorter path through the choke point

(shaded/red node)

Figure 3 A two step lookahead cen see beyond the local maximum

decisions for intelligent entities. Once the
simulation model is built, no additional work is
required to apply model-based decision-making.

• Easily deployable. The model can be built
rapidly at relatively low cost, without requiring
great expertise. In contrast, rules require deep
knowledge of the application. As a result, good
rules are often difficult or expensive for an
expert to articulate: many people could specify
the domain, but few can specify the behavior
require by intelligent entities. Moreover, a new
rule is required for each situation, thus further
increasing the cost of developing a rule base.

• Flexible and easily maintainable. When the
simulation model changes, the decisions that
result from it automatically change, with no
additional effort. In contrast, rules might require
change if the model changes. Maintaining a set
of fixed rules is often a nightmare, one that
results in spaghetti code with rules typically at
odds with each other.

• Optimal. Theoretically, model-based decision-
making produces a decision that is optimal
relative to the underlying simulation model. This
is because it simulates the model forward in
time. Optimal decisions not only provide strong
opponents (which are good for training), but they

provide a trainee with the actual optimal choice
for their own decisions—important for learning
good decision-making skills.

For all of these reasons, model-based decision-making

has dominated over the rule-based approach in many
applications, ranging from chess to scheduling. We
believe that it will similarly dominate the generation of
realistic behaviors for intelligent entities in simulation.

Current Results

We are still generating results at press time, but we have
developed and tested two different UAV environments.
The first is a two-dimensional deconfliction environment
consisting of 28 UAVs in a 6x6 grid. The task is to move
each UAV from a given location to a target destination
(selected at random) and then return to the start location.
With 28 UAVs and only 36 locations, the complexity and
congestion is considerable. Figure 3 shows SLA performs
surprisingly well: with deep lookahead, it attains a 70%
improvement over the standard dispatch rule (route along
the shortest path to the destination), where the cost is the
sum of path lengths over all UAVs. In other applications,
different performance measures might be used. For
example, in a military application, it might include a
measure of mission success.

Beginner

Advanced
Intermediate

Grandmaster
Master

World Champion

Lookahead Depth

Decision
Quality

Figure 2 Decision Quality Improves with Lookahead Depth

6x6 Grid with 28 UAVS

0

10000

20000

1 2 3 4 5 6
Lookahead Depth

Total Cost

70%
improvement

depth 1 = shortest-path dispatch rule
Figure 3 2D UAVs: The task here is to route UAVs as rapidly as possible while avoiding
collisions; 1000 random destinations were used

The second is a 10 x 10 x 10 grid of discrete locations
with 20 UAVs (each UAV occupies one discrete
location). We compared SLA against a standard rule-
based approach to controlling this swarm: follow the
shortest path to destination whenever possible. If the
shortest path is blocked, the next shortest path is found.
We used 200 random situations. If problem can’t be
solved by either algorithm within 100 steps, we discarded
it. For our algorithm, we used a lookahead depth of 10.
In either case, we measured the average distance to colve
the problem. Oasys resulted in an average of 19.9 moves
and the shortest path rule resulted in 21.91 steps to goal.
This translates to a 9.2% improvement for each UAV.
With multiple UAVs this translates to significant savings
in fuel. With a more dense space, the results will be even
better.

Architecture

We have developed an interoperable architecture built
on SLA. This architecture, called the Oasys system,
consists of the following components:

• The Supervisory and Advisory Controllers and
the Exception Handler cause actions to take
place in the real world through Action Adaptors
(our interface to the application-level Execution

Systems).
• The Execution Systems, in turn, a

actions in the simulated or real wo
• Application-level Sensors and oth

Sources sense that change in the w
communicate it to our Sensor Ada
feed into the Data Store, the centra
clearinghouse for all of Oasys’s in

• The Data Store is used by all of the vertical
components. For example, it is used by the
Visual Model Builder to store the model, by the
Simulator to run the model forward in time, and
by the Monitor to display key information to the
user.

• Event Playback allows the user to replay
important events in the Data Store.

• Report Writer summarizes key performance
indicators over many runs, actual or simulated.

• The Model Learner learns a model from
historical data in the Data Store.

• The Decision Learner learns to make better
decisions over time by analyzing past decisions.

The Oasys 3.0 architecture, shown in Figure 4 is

distributable and extensible. There are several internal
APIs and one external API. This external API is used by
the execution system to communicate with Oasys. The
API consists of several functions that allow the execution
system to notify the Oasys of state changes and decision
requests. State changes are reflected through monitors,
which are essentially triggers that the execution system
can fire when an important event takes place. Decision
requests are made when a specific decision is needed.
The Oasys API is implemented using Microsoft’s .NET
framework, but can easily be adapted to support other
architectures such as COM and DLL. Oasys 3.1 can

Data Store

D
ec

is
io

n
L

ea
rn

er

M
od

el
 L

ea
rn

er

R
ep

or
t W

ri
te

r

E
ve

nt
 P

la
yb

ac
k

M
on

ito
r

Si
m

ul
at

or

V
is

ua
l M

od
el

Exception Handler

Advisory Controller

Supervisory Controller
Action

Adaptors

Execution
Systems

Sensor
Adaptors

Sensors &
Other
Data

Sources

Application

F
igure 4 LDI Oasys 3.0 Conceptual Architecture
pply the
rld.
er Data
orld and
ptors, which
l

formation.

support any simulation system.

Conclusions and Future Work
Real-time Simulation-Based LookAhead (SLA) makes

better use of time and takes into account the future impact
of each decision. The more time available to make the
decision, the better the decision. Greater decision-making
time allows a deeper lookahead, which better gauges the

long-term impact of each decision. Simulation-based
decision-making also incorporates a model of
uncertainty—decisions that might have uncertain effects.
In contrast, it is difficult to model uncertainty with fixed
rules. Finally, simulation-based decision-making operates
from first principles, which means it can take into account
complex interactions among resources. All of these result
in increased performance for UAVs.

Although UAVs are poised to offer significant change
in the way the military conducts operations, the pilots
who fly the UAVs are often overwhelmed with sensory
information and are unable to receive the sensory cues
that are normally available to an onboard pilot.
Automation has been touted as a solution, but this can
result in the pilot losing situational awareness and
becoming detached. What is needed is an appropriate
partnership between the pilot and an automated
assistant—one where the pilot choose an appropriate level
of interaction and the automated assistant adapts to the
pilot’s needs and not the other way around. This keeps the
human ‘in the loop’ for increased situational awareness,
better division of labor, and better decision-making.

We are currently developing a new multi-level UAV
control system built around an automated adaptive
assistant. This system will be affordable, scale to a large
number of UAVs, is real-time, adapt over time. Moreover
it will be in interoperable, reusable, fault tolerant, and
error tolerant, and will handle uncertainty.

As an associate system it might offer suggestions for
new altitude, headings, and speed; new sensor modes to
cover an area; tactics to minimize danger and maximize

probability of completing the mission. Or, it might
automatically make such choices, under pilot approval,
when rapid real-time response is needed. Of course
responses are all dependent on the appropriate level
chosen by the pilot.

We plan on exploring three broad levels of automation:
manual, semi-automatic, and automatic. The purpose of
the manual level is to make decisions requiring expertise,
past experience, gut-feelings, which the machine is
incapable of. The purpose of the semi-automatic level is
to make decisions that require both the expertise of a
human and the calculating ability and speed of a machine.

The purpose of the automatic level is to make decisions
that require the machine’s special capabilities of speed
and calculating ability or when the human operator is
overwhelmed with information, cannot respond in time,
or is information processing is required that is beyond
human cognitive abilities.

Ultimately, the human is in charge of deciding which
level is appropriate and once done, can be undone at any
time. However, the important point of these levels is that
sometimes the machine needs help and sometimes the
human needs help.

Biography
Dr. Armand Prieditis is CEO and President of LDI. His
work centers on real-time decision-making. Dr. Mukesh
Dalal is Executive Vice-President of LDI. His work
centers on business applications of real-time decision-
making. The rest of the co-authors are senior software
developers at LDI.

