

ISSUES AND REQUIREMENTS FOR CYBERSECURITY IN
NETWORK CENTRIC WARFARE

Martin R. Stytz, Ph.D. Sheila B. Banks, Ph.D.

Air Force Research Laboratory Calculated Insight
Wright-Patterson AFB, OH Orlando, Fl 32733

(937) 426-2959 (407) 353-0566
mstytz@att.net sbanks@calculated-insight.com

ABSTRACT
The transition to network centric warfare brings with it great promise for the

effectiveness of future military operations. This promise arises from the capability for
network centric warfare to empower individuals at all levels with vast amounts of relevant
information and thereby lift the “fog of war.” By achieving the promise, commanders will be
able to effectively and efficiently employ their resources to achieve objectives; in addition,
individuals can exploit information in real-time to increase their effectiveness in mission
accomplishment and to capitalize upon transient opportunities in the battlespace. However, a
central, but generally unspoken, tenet of network centric warfare is that the information
received is actionable; i.e., that the information is timely and correct. However, the
increasing sophistication of computer and network attack tools and technologies coupled with
the increasing technical sophistication of potential adversaries calls this central tenet into
question and raises the question of how to secure the network and software against the threat
of attack and subversion. Clearly, network and application security, or cybersecurity, is a
broad topic, but is of pressing importance if network centric warfare is to fulfill its potential
and become a key component of the future battlespace. There are a variety of attacks upon
network and software that must be addressed in order to achieve cybersecurity; some attacks
are as simple as denial of service attacks and some as complex as attacks that exploit cyber
vulnerabilities in order to alter key networks and software and thereby subvert the
information without the user being aware that the subversion has occurred. Our objective is
to examine the need for network and software security in light of the network centric warfare
paradigm. In view of the need and threat, we present a new strategy for cyber defense, one
that builds upon but enhances the proven concept of defense in depth. This new strategy
exploits the defensive advantages offered in cyberspace while also minimizing the
opportunities for the attacker as well as making an attack more difficult.

This paper discusses the following topics. The first section contains the motivation for
our research as well as a discussion of the challenges that must be addressed to provide
cybersecurity in the cyber battlespace in support of network centric warfare. Next, the paper
presets a discussion of background material necessary to understand this research area. The
focus of the paper is in the third section, which contains a discussion of the scope of the
threat and of cyber security issues and requirements in the cyber battlespace. The concluding
section contains a brief summary and suggestions for further research.

1. INTRODUCTION
“One of the benefits of reverse

engineering is that you can gain an
understanding of a program in terms of its

binary code. As you become acclimated to
the process and gain some experience, you
begin to notice and recognize certain data
structures and subroutines simply by how
they look in a hex[adecimal] editor. This
may sound weird, but you might be
scrolling through a binary file at a later
date and find yourself saying ‘oh, there’s a
jump table’ or ‘huh, this is probably the
prolog to a subroutine.’ This is a natural
ability that evolves as you learn to
understand machine code…The feeling of
power (emphasis added) associated with
this skill is very rewarding.*” These
words, written by two of the “good guys”
in the ongoing war in cyberspace, should
serve as a warning to us all concerning the
future of network centric warfare. People
have, to date, been willing to invest untold
hours of their own time just to break into
computer systems simply for the feeling of
power that accompanies the successful
attack. What types of attacks will be faced
when this powerful psychological
incentive for the attacker is coupled with
the resources of a well-funded and
determined adversary, be it a terrorist
group or a nation-state? At this point, we
can only speculate, but the skill and
effectiveness of the attack must surely
increase and, in anticipation of this state,
our defenses must start to be improved if
we are to be prepared once the cyberspace
war escalates in scope and power.

The threat posed by the incentivized
cyber attacker of the future is increased
because the transition to network centric
warfare promises to increase the
effectiveness of future military operations.
Allow us to elaborate. The promise of
increased military effectiveness arises
from the capability for network centric
warfare to increase the effective combat

* From Hoglund and McGraw, Exploiting Software –
How to Break Code, Addison-Wesley, 2004, page 395.

power of military organizations. The
increase occurs as a result of the provision
of timely and relevant information
organized and presented to facilitate
situation awareness, decision-making, and
response to enemy activity, friendly
activity, and other circumstances.
Network centric warfare can substantially
reduce the fog and friction of war and
thereby reduce the most serious
impediments to optimal, effective action in
the battlespace. As a result of the
empowerment that results from improved,
efficient information flows, commanders
at all levels will be able to effectively and
efficiently employ and coordinate their
resources and actions to achieve objectives
and capitalize upon transient opportunities
in the battlespace to further increase their
effectiveness and combat power.

However, a central, but generally
unspoken, condition for successful
network centric warfare is that the
information received is actionable; i.e.,
that the information is both timely and
correct. However, the increasing
sophistication of computer and network
attack technologies and tools coupled with
the increasing technical sophistication of
potential adversaries calls this implicit
central tenet into question and makes the
question of how to secure the network and
software against the threat of attack and
subversion all the more urgent and
important. Hence, our conclusion that the
threat posed by cyber attack will increase
as the transition to network centric warfare
procedes. Clearly, software and network
protection is a broad topic 2-14;
nevertheless, cyber seurity must be
achieved across the entire cyberbattlespace
if the potential of network centric warfare
is to be fulfilled in the future battlespace.
There are a variety of attacks upon the
network and software that must be
addressed; some as simple as denial of

service attacks and some as complex as
attacks that exploit network vulnerabilities
in order to alter key software or subvert
software into presenting incorrect
information without the user being aware
that the subversion has occurred. In this
paper, we will examine the need for
network and software security, or cyber
security, in light of the network centric
warfare paradigm shift. To support and
enable this shift, the discipline and
practice of network centric warfare cyber
security must be fostered, in this paper we
hope to initiate the process of defining the
bounds and objectives for this emerging
discipline.

Our vision for network centric warfare
cyber security can briefly be described as
calling for a seamless web of protection
technologies for all levels and all portions
of the network and software. The
protection capabilities (and needs) range
from data to network to software with all
components being imbued with inherent
capabilities to verify their own correct and
secure operation as well as the correct and
secure operation of the other interacting
components of the cyber battlespace. This
vision calls for the recognition that the
division between software and network
security is only a pedagogical difference,
and one that should have little impact upon
achieving a secure network-centric
environment. Upon examination, it is
clear that a sound axiom is that all network
attacks are, except for the actual
transmission of packets across a physical
medium outside of a computer, attacks
upon software. Conversely, all but the
most trivial and elementary software
attacks are enabled and conducted via a
network connection. In brief, all network
attacks are software attacks and almost all
software attacks rely upon a network
connection. This axiom gains even more

validity within a network centric warfare
environment.

The remainder of this paper is
organized as follows. Section Two
contains a brief discussion of background
material. In Section Three, we discuss
issues and requirements for cyber security
in the cyber battlespace. Section Four
contains a brief summary and suggestions
for further research in this field.

2. BACKGROUND

Before addressing cyber security
needs for the network centric warfare
environment, we will define important
terms and discuss a few of the important
tools for cyber defense. Due to space
limitations this background is, of
necessity, limited and we urge the eader to
turn to the references for further
information and detailed descriptions of
the material that we introduce here.

Cyber secuirity has been mostly
limited to network and operating system
security activities. Traditionally,
information assurance and the security of a
computation and its data have been
provided by the network defensive
systems and the authentication
mechanisms in the host operating system1-

14. Despite intense and ongoing efforts to
strengthen these two types of cyber
defensive systems, they continue to fail to
assure the security of software and data on
the host computer. As a result, users
continue to place their application
software and data at risk whenever they
use a computer, especially one that is
connected to a network. Recently, the
concept of information assurance has
broadened from the traditional dyad of
network and operating system defensive
systems to a triad; a triad that includes
defensive technologies embedded in the
application software. The technological

components of application software
defense, also called software protection,
are a mix of techniques whose objective is
to deny the pirate or intruder the capability
to misuse, reverse engineer, tamper with,
or steal application software or data.
Software protection is the last ring of
defense for application software and data;
with the first two defensive rings being the
protection technologies residing in the
network resources and the other being the
protection technologies residing in the
operating system.

We now define a few cyber security
terms. A secure application is one that
does what it is supposed to do/designed to
do and no more. A bug is a software
problem and exists only in code. A flaw is
a problem introduced into an application at
the design level that propagates down to
the implementation. A software
vulnerability† (or vulnerability) is a bug or
flaw that can be exploited by a hacker.
Risk is the probability that a bug or flaw
will be exploited coupled with the severity
of damage that an attacker can inflict
through the bug or flaw. An injection
vector describes the format of an attack‡.
The payload is the portion of the injection
vector that accomplishes the purposes of
the attacker§. A Trojan, or Trojan horse, is
a computer program containing a hidden

† Or, more formally, a security vulnerability is a flaw in
software that makes it infeasible, even when using the
software properly and with security in mind, to prevent
an attacker from usurping privileges, regulating its
operation, compromising data, or gaining ungranted
trust.
‡ An injection vector can be more extensively defined as
either 1) a structural anomaly or weakness that allows
executable code to be transferred from one computing
domain to another or 2) a data structure that contains and
transfers code from one computing domain to another.
We employ both meanings in this report.
§ While it is possible to craft multi-platform payloads,
size restrictions limit their nefarious scope of activity to
doing something minor, such as throwing an interrupt
that shutsdown the machine.

nefarious function. A virus is a program
that copies itself (and its malicious
capabilities) to other applications on a
computer host. A worm is a computer
program that invades computers on a
network, and is usually embedded within a
virus. Malware is software and is
comprised of Trojans, viruses, and worms.
A rootkit is a program that allows access
to and manipulation of the functionality of
the target computer. Rootkits allow an
attacker to take control of the system
kernel, write EEPROM memory for the
computer (motherboard basic input/output
system (BIOS)) and peripherals, modify
jump and call back tables, and patch
around application security software**.
Call hooking, also called trampolining, is
the name for an attack technique that alters
the address jumped to when a function or
subroutine is called††. Regression is the
software engineering term employed to
signify that the number of application bugs
has increased, or regressed, as a result of
fixing a bug. Regression is one of the
chief and most important side effects of
inserting cyber security protection into an
application after it is completed.
Additional standard terminology can be
found in RFC 2828, which can be accessed
at http://www.ietf.org.

At the developer’s level, there are a
number of techniques and practices that
have been developed that provide a degree

** Not all rootkits are nefarious, a rootkit can also be
used by a computer user to monitor the kernel and
activity in the machine from within the kernel in a nearly
undetectable manner in order to try to detect if the
computer has been penetrated or is under attack. It can
be a powerful defensive tool.
†† In order to remain undetected, normally when a
function is hooked the behavior of the original function
is duplicated in the nefarious function or else the
original, intended function is called when the nefarious
function has completed its work. During a hook,
interrupts are also disabled in order to prevent a collision
with another process that is not being hooked.

of cyber security. As noted by Howard7,
these principles should be employed
during software development and can
improve the security of the application. In
brief, these principles are the following: 1)
use a security process, 2) define the cyber
security goals, 3) treat cyber security as a
critical feature, 4) use least priviledge
throughout, 5) employ defense in depth, 6)
failsafe to a secure mode, 7) use secure
defaults, and 8) do not depend upon
achieving cyber security through obscurity
of information, techniques, or source code.
Unfortunately, these guidelines are often
ignored and as a result cyber security
remains an ever-increasing problem.

An important adjunct to these
principles is security threat modeling. The
Unified Modeling Language (UML)15-18 is
the means of choice for portraying and
modeling cyber threats in a manner that is
clear and standard as well as extensible.
An accurate model of the threats is an
essential first step in determining the
defenses that are needed.

Because of their newness, we will
briefly describe the main software
protection techniques and refer the reader
who is unfamiliar with network and
operating system protection techniques to
the references for further information in
these two cyber security sub-fields. There
are three popular techniques for
application security that address the
protection of high-value assets in a
networked, threat-rich environment.
These three forms of software protection
are the following: 1) obfuscation, 2)
watermaring, and 3) application
performance degradation. These software
protection techniques are used to perform
three main functions: 1) detection of
attempts to pirate, misuse, or tamper with
software; 2) protection of software against
attempts to pirate, misuse, or tamper with
it; and 3) enable self-modification of the

software so that its functionality degrades
in an undetectable manner. These three
defensive technologies can be applied in
computing platforms ranging from single
processors to small computer clusters to
traditional supercomputers to even wide-
area distributed computing. We will
briefly describe these three techniques in
the following paragraphs.

To prevent or hinder reverse
engineering of critical portions of code,
obfuscation26 of program logic and/or data
at the source or object code level is used.
Software obfuscation typically employs
counter-intuitive programming logic, such
as branch conditions that have no meaning
in the actual implemented algorithm. The
use of operations that were not present in
the high-level source software, such as
architecture-specific assembly instructions
is another popular obfuscation technique.
The goal of software obfuscation is to
mislead the reverse engineer and to
prevent the determination of the intended
effect and operation of the application
being attacked.

To obfuscate a piece of software
requires subjecting it to a series of
semantics-preserving transformations.
Semantics preserving transformations are
similar to the optimizing transformations
used in compilers; however, instead of
making the executable smaller or faster as
in the compiler case, obfuscation
transformations make the application more
difficult to understand and reverse
engineer. For example, within a program
loop, an obfuscation transform would do
the following: 1) choose a part of the loop
to obfuscate; 2) choose an obfuscation
algorithm; 3) apply the algorithm to the
software in the loop, and 4) decide
whether to continue the process by
determining if the obfuscation has
achieved the desired level of effectiveness.
The obfuscation transformation should

also be undetectable; that is, the transform
should not be detectable upon examination
or especially when compared to other
versions of the same software.

The main benefit of obfuscation
techniques is that they can reduce the
likelihood that an attacker can use
automated tools to successfully attack
software. Even for experienced reverse
engineers, obfuscation can delay
understanding the inserted protection, and
thus can delay bypassing the obfuscation
and so protect the software from attack.
The main drawback of code obfuscation
techniques is that they increase the
development and maintenance costs
associated with the software.

To effectively obfuscate a program,
several difficulties must be overcome.
First, in order to choose the right part of
the application to obfuscate, the developer
must know which parts of the software are
security sensitive (and hence need a high
degree of obfuscation) and which are
performance sensitive (and hence may
only be able to tolerate a lower degree of
obfuscation). A second challenge is that,
in order to choose an obfuscation
algorithm, the developer needs to know
the cyber security impact that the
algorithm will have on a typical piece of
code. In general, these metrics are not
available and so performance data must be
obtained on a case-by-case basis.
Acquiring the required performance and
security data is costly and time consuming,
which tends to inhibit the use of
obfuscation protection techniques. A third
challenge is that, in order to decide
whether to continue the obfuscation
process, the developer must determine the
level of security that has been achieved
and the performance penalty that has been
incurred. Once again, there are no metrics
to employ, which increases software

development time and tends to inhibit the
use of obfuscation.

The software watermarking
operation19-24 can be described as follows:
The task is to embed a structure “W” (the
watermark) into a program “P” such that
1) W can be reliably located and extracted
from P; 2) W is large; 3) embedding W
into P does not adversely affect the
performance of P (the embedding is
computationally cheap); 4) embedding W
into P does not change any statistical
properties of P (the embedding is
stealthy); and 5) W has a mathematical
property that demonstrates that its
presence in P is the result of deliberate
actions. There are two types of software
watermarks: static and dynamic. Static
watermarks are permanently embedded in
the application executable; whereas,
dynamic watermarks are constructed at
runtime and are stored in the dynamic state
of the program. Static watermarking
techniques are easier to develop and
control and permit better estimates of their
impact on performance than dynamic
watermarks. Dynamic techniques are
more resilient to attack and detection but
their impact upon performance is difficult
to predict.

Application performance degradation
is the newest of the three techniques for
software protection. The strategy for this
type of protection is to leave the pirate
with software that is useless while also
insuring that the pirate cannot detect that
the software has modified itself.
Performance degradation depends upon
the existence of one or more markers in an
application that permit the application to
determine if it is under attack. The
markers are generally a combination of
watermarks and performance metrics
embedded in the software and internal test
data and software that use this test data.
Stealthy authentication between

components of an application can be used
as well as authentication with an external
device to allow an application to
determine if it is under attack or has been
subverted. If an attack or subversion is
detected, the protected software responds
by degrading its performance in such a
manner that the degradation response,
whether it is the application’s precision,
speed, and/or memory, is difficult to detect
and gradual as well as being irreversible.

There are other protection
technologies in addition to these main
three; however, they are not as commonly
used. One cyber security technique is the
use of hardware keys. In the hardware key
approach, an authentication or decryption
key is stored in an external hardware
device such as a smartcard. In general,
these systems operate by allowing the
software application to exchange
cryptographically protected authentication
messages with the external device one or
more times during the course of execution
of the protected program. This approach
has some difficulties and weaknesses. Its
use is easily detected and the security
transmissions are subject to interception
and playback to spoof the software, but
hardware protection does complement
software based protection techniques.

Because of the inherent weaknesses
of local authentication/security schemes,
some approaches perform verification on a
remote server. The weakness of network-
based protection is that the developer must
take the responsibility of insuring that the
program can verify that the server
performing the authentication is the
correct server. When using this protection
approach, it is important to have the server
provide critical and unpredictable data to
the program so that the program can verify
that it is using the correct server.

Another approach to protecting
software and networks is through the use

of virtual computing machines within the
computer. This approache to securityis
one of the ones used by the Java
programming language. The virtual
machine approach to cyber protection
requires the identification of the crucial
portions of the application and then
encoding the data and instructions into a
custom bytecode format. Virtual machines
can be an effective protection technique,
but this approach can be costly in terms of
the performance of the program and in an
increase in development time.

One key to improved cyber security is
a better understanding of the threat and of
the vectors used by the attacker to
circumvent cyber defenses. One approach
to achieving an improved understanding is
through the use of the Unified Modeling
Language. The Unified Modeling
Language (UML) is a standardized
graphical-based language that can be used
to develop and compose blueprints
(architecture specifications) of software
systems15-18. The UML documents the
conceptual and physical representations of
a system and permits modeling and
visualization of a system and potential
attacks upon it and the vectors for those
attacks from a variety of viewpoints by
using diagrams. UML provides a
complete language for capturing the
knowledge about a subject and for
expressing that knowledge. UML contains
a large and useful set of predefined
modeling and documentation constructs
and supports custom representations of
information through its inherent
mechanisms for extensibility. The UML
also provides constructs for specifying and
documenting the building blocks and
components of a system. By using its
defined types of diagrams, UML provides
the means for viewing and analyzing an
architecture from five points of view.
These five points of view are the design

view, the use case view, the process view,
the implementation view, and the
deployment view. However, while the
capability for capturing knowledge and
insight about attack vectors is contained
within the UML, this capability has to date
been rarely exploited for cyber defense.

In the next section, we discuss the
threat and needs of the cybersecurity field
in light of the current dearth and poor
performance of defensive techniques and
the plethora of effective attacker
technologies.

3. ISSUES AND
REQUIREMENTS

In this section we cover address two
issues related to cyber security in the
network centric warfare environment. We
open this section with a discussion of the
scope of the cyber threat that must be
addressed. The section concludes with a
discussion of the cyber security objectives
and a new strategy for cyber security for
the network centric warfare environment.

3.1 The Cyber Threat
In this subsection, we briefly examine

the different forms of cyber attack to
illustrate the scope of the threat. After
reviewing the literature in this area1-14,
there is clearly no commonly accepted
classification of attacks or the underlying
strategies that are used to execute the
attacks. So, in order to assist in
understanding the scope of the threat and
the techniques used to accomplish an
attack, we developed our own
classification of the types of cyber attacks
and the strategies that they use. To insure
that we captured all of the types of attacks
and strategies, we used a successive
refinement approach to distinguish and
classify attacks and strategies. The
classification was validated by a regular
and thorough re-review of the literature to

insure that the attacks and strategies that
we identified captured all of the attacks
and approaches taken to accomplish a
cyber exploit.

As a by-product of our analysis of the
cyber security attack literature, we
identified three basic attack strategies, and
we will open our discussion of the scope
of the threat by presenting these strategies.
These basic strategies illustrate that the
scope and basic approaches for cyber
attack have not changed over the years and
are relatively straightforward. While the
strategies have not changed, there has been
a change in the form of an increase in the
sophistication and expertise employed to
execute the strategy when performing an
attack. The three basic attack strategies
are the following: 1) to inject faults via
the application’s runtime environment, 2)
to inject faults through the application’s
source code, or 3) to inject errors to induce
a fault. These strategies can be executed
using a variety of techniques and tactics,
but some of the techniques required to
execute them are quite complex. While
there are three basic strategies, the
literature indicates that these strategies can
be further refined and specialized. This
refinement is useful for illuminating the
scope of the cyber threat, as there are
many types of cyber attack, as Table 1
shows. In Table 1, we summarize the
different types of attacks and provide a
brief description of the strategy underlying
each attack (exploit). There are a number
of strategies identified in the table but they
are all variants of the three strategies
identified above.

Table 1 illustrates that there are a
wide variety of attacks and strategies used
in the attack. In addition to the evident
broad scope of attacks, the literature, and
the news, indicates that in spite of the
effort put forth in recent years we have not
been able to redress the weaknesses in

cyber security, thwart any of the basic
forms of attack, or develop a strategy for
defense that counters the strategies
employed by attackers. These problems
must be resolved in order for network
centric warfare to realize its potential. As
a first step toward addressing these
problems, we identified a set of objectives
for cyber defense and devised a new
strategy for cyber defense. We discuss
these developments in the next sub-
section.

ATTACK NAME ATTACK STRATEGY

Block Access to Libraries Attack via environment.

Redirect Access to Libraries Attack via environment. (Works by altering execution
flow into attacker’s code instead of allowing the
library’s function to execute.)

Manipulate application registry values Attack via environment.

Force the application to use corrupt files or databases Attack via environment.

Manipulate and replace files that the application creates,
reads, writes, or executes

Attack via environment.

Force the application to operate in low memory, disk-
space, and network-availability conditions

Attack via environment.

Overflow input buffers Attack through the user interface or other input vector.

Attack through application switches and options Attack through the user interface or other input vector.

Use escape characters, different character sets, and
commands to get malformed input

Attack through the user interface or other input vector.

Try common default and test names and passwords Attack through design flaws. Design flaws can leave
user accounts and/or passwords that were active and
useful during development available after the
application is shipped.

Look for and test unprotected application APIs Attack through design flaws. The design flaw is open
test harness APIs.

Connect to all ports Attack through design flaws. Look for design flaws that
have left network ports open in the application that were
used for development and testing.

Fake the data source Attack through design flaws. Look for design flaws that
result in misplaced in trust in data sources.

Create loop conditions in an application that reads
script, code or other user supplied macros or logic

Attack through design flaws. Look for design flaws that
allow flawed loops in scripts used by the application to
prevent the application from executing or result in
deadlock.

Look for and use alternative execution routes through an
application to accomplish its task(s)

Attack through design flaws. Look for design flaws that
permit a privileged command to execute in spite of
lacking the privilege.

Force the application to reset its values Attack through default values. Force the application to
use default values whenever it asks for an input value
from any input source.

Get between time of check of a value and time of use of
a value

Interposition attack.

Create fake files with the same name as protected files Attack through privilege. Exploit the special privileges
given to files with certain names or in certain locations
to attack an application.

Force all error messages Attack through privilege. Exploit improper or incorrect
error handling to crash or hijack an application.

ATTACK NAME ATTACK STRATEGY

Look for temporary files for an application and examine
their contents for sensitive or exploitable information

Attack through files. Attack the implementation by
examining its temporary files to determine if they
contain sensitive data or if one of them can be rewritten.

Force invalid outputs to be generated Attack through files. Some applications process inputs
based upon context, at times this reliance on context
causes erroneous output that can be exploited.

Attack through shared data Attack through files. Generate data values in one
component of an application that exceed the allowed
values in another component that uses the data.

Table 1: Cyber Attacks and Their Strategies

3.2 Objectives and a New Strategy
To lay the foundation for the

discussion in this subsection, we present
what we consider to be the chief objectives
for cybersecurity. The objectives are the
following: 1) preserve the
integrity/functionality of the network and
system; 2) control the use of the system; 3)
prevent extraction of software subsets; 4)
protect system data; 5) protect network
access, prevent unauthorized access; 6)
insure correct and accurate execution
(unchanged processes that might still
produce correct answers or incorrect
answers); and 7) insure that computations
are correct and accurate

Unfortunately, in spite of numerous
efforts undertaken to develop processes
and technologies to enhance cyber
security, we are far from being able to
reliably achieve the goals listed above.
Furthermore, no silver bullet solution to
the problem of cyber security has been
found and none appear to be on the
horizon. As a result, we would argue that
researchers and developers should re-
examine the application of the idea of
defense in depth and determine how it can
provide better security for an application
than a single defense or defensive layer.
This straightforward idea appeals to our
common sense and is also supported by
hundreds of years of security experience in

a variety of situations; ranging from
national defense to military fort
construction. However, most, if not all, of
these systems were and are serial (or
sequential) in nature. In other words,
breaking one system opened the way to the
next system, but until the first system was
breached the second layer did not come
into play. In the physical world, this
approach to defense in depth is logical and
effective. The nature of the physical world
makes a sequential defensive system
effective since the attacker cannot begin to
devise an attack upon the inner defenses
until the outer defenses are breached.
However, the cyberworld is different and
that reconsideration of how defense in
depth should be applied is warranted.

The cyberworld is different from the
real world in almost all regards. The
concept of interior and exterior as applied
in the physical world has no counterpart in
the cyberworld; when cyber defenses are
arrayed independently, the result is to
make them arguably weak in the whole.
Consider, almost any cyber defensive
measure can be attacked first (so it would
be the outer layer of the defense) and any
other can be attacked last (making it the
inner layer). Additionally, different attack
profiles can be used to defeat independent
defenses in different sequences, so the
concept of an outer ring of defense and
inner ring of defense, as traditionally

applied when discussing defense in depth,
has no real meaning when the same
defensive technique can be attacked first
or last at the whim of the attacker. Hence,
in the cyberworld there is no advantage to
be gained by using defenses that are
arrayed independently and sequentially.
Each defense can be defeated
independently, unless one or more
defenses are used as a trip-wire to signal
other defenses that an attack is occurring
(which is of marginal utility). However, it
is known that defense in depth is a good
defensive strategy, one that has stood the
test of time and proven itself in a variety
of circumstances. So, how can the proven
defensive strategy of defense in depth be
applied in an environment where the
concept of physical distance has no
meaning?

Consider that the basic strategic
motivation for defense in depth is that no
single defense should be relied upon to
protect important items and instead
multiple defenses should be employed. As
a result, an attacker cannot defeat one
defense and thereby gain access to the
items being protected. Instead, all
defenses must be defeated and, when
properly arrayed, the attacker cannot gain
insight into one defense while attacking
another and, just as importantly, there is a
degree of mutual support but not
interdependence between defensive
defenses. Therefore, mutual support
combined with independence should be
the objectives and guiding lights for
achieving an effective defense in depth in
the cyberworld. As regards the
cyberworld, our problem is to interweave
all of the defenses into one layer that
would consist of mutually reinforcing but
independent cyber defensive measures
designed to keep a malicious event from
occurring. Given the difficulty that the
human mind has in maintaining an

accurate mental conception of an
environment or set of circumstances when
seven or more items are in play
simultaneously, the more defensive
challenges that must be mastered
simultaneously by an attacker the stronger
the defense should be and more the
difficult it is to compromise.

However, the strategy for cyber
defense outlined above is not easy to
achieve. While we have a sound objective
for cyber defense we currently would have
a difficult set of challenges to overcome to
achieve the goal. Given the state of
protection technology; it is difficult to
identify which technologies are needed
and how to structure cyber defenses so that
multiple challenges always confront an
attacker. As a first step toward achieving
this type of cyber defense in depth, we
must first develop an understanding of
what it means to have mutually reinforcing
but independent cyber defenses. If we
have mutually reinforcing but independent
cyber defenses they must make it very
difficult for an attacker to understand the
protected item(s), whether the examination
is conducted locally or remotely. The
interwoven cyber defenses should make it
extremely difficult to perform any form of
control-flow analysis, data-flow analysis,
network tracing, or program slicing. In
addition, the executable must be so
complex and variable that no technique
could be applied that would allow an
attacker to understand what the program
does, how it does it, or the data that it uses.

Several other capabilities are needed
by the cyber defense. Firstly, the cyber
defense should also have the capability to
verify that the software it protects was
invoked by an authorized entity and that it
still protects its intended target. Secondly,
the cyber defenses should be capable of
determining if they have been changed.
Thirdly, and most currently used, the

cyber defense should be capable of
determining if it is being examined by a
debugger, has been placed within a virtual
machine, or has been hijacked to another
computer system.

Unfortunately, at this time we
generally do not know how to achieve
these characteristics for cyber defenses,
how to compile source code with these
characteristics into an executable binary
with the same characteristics, or how to
measure the degree to which these
characteristics are attained. Indeed, given
the current state of technology, if we could
develop cyber defenses with the desired
characteristics they would be impossible to
maintain or update. Additionally, we
believe that cyber defense in depth should
begin with requirements development and
architectural definition and continue on
through to design and implementation.
Cyber defense should be integral and not a
feature inserted after development (both
because of cost and because of the likely
high degree of regression).

To achieve the type of cyber defense
in depth described, we must develop a
science of cyber protection. Cyber
protection practitioners must be able to
measure the effectiveness of a protection
technique, measure the effectiveness of
multiple protection techniques, and
measure the effectiveness of variations of
single or multiple techniques. Only with
this knowledge can it be determined how
to weave together cyber protection
techniques in an effective manner and
insure that the selected techniques
reinforce instead of subvert each other.
And, we must develop and deploy more
effective cyber defensive techniques.
Clearly, in order to be effective a cyber
defense technique must be relatively easy
to implement, extremely difficult to detect
or isolate, and extremely difficult to
understand or remove. However,

significant research is needed before we
can attach metrics and figures of merit to
individual and combinations of cyber
protection techniques. In addition, given
the complexity desired the cyber security
team needs tools that can help the team to
implement cyber defenses so that it
executes efficiently and accurately. In
addition, tools are needed to test the cyber
protection techniques, to determine the
efficiency and effectiveness of the
protection mechanisms, the degree of
protection attained, and determine if the
protection techniques achieve their
specified goals. Furthermore, tools that
can test for functional errors and security
errors are required and it appears that each
tool will require intelligent agent support.
The intelligent agent support would be
reuired monitor the cyber defenses to
insure that the security bounds specified
are maintained.

Because of the complexity of the
issues involved, the cyber defense
community requires the means for
describing the security needs for an
application as well as for an environment.
We believe that the UML can address this
need through the development of threat
cases. The UML-based threat cases will be
particularly useful in the development of
techniques for testing and assessing cyber
defense methodologies. UML-based threat
cases would also describe how the cyber
defense should respond to attack.

A further cyber defense need is for
development of improved technologies
that protect integer and floating point data.
Protection of the data in the aggregate is
the simpler problem since it can be
partially addressed using strong encryption
techniques, but this technique only insures
that the data can not be corrupted or
violated during storage and does not
provide protection for the data while it is
being used. In our view, run-time data

protection capabilities must be able to
dynamically vary the precision and
accuracy of the individual data items in
response to an attack. The variation must
be accomplished in a manner that
preserves the statistical properties of the
data, is not readily detectable, and yields
reasonable but incorrect answers. To
achieve these objectives, data protection
techniques must be developed that
preserve the statistical properties of the
data before and during the protection
process. In addition, techniques for
determining if the data is under attack or
being used in an unauthorized manner are
needed. Preserving the statistical
properties of the data is important because
one of the easiest means for detecting if
protection is present in the data is by
determining if its statistical properties
(such as mean, median, mode, distribution,
variance, etc.) do not correlate well with
the expected or known statistical
properties for data of that given type.
Hence, the dynamic variation of data in
response to attack cannot be a random
variation but must be controlled and
intelligent in its application.

4. SUMMARY AND FUTURE WORK

In this paper we explored how the
transition to network centric warfare
brings with it the need to improve cyber
defenses to insure that information is
timely and correct. The increasing
sophistication of computer and network
attack tools coupled with the increasing
technical sophistication of potential
adversaries is driving this need for vastly
improved cyber defenses for network and
software against the threat of attack and
subversion. As we have argued, cyber
security is of pressing importance if
network centric warfare is to fulfill its
potential and become a key component of

the future battlespace. This paper outlined
the challenges and what, in our view, must
be done to address these threats. As a
foundation for our discussion, we
presented a brief description of
background material related to the threat,
types of attacks, and defensive
technologies. We then went on to address
cyber security requirements and present a
new strategy for cyber defense, one that
builds upon and enhances the proven
concept of defense in depth. This new
strategy exploits the defensive advantages
offered in cyberspace while also
minimizing the opportunities for the
attacker as well as making an attack more
difficult. We also discussed needed
technological developments if cyber
security is to be improved. However, this
paper is by no means conclusive and much
research remains to be done.

Several research needs are obvious.
One need is for the development of
standard test suites that can be used for
evaluation of cyber protection
methodologies in a scientific manner.
Standard testing should be coupled with
the development of data protection
technology assessment standards, standard
data sets, and methodologies for
evaluating data protection technologies. A
further need is for the development of
international standards to promote
interoperability and insure that systems
operate at equivalent levels cyber security.

There are other important research
needs as well. One of these needs is a
methodology that can be used to
determine, in a standard manner, the
degree of cyber protection required. A
further need is for the development of
standard attack profiles that are coupled
with intelligent agents in order to enable
rapid, autonomous evaluation of the
effectiveness of a defense.

In conclusion, as we move toward
network-centric warfare, the network and
software applications will become ever
more tempting and profitable targets for
attack by an enemy. Our current
capabilities for cyber defense in the face of
a concerted attack are not up to the
challenge and leave our systems
dangerously exposed. Therefore, we argue
that a new strategy for defense in depth is
needed and that a new approach to cyber
security is required. The time has arrived
to replace the former dyad of protection
techniques (network and operating system)
by a triad of cyber protection capabilities,
one that includes application security. In
addition, in order to achieve a robust
degree of cyber protection, the defenses
must be interwoven so that an attacker is
faced with a highly complex challenge if
an attack is attempted. We should act now
to be prepared for the more capable cyber
attacker of the future.

REFERENCES
[1] Alexander, I. (2003) “Misuse Cases: Use

Cases with Hostile Intent,” IEEE Software,
vol. 20, no. 1, January, pp. 58-66.

[2] Amoroso, E.G. (1994) Fundamentals of
Computer Security Technology. Prentice
Hall: Englewood Cliffs, NJ.

[3] Collberg, C.; Thomborson, C.; and Low, D.
(1998) “Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs,” Principles of
Programming Languages 1998, POPL’98,
San Diego, CA, January.

[4] Denning, D.E. 1999) Information Warfare
and Security, Addison-Wesley: Reading,
MA.

[5] Garfinkel, S. and Spafford, G. (1991)
Practical Unix Security. O’Reilly &
Associates: Sebastopol, CA.

[6] Gollmann, D. (1999) Computer Security.
Wiley: Mew York.

[7] Howard, M. and LeBlanc, D. (2002) Writing
Secure Code. Microsoft Press: Redmond,
Washington.

[8] Jalal, F. and Williams, P. (1999) Digital
Certificates: Applied Internet Security.
Addison-Wesley: Reading, MA.

[9] National Security Council. (1999) Trust in
Cyberspace. National Academy Press:
Washington, DC.

[10] Schneer, B. (1996) Applied Cryptography,
John Wiley and Sons: New York.

[11] Stallings, W. (1999) Cryptography and
Network Security: Principles and Practice.
Prentice Hall: Upper Saddle River, NJ.

[12] Summers, R. (1997) Secure Computing:
Threats and Safeguards. McGraw Hill: New
York.

[13] Shrobe, H. (2002) “Computational
Vulnerability Analysis for Information
Survivability,” AI Magazine, vol. 23, no., 4,
Winter, pp. 81-91.

[14] Waltz, E. (1998) Information Warfare: Principles
and Operations. Artech House: Norwood: MA.

UML
[15] Albir, S.S. (1998) UML in a Nutshell, O'Reilly

Press, Sebastopol, CA.
[16] Booch, G. (1998) The Unified Modeling Language

User Guide. Addison Wesley, Reading, MA.
[17] Booch, G.; Rumbaugh, J.; and Jacobson, I. (1999)

The Unified Modeling Language User Guide,
Addison Wesley, Reading, MA.

[18] Henderson-Sellers, B. and Unhelkar, B. (2000)
Open Modeling with UML, Addison-Wesly
Reading, MA.

Watermarking
[19] Collberg, C., and Thomborson, C. (1999)

"Software watermarking: Models and dynamic
embeddings,” In Conference Record of POPL '99:
The 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, January.

[20] Kahng, A. B.; Lach, J.; Mangione-Smith, W. H.;
Mantik, S.; Markov, I.L.; Potkonjak, M.; Tucker,
P.; Wang, H. and Wolfe, G. (1999) “Watermarking
Techniques for Intellectual Property Protection,”
35th ACM/IEEE DAC Design Automation
Conference (DAC-98), June, pp. 776-781.

[21] Palsberg, J., Krishnaswamy, S., Minseok, K., Ma,
D., Shao, Q., and Zhang, Y. (2000) “Experience
with Software Watermarking.” Proceedings of the
16th Annual Computer Security Applications
Conference, ACSAC '00, pp. 308-316.

[22] Nagra, J.; Thomborson, C.; and Collberg, C.
(2002) “Software Watermarking: Protective
Terminology,” Australasian Computer Science
Conference, pp. 177-186.

[23] Ramarathnam V., Vijay V., and Saurabh S. (2001)
“A graph theoretic approach to software
watermarking,” In 4th International Information
Hiding Workshop, Pittsburgh, PA, April.

[24] Palsberg, J. 2000. “Software watermarking with
Secret keys,” In CERIAS Annual Research
Symposium on "Advancing the State and Practice

of Information Assurance and Security, " Purdue
University, W. Lafayette, IN, April 21.

Obfuscation
[25] Collberg , C.S.; Thomborson, C.; and Low, D.

(1997) “A Taxonomy of Obfuscating
Transformations, Technical Report #148,
Department of Computer Science, The University
of Auckland, July.

