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Abstract 
Unmanned Aerial Vehicles (UAVs) have demonstrated 

tremendous capability in recent military operations. 
Recently swarm technology has been suggested as a 
possible solution to automatically control and coordinate 
multiple UAVs. The idea behind a swarm is that simple 
local rules that govern the behavior of individual entities 
can lead to complex emergent behavior of the system as a 
whole. Although such systems have achieved limited 
success in simulated applications, finding good rules can 
be difficult for humans. Moreover, such rules can result in 
odd behavior or unnecessarily long missions.  This paper 
describes a swarm-based multi-UAV system, called 
SmartSwarms, using a radically different approach: 
instead of operating with human-defined rules, each 
individual reasons using Simulated LookAhead (SLA), 
thus incorporating a model of its world and nearby 
entities in decision-making. Our results show that this 
approach can improve swarm behavior in UAVs. SLA is 
affordable, scalable to a large number of UAVs, 
deconflicts in real-time, learns over time, is interoperable, 
reusable, fault tolerant, and error tolerant, and can handle 
uncertainty. 
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Introduction and Motivation 

 Unmanned Aerial Vehicles (UAVs), including 
Predator, Hunter, Shadow, and Pioneer, have 
demonstrated tremendous capability in recent military 
operations. They offer several advantages, typically 
categorized as “the dull, the dirty, and the dangerous.”  
They can increase unit effectiveness and multiply force by 
surveying an area better than ten or more human sentries 
and have longer persistence  (“the dull”); they can 
reconnoiter in areas contaminated by nuclear, chemical, 
or biological agents without risk to humans (“the dirty”); 
they can  suppress enemy air defenses in high risk 
operations currently flown by manned EA-6’s or F-16s 
with less support aircraft, thus eliminating the risk of loss 
of life of an air crew (“the dangerous”).  Moreover, UAVs 
cost less to acquire and support, have a greater potential 

for survivability, enable new CONOPS, and can act in 
parallel as an extended sensor network, providing a more 
accurate picture of a larger battlespace. In short, UAVs 
are poised to offer significant change in the way the 
military conducts operations.   

However, pilots who fly the UAVs are often 
overwhelmed with sensory information and have 
difficulty deconflicting a UAV while focusing on the 
mission at hand.  At the same time, the pilot is not able to 
receive the right sensory cues—cues that are normally 
available to the pilot, but are lacking at the remove 
location.—to aid in deconfliction.  This can result in 
mishaps and failure to complete the mission.   

Worse still, current UAVs require at least one operator 
per UAV, despite technological advances that make it 
possible to deploy hundred (if not thousands) of 
inexpensive. This requirement not only increases expense, 
but makes coordination among UAVs more difficult. 

Recently swarm technology has been suggested as a 
possible solution to automatically control and coordinate 
multiple UAVs. Swarms consist of a large number of 
distributed, parallel-acting individual entities coupled 
with primitive communication mechanisms such as 
chemical markers. The idea behind a swarm is that simple 
local rules that govern the behavior of individual entities 
can lead to complex emergent behavior of the system as a 
whole. For example, it might be possible to conduct a 
search and destroy operation. Rules include ideas such as 
“avoid areas already searched” or “avoid UAVs within a 
certain radius.”  

Although such systems have achieved limited success in 
simulated applications, finding good rules can be difficult 
for humans. Moreover, such rules can result in odd 
behavior or unnecessarily long missions.   

This paper describes a swarm-based multi-UAV system, 
called SmartSwarms, using a radically different approach: 
instead of operating with human-defined rules, each 
individual reasons using Simulated LookAhead (SLA), 
thus incorporating a model of its world and nearby 



entities in decision-making. In short, the individuals in 
our approach are capable of limited thinking rather than 
responding with reactive rules. Our results show that this 
approach can improve swarm behavior in UAVs. SLA is 
affordable, scalable to a large number of UAVs, 
deconflicts in real-time, learns over time, is interoperable, 
reusable, fault tolerant, and error tolerant, and can handle 
uncertainty.  

 
Previous Approaches to Simulating Intelligent 
Behavior 

The primary approach to intelligent behavior is rule-
based.  In the rule-based approach, an interpreter attempts 
to match the current situation to a particular rule, which 
then “fires.” This “firing” can either result in a direct 
action in the simulation system or subgoals in the 
interpreter, which are then matched for other rules. In 
either case, the ultimate result is an action that it taken. 
Current rule-based approaches to modeling behavior 
include: 

• Production Rules. Production rules are 
declarative rules with triggers and actions 
associated with the triggers. The actions may be 
local to the production rules—actions necessary 
to decide what to do in the application. TacAir-
Soar is based on such rules. Using a fixed-size 
memory and a forward-chaining rule-based 
interpreter (Soar), it simulated fixed-wing and 
rotary-wing aircraft pilots flying combat and 
reconnaissance missions for STOW-E 1995 and 
STOW-97. 

• Finite-State Machines (FSM). A finite state 
machine consists of a list of states, commands 
that can be accepted at each state, actions 
associated with each command, and triggers for 
each action. The triggers are in the form of rules. 

• Agent-Based.  An autonomous agent capable of 
making decisions and communicating with other 
agents. The agents themselves are driven by 
rules. In fact, most autonomous agents are 
nothing more than a set of distributed production 
rules firing in parallel. 

• Logic-Based.  This approach uses propositional, 
predicate, or higher-order logic to represent 
rules. Sometimes theorem proving is used to 
produce a decision based on multiple rule 
“firings” much as with production rules. Most 
practical logic-based systems use the Horn 
Clause form of rules, the most complex yet 
tractable representation. As such, Horn Clauses 
have severe limits in expressiveness. 
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Figure 1 Lookahead Explicitly Builds a Decision Tree; The Best 
Choice is One that Minimizes Backed-Up Cost 
• Neural Networks. This approach uses non-
linear decision functions to choose actions. 
Inputs from the state are encoded as real-valued 
data; the output represents the action choice. The 
neural net is typically trained from data 
consisting of inputs and appropriate decision. 
The rule is implicitly encoded as a non-linear 
decision surface. 

• Genetic Algorithms. This approach uses the 
process of evolution to choose the “fittest” set of 
inputs. The result is a rule that represents the best 
choice for a given set of inputs. In short, the 
Genetic Algorithm is not necessarily used to 
make decisions; it produces rules, which are then 
used to make decisions. 

Our Approach to Intelligent Behavior 
In contrast to the rule-based approach for decision-

making, our approach to decision-making is model-based. 
This approach involves the forward application of a model 
of each decision—its conditions and effects—and events 
that can take place in the world. In other words, the model 
is the simulation model, which has already been 
developed for the application.  Used by world-
championship chess-playing programs, this approach can 
be summarized in the following three steps:  

1. Simulate the effects of each decision 
forward in time by building a lookahead tree 
of possible decisions. 

2. Evaluate the expected cost of each decision 
sequence in that tree. 

3. Choose a decision that minimizes the 
expected cost. 

 
For example, Figure 1 shows a lookahead tree where the 
object is to minimize the expected cost.  The nodes of the 



tree represent situations and the arcs represent decisions 
or events that change the situation. Simulation predicts 
the expected outcomes below each of the two major 
decisions (at the top); the tree is generated explicitly 
through the application of decisions, which change the 
situation. The leaf nodes (nodes at the bottom of the tree) 
represent outcomes in terms of cost. According to 
decision-theory, the second decision is the best one to 
make. In short, model-based decision-making combines 
forecasting (predicting what the future might be like 
based on the model) with decision theory. For example, a 

weather forecast might call for rain; the decision to make 
is whether or not to take along an umbrella; decision 
theory says that the best decision is the one with the 
maximum expected utility (in this case not getting wet).   
 
Advantages of Our Approach 

Our approach has several advantages over the rule-
based approach. Specifically, it is: 

• Telescopic. It takes into account the future 
impact of each decision. In contrast, rules are 
myopic and often result in poor long-term 
decisions. For example, a three step lookahead in 
Figure  would show that the final arrival time for 
both vehicles will be faster if the right vehicle 
takes a seemingly longer path to its destination 
(x). This is because the shaded node is a 
congestion point: according to the standard 
shortest-path dispatch rule, both vehicles will 
attempt to move into that node and one will end 
up waiting for the other to vacate that position. 
As such congestion frequently occurs with 
multiple vehicles, lookahead can automatically 
choose vehicle  routes that avoid congestion 
because it can anticipate congestion. The more 
vehicles, the more likely the congestion and the 
more lookahead helps. Intuitively, lookahead is 
better able to evaluate the long-term impact of a 
decision. Mathematically, lookahead is able to 
overcome local minima in the objective function. 
For example, Figure  shows that a two-step 
lookahead suggests a seemingly uphill move in 
anticipation of the global minimum, which lies 
beyond the peak. In contrast, a single-step 
lookahead will suggest a downhill move, which 
appears good, but will result in a local minimum.  

• Expressively Powerful. It incorporates a model 
of uncertainty—decisions that have uncertain 
effects or random events. In contrast, rules have 
extreme difficulty expressing how to deal with 
such situations.   

• Real time. It can make decisions within the time 
constraints of the underlying application. 
Complex rules, especially those requiring 
theorem proving or an interpreter, might not be 
real-time and hence have limited applicability. 

• Anytime. It looks ahead as far as decision-
making time permits: the more time available to 
make the decision, the better the decision. 
Greater decision-making time allows a deeper 
lookahead, which better gauges the long-term 
impact of each decision.  For example, Figure 2 
shows that chess ranking increases with chess 
lookahead for chess programs. In contrast, rules 
do not take advantage of any additional decision-
making time that might be available.  

• Principled. It operates from the underlying 
principles of the simulation model rather than ad 
hoc rules, which may not match the model. In 
general, it is difficult for a finite set of rules to 
capture a complex simulation system. We 
sidestep this problem by actually running the 
simulation system forward in time to make 
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Figure 2 Rule-based vehciles (1 & 2) will 
attempt to move along the shortest path to 
their destination (x); model-based vehicles 

recognize that both will arrive at their 
destination faster if the second vehicle moves 
along a seeminlgy longer path (y) rather than 
take a shorter path through the choke point 

(shaded/red node) 

Figure 3 A two step lookahead cen see beyond the local maximum



decisions for intelligent entities. Once the 
simulation model is built, no additional work is 
required to apply model-based decision-making. 

• Easily deployable. The model can be built 
rapidly at relatively low cost, without requiring 
great expertise.   In contrast, rules require deep 
knowledge of the application. As a result, good 
rules are often difficult or expensive for an 
expert to articulate: many people could specify 
the domain, but few can specify the behavior 
require by intelligent entities. Moreover, a new 
rule is required for each situation, thus further 
increasing the cost of developing a rule base.  

• Flexible and easily maintainable. When the 
simulation model changes, the decisions that 
result from it automatically change, with no 
additional effort. In contrast, rules might require 
change if the model changes. Maintaining a set 
of fixed rules is often a nightmare, one that 
results in spaghetti code with rules typically at 
odds with each other. 

• Optimal. Theoretically, model-based decision-
making produces a decision that is optimal 
relative to the underlying simulation model. This 
is because it simulates the model forward in 
time. Optimal decisions not only provide strong 
opponents (which are good for training), but they 

provide a trainee with the actual optimal choice 
for their own decisions—important for learning 
good decision-making skills.  

 
For all of these reasons, model-based decision-making 

has dominated over the rule-based approach in many 
applications, ranging from chess to scheduling. We 
believe that it will similarly dominate the generation of 
realistic behaviors for intelligent entities in simulation. 

Current Results 
 
We are still generating results at press time, but we have 
developed and tested two different UAV environments. 
The first is a two-dimensional deconfliction environment 
consisting of 28 UAVs  in a 6x6 grid. The task is to move 
each UAV from a given location to a target destination 
(selected at random) and then return to the start location. 
With 28 UAVs and only 36 locations, the complexity and 
congestion is considerable. Figure 3 shows SLA performs 
surprisingly well: with deep lookahead, it attains a 70% 
improvement over the standard dispatch rule (route along 
the shortest path to the destination), where the cost is the 
sum of path lengths over all UAVs. In other applications, 
different performance measures might be used. For 
example, in a military application, it might include a 
measure of mission success. 
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collisions; 1000 random destinations were used 



 
The second is a 10 x 10 x 10 grid of discrete locations 
with 20 UAVs (each UAV occupies one discrete 
location). We compared SLA against a standard rule-
based approach to controlling this swarm: follow the 
shortest path to destination whenever possible. If the 
shortest path is blocked, the next shortest path is found. 
We used 200 random situations. If problem can’t be 
solved by either algorithm within 100 steps, we discarded 
it. For our algorithm, we used a lookahead depth of 10.   
In either case, we measured the average distance to colve 
the problem. Oasys resulted in an average of 19.9 moves 
and the shortest path rule resulted in 21.91 steps to goal. 
This translates to a 9.2% improvement for each UAV. 
With multiple UAVs this translates to significant savings 
in fuel. With a more dense space, the results will be even 
better. 
 
 
Architecture 

We have developed an interoperable architecture built 
on SLA. This architecture, called the Oasys system, 
consists of the following components: 

• The Supervisory and Advisory Controllers and 
the Exception Handler cause actions to take 
place in the real world through Action Adaptors 
(our interface to the application-level Execution 

Systems).  
• The Execution Systems, in turn, a

actions in the simulated or real wo
• Application-level Sensors and oth

Sources sense that change in the w
communicate it to our Sensor Ada
feed into the Data Store, the centra
clearinghouse for all of Oasys’s in

• The Data Store is used by all of the vertical 
components. For example, it is used by the 
Visual Model Builder to store the model, by the 
Simulator to run the model forward in time, and 
by the Monitor to display key information to the 
user.  

• Event Playback allows the user to replay 
important events in the Data Store. 

• Report Writer summarizes key performance 
indicators over many runs, actual or simulated. 

• The Model Learner learns a model from 
historical data in the Data Store. 

• The Decision Learner learns to make better 
decisions over time by analyzing past decisions. 

 
The Oasys  3.0 architecture, shown in Figure 4 is 

distributable and extensible.  There are several internal 
APIs and one external API.  This external API is used by 
the execution system to communicate with Oasys.  The 
API consists of several functions that allow the execution 
system to notify the Oasys of state changes and decision 
requests.  State changes are reflected through monitors, 
which are essentially triggers that the execution system 
can fire when an important event takes place.  Decision 
requests are made when a specific decision is needed.   
The Oasys API is implemented using Microsoft’s .NET 
framework, but can easily be adapted to support other 
architectures such as COM and DLL.  Oasys 3.1 can 
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support any simulation system. 

Conclusions and Future Work 
Real-time Simulation-Based LookAhead (SLA) makes 

better use of time and takes into account the future impact 
of each decision. The more time available to make the 
decision, the better the decision. Greater decision-making 
time allows a deeper lookahead, which better gauges the 



long-term impact of each decision. Simulation-based 
decision-making also incorporates a model of 
uncertainty—decisions that might have uncertain effects. 
In contrast, it is difficult to model uncertainty with fixed 
rules.  Finally, simulation-based decision-making operates 
from first principles, which means it can take into account 
complex interactions among resources. All of these result 
in increased performance for UAVs. 

Although UAVs are poised to offer significant change 
in the way the military conducts operations, the pilots 
who fly the UAVs are often overwhelmed with sensory 
information and are unable to receive the sensory cues 
that are normally available to an onboard pilot.  
Automation has been touted as a solution, but this can 
result in the pilot losing situational awareness and 
becoming detached. What is needed is an appropriate 
partnership between the pilot and an automated 
assistant—one where the pilot choose an appropriate level 
of interaction and the automated assistant adapts to the 
pilot’s needs and not the other way around. This keeps the 
human ‘in the loop’ for increased situational awareness, 
better division of labor, and better decision-making.  

We are currently developing a new multi-level UAV 
control system built around an automated adaptive 
assistant. This system will be affordable, scale to a large 
number of UAVs, is real-time, adapt over time. Moreover 
it will be in interoperable, reusable, fault tolerant, and 
error tolerant, and will handle uncertainty.   

As an associate system it might offer suggestions for 
new altitude, headings, and speed; new sensor modes to 
cover an area; tactics to minimize danger and maximize 

probability of completing the mission. Or, it might 
automatically make such choices, under pilot approval, 
when rapid real-time response is needed. Of course 
responses are all dependent on the appropriate level 
chosen by the pilot. 

We plan on exploring three broad levels of automation: 
manual, semi-automatic, and automatic. The purpose of 
the manual level is to make decisions requiring expertise, 
past experience, gut-feelings, which the machine is 
incapable of.  The purpose of the semi-automatic level is 
to make decisions that require both the expertise of a 
human and the calculating ability and speed of a machine. 

The purpose of the automatic level is to make decisions 
that require the machine’s special capabilities of speed 
and calculating ability or when the human operator is 
overwhelmed with information, cannot respond in time, 
or is information processing is required that is beyond 
human cognitive abilities. 

Ultimately, the human is in charge of deciding which 
level is appropriate and once done, can be undone at any 
time. However, the important point of these levels is that 
sometimes the machine needs help and sometimes the 
human needs help.   
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