Quantitative Analysis of Situational Awareness (QUASA)

Applying Signal Detection Theory to True/False Probes and Self-Ratings

Barry McGuinness
Principal Scientist
Human Factors Dept
Advanced Technology Centre
BAE Systems
Bristol, UK

2004 CCRTS, San Diego
Overview

1. Situational Awareness (SA)
2. Assessing SA
3. QUASA Approach
4. Signal Detection Theory
5. Calibration of SA
6. Example: LOE 2 data
7. Further Developments
Situational Awareness

“Knowing what’s going on so you can figure out what to do.”

“What you need to know not to be surprised.”

Who is where? What are they doing?
What’s going on? Why?
What will happen next?
What does it mean for my task?
Situational Awareness

Situation
Entities, events, states, actions, environment

Perception

Objective Awareness
Constituent elements of the situation

Comprehension

Situational Understanding
Global characteristics of the situation

Projection + Assessment

Operational Appreciation
Implications of the situation for one’s goals/tasks

Decision-making, Response selection

Course of Action
Decisions/actions informed by operational understanding

2004 CCRTS, San Diego
Situational Awareness

Metacognition
Cognitive contents, states and processes, including uncertainties, gaps, conflicts

Objective Awareness
Constituent elements of the situation

Situational Understanding
Global characteristics of the situation

Operational Appreciation
Implications of the situation for one's goals/tasks

Comprehension

Projection + Assessment
Situational Awareness

<table>
<thead>
<tr>
<th>COGNITION</th>
<th>METACOGNITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fighting in the city has mostly ceased</td>
<td>• This is certain. Current info, very reliable.</td>
</tr>
<tr>
<td>• Column of red tanks is leaving south of the city</td>
<td>• Not sure about this. Reports may not be from reliable source. Need to check.</td>
</tr>
<tr>
<td>• Enemy is beginning retreat</td>
<td>• Confidence in this -- 50-60% Need to look for evidence.</td>
</tr>
</tbody>
</table>

“Actual SA”

“Perceived SA”
Situational Awareness

– Hence, SA is not just about having positive knowledge of actual events
– It’s also about
 - Being aware of what is not the case
 - Being aware of what we don’t know and may need to find out
 - Being aware of what others are aware of and unaware of
– So, SA is a complex, multi-faceted phenomenon
Situational Awareness

Strategic

Tactical

war situation

strategy

street situation

next action
Assessment of Situational Awareness

- **OBJECTIVE INDICES / CORRELATES**
 - Performance
 - Behaviours
 - Physiology

- **SELF-RATINGS**
 - Unidimensional
 - Multidimensional

- **DIRECT PROBES / QUERIES**
 - Situation reports
 - Multi-choice questions
 - True / false probes
QUASA

- **Quantitative Analysis of SA**
 - Combination of direct probes and simultaneous self-ratings
 - True/false probes
 - Responses analysed using Signal detection Theory
 - Extension of CALIBRATION theory to SA

- **Probes and ratings**
 - True/false probe = a statement about the situation [a ‘report’] which may or may not be true.
 - Self-rating = indication of confidence in one’s probe response

A column of enemy tanks is now leaving the city.

Probe Statement
Assessment
Confidence
QUASA

SA Requirements Analysis

- A form of Cognitive Task Analysis with SMEs to capture SA contents
 - Generic for the role/task
 - Specific to the scenario

Probe construction

- Formulate equal numbers of true & false probes
- Ensure that probes are
 - relevant to the subject’s task
 - plausible as potentially ‘true’ descriptions when in fact false

- Process of checks & iterations:
 - independent ‘blind’ assessment of true/false likelihood
 - assessment of intelligibility
 - assessment of plausability w.r.t. the scenario
 - assessment of relevance to the subject’s task
QUASA in use

MN LOE 2 experiment

- 5 nations + NATO
 - US lead (JF COM)

- Collaborative planning
 - distributed teams
 - network
 - information sharing agreements
 - ONA process

- 46 subjects in 2 roles
 - Analysts vs Planners

- 2 conditions (methods of online collaboration), each lasting 1 week

- 50 T/F probes per subject per condition
 - 5 at a time every few hours
QUASA in use

LOE 2 SA data collection

Probe 1
Explosive materials have been found in a storage container at Xxxxx

(a) True or false?

TRUE
FALSE

(b) Level of confidence

Very Low Low Moderate High Very High

(c) Which teams will mostly answer this probe correctly?

A B C D E

– True / false probe
– Subjective confidence level
– Perception of other teams’ SA
Analysis of probes data

Contingency table

<table>
<thead>
<tr>
<th>Probe type</th>
<th>Subject’s response</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>[T] [F]</td>
</tr>
<tr>
<td>False</td>
<td></td>
</tr>
<tr>
<td>Hit</td>
<td>[T]</td>
</tr>
<tr>
<td>Miss</td>
<td>[F]</td>
</tr>
<tr>
<td>False alarm</td>
<td>[F]</td>
</tr>
<tr>
<td>Correct rejection</td>
<td>[T]</td>
</tr>
</tbody>
</table>

Enemy forces have captured bridge Charlie.

[T] [F]
Signal Detection Theory
Signal Detection Theory

Goal
- Detect presence of “signals” (target objects or situations)
- Discriminate signals from “noise” (non-signals, distractors)

Task
- Observe source of information
- Assess evidence for/against presence of targets
- Make a judgement if uncertain
- Make overt responses -- Yes or No

Processes
- Perceptual detection & discrimination
- Decision-making when uncertain

... We’re treating T/F SA probe response as a signal detection task
Signal Detection Theory

Signal Detection Theory involves the analysis of signals in the presence of non-signals (noise). The internal response strength is a measure that helps in determining whether a signal is present or not. If the response is low, the signal is rejected; if high, it is accepted.
Signal Detection Theory

Noise

Signals + noise

Internal response strength

low

high

2004 CCRTS, San Diego
Signal Detection Theory

- Noise
- Signal + noise

- Low
- High

- REJECT
- (uncertain)
- ACCEPT
Signal Detection Theory

- Contingency table — 4 possible outcomes
Signal Detection Theory

- Contingency table — 4 possible outcomes

<table>
<thead>
<tr>
<th>STIMULUS</th>
<th>RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>Accept</td>
</tr>
<tr>
<td></td>
<td>Reject</td>
</tr>
<tr>
<td>Non-signal</td>
<td></td>
</tr>
</tbody>
</table>

- Hit rate = 0.80
- Miss rate = 0.20
- False Alarm rate = 0.12
- Correct Rejection rate = 0.88
Signal Detection Theory

Low criterion (liberal, inclusive)
Letting no true signal slip through the net
Maximum hits, no misses
Prone to false alarms
Signal Detection Theory

High criterion (conservative, exclusive)
Accepting nothing but definite true signals
Maximum correct rejections, no false alarms
Prone to misses
Signal Detection Theory

Central criterion (neutral, balanced)
Threshold set at the mid-point of uncertainty
Equal numbers of misses and false alarms
Prone to equal numbers of misses and false alarms

- **Correct Rejections**
 - $P(CR) = 0.85$

- **Misses**
 - $P(M) = 0.15$

- **False Alarms**
 - $P(FA) = 0.15$

- **Hits**
 - $P(H) = 0.85$
Signal Detection Theory

Noise

Signal + noise

low

high

2004 CCRTS, San Diego
Signal Detection Theory

Sensitivity
Difference between noise and signal distributions, relative to their spread (variance)

\[d' = Z(H) - Z(FA) \]

\[d' = 4.00 \]
Signal Detection Theory

Noise

Signal + noise

low

high
Signal Detection Theory

Criterion
Threshold for “accept” response, measured by distance from middle of noise distribution

\[k = -Z(FA) \]
\[k = 2.16 \]
Signal Detection Theory

Bias (1)
Distance of actual criterion from neutral or central criterion

$C = k - d'/2$

$C = 2.16 - 2.00$

$= 0.16$
Signal Detection Theory

Bias (2) and (3)
Likelihood ratio of probability densities of the two distributions at the criterion

\[\beta = \frac{f_S(k)}{f_N(k)} \]

\[\log \beta = \frac{1}{2}(Z^2(FA) - Z^2(H)) \]

\[\beta = \exp^{d'c} \]

\[\log \beta = d'C \]

\[\beta = 1.38 \]

\[\log \beta = 0.32 \]
Signal Detection Theory

Basic findings

- Perceptual performance depends upon

 STIMULUS DISCRIMINABILITY
 - Stimulus quality
 - Actual signal-noise ratio

 OBSERVER SENSITIVITY
 - Ability to detect signals
 - Ability to discriminate signals from noise (distractors)

 OBSERVER RESPONSE STRATEGY IN UNCERTAINTY (CRITERION / BIAS)
 - Perceived signal probability
 - Motivation to maximise hits or minimise false alarms

- SDT has established that individuals are not just mechanical information processors but also make conscious judgements in conditions of uncertainty
Signal Detection Theory

- **SDT in the real world**
 - Early studies of radar observer performance
 - More recently:
 - **Recognition memory**
 - eyewitness memory
 - remember / know paradigm
 - **Diagnostic tasks**
 - medical tests
 - weather forecasting
 - psychometric tests
 - polygraph lie detectors
 - forensic tests
 - In principle, any situation that calls for judgement in uncertainty
SDT and Situational Awareness

- Assessing SA with T/F probes
 - Why use them?
 - Output of T/F probes = contingency table
 - HITS / MISSES
 - FALSE ALARMS / CORRECT REJECTIONS
 - Traditionally, we have assessed SA using % correct responses to questions about the situation
 - This tells us little or nothing about
 - What the subject knows is not the case
 - What the subject wrongly believes is the case
 - SDT provides separate measures of SENSITIVITY and CRITERION / BIAS
Results

- Compare two subjects (LOE 2)

SUBJECT A
Responses

<table>
<thead>
<tr>
<th>Probe type</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>“True”</td>
<td>HITS 0.80</td>
<td>MISSES</td>
</tr>
<tr>
<td>“False”</td>
<td>FALSE ALARMS 0.10</td>
<td>CORRECT REJECTIONS</td>
</tr>
</tbody>
</table>

SUBJECT B
Responses

<table>
<thead>
<tr>
<th>Probe type</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>“True”</td>
<td>HITS 0.90</td>
<td>MISSES</td>
</tr>
<tr>
<td>“False”</td>
<td>FALSE ALARMS 0.75</td>
<td>CORRECT REJECTIONS</td>
</tr>
</tbody>
</table>
Receiver Operating Characteristic

A
Hit rate = 0.80
FA rate = 0.10

B
Hit rate = 0.90
FA rate = 0.75

Hit rate
P(H)

False Alarm rate
P(H)

2004 CCRTS, San Diego
ROC — Criterion / Bias

Subject A criterion = close to neutral
Subject B criterion = strong liberal bias
ROC - Sensitivity

Hit rate $P(H)$

False Alarm rate $P(H)$

Sensitivity d'

Isosensitivity contour map

A
Hit rate = 0.80
FA rate = 0.10
$d' = 2.00$

B
Hit rate = 0.90
FA rate = 0.75
$d' = 0.60$
QUASA data – LOE 2

SA probe hit rates

Hit rate

Team A has highest hit rate ...

Team (nation)

A B C D E
QUASA data - LOE 2

SA probe sensitivity

Sensitivity (d’)

But team A is no more accurate overall at discriminating true from false probes
QUASA data – LOE 2

Team A is very liberal when uncertain (inclined to accept probes as true) -- hence the high hit rate
QUASA data – LOE 2

ROC curve: grouped by teams

Hit rate $P(H)$ vs. False Alarm rate $P(H)$

LOE 2 teams
- Green: Team A
- Red: Team B
- Black: Team C
- White: Team D
- Blue: Team E
QUASA data – LOE 2

Summary so far

– Team A has highest *hit rate* on SA probes
– But SDT analysis shows all teams are only moderately *accurate*
– Team A’s hit rate due to very liberal *response bias* when uncertain
– Other teams are neutral or slightly conservative
Calibration

Concept
- Overconfidence / underconfidence
- The extent to which people are able to judge the correctness of their own observations or decisions

Method
- Obtain a judgement, then obtain self-rating of confidence in that judgement
 - binary ratings | continuous scales | ordinal ratings
- A well-calibrated person gives low ratings on incorrect / chance-level judgements (i.e. when uncertain) and high ratings on correct judgements (when certain)
- Calibration analysis quantifies this relationship in some way
Calibration

Findings
- Overconfidence common for cognitive tasks
- Underconfidence common for sensory tasks
- (May be an artefact of experimental methods)

Applications
- **Eyewitness reports**
 - Juries and police tend to be persuaded by highly confident witness reports, but these don’t always correlate with actual accuracy.

- **Intelligence analysis**
 - Don’t want overconfident intelligence reports based on dubious data

- **Situational awareness**
 - Accidents attributed to overconfidence in poor/inaccurate SA
Calibration

Calibration curve

Under-Confident

Well-calibrated

Over-Confident

Actual accuracy (%)

Perceived accuracy (%)
SA of car drivers presented with safety-related electronic messages by an Advanced Traveller Information System (ATIS).

SA measured using a 2AFC version of SAGAT.

Confidence in each probe response rated on a continuous scale (50%-100%

Source

QUASA data – LOE 2

Mean SA probe response confidence ratings per team in LOE 2.
QUASA data – LOE 2

ROC curve: hypothetical confidence levels

Confidence ratings:
- very high
- high
- moderate
- low
- very low
QUASA data - LOE 2

ROC curve: hypothetical confidence levels

Hit rate $P(H)$

False Alarm rate $P(H)$

Confidence ratings
- very high
- high
- moderate
- low
- very low

Suggestive of overconfidence when guessing
QUASA data – LOE 2

Calibration scores
- using hit + correct rejection rates as actual accuracy

<table>
<thead>
<tr>
<th>Team (nation)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived accuracy</td>
<td>0.716</td>
<td>0.795</td>
<td>0.803</td>
<td>0.832</td>
<td>0.774</td>
</tr>
<tr>
<td>SA accuracy (correct responses)</td>
<td>0.647</td>
<td>0.691</td>
<td>0.656</td>
<td>0.706</td>
<td>0.692</td>
</tr>
<tr>
<td>Calibration bias</td>
<td>+0.07</td>
<td>+0.11</td>
<td>+0.15</td>
<td>+0.13</td>
<td>+0.08</td>
</tr>
</tbody>
</table>

To assess SA calibration, average confidence ratings were transformed (0.5-1.0) and probe accuracy scores (proportion of hits plus correct rejections) were subtracted from the result to provide a calibration bias statistic.
QUASA data - LOE 2

Calibration scores

Calibration bias

Mean SA probe hit rates per team in LOE 2.
QUASA data – LOE 2

Calibration curve

Actual SA
(P[correct])

Perceived SA
(confidence ratings)

Over-Confident

Under-Confident

LOE 2 teams
- Team A
- Team B
- Team C
- Team D
- Team E

2004 CCRTS, San Diego
Summary

- Team A had lowest overall confidence ratings in their SA responses

- Confidence ratings were transformed into “perceived SA” scores and calibrated with actual SA scores

- Calibration analysis revealed general overconfidence

- Team A was actually best calibrated
Summary & conclusions

QUASA

- Technique for SA assessment
- Combines true/false SA probes with simultaneous self-ratings of confidence for each probe response.
- SDT analysis is applied to probe responses
 - Differentiates between actual SA accuracy (sensitivity) and response bias when uncertain
- Calibration analysis examines the relationship between actual SA and perceived SA.

Conclusions

- QUASA yields potentially insightful quantitative results
- SDT statistic can be used as measure of actual SA accuracy.
- Subjects appear to be generally well-calibrated for SA
Lessons learned

- **T/F probes need objective referent (‘ground truth’)**
 - Can be used to assess awareness of empirical information (objective environment & features, type of situation, actions)
 - Cannot be used to assess awareness of non-empirical information (future possibilities, intentions)

- **T/F probes need very careful construction & pre-testing**
 - Avoid ambiguity in language
 - Avoid bias in likelihood

- In a dynamic situation, T/F probes may need to be constructed on the fly
Outstanding issues

- Does response criterion/bias obtained with probes reflect a similar criterion/bias of the subject in assessing the real situation?
- How many probes / responses needed?
- How does this compare with other metrics?
- What about time to respond to probe? (= distance from criterion?)
Research directions

- Perform calibration analysis with Fuzzy SDT and/or Type 2 SDT
- Address team / shared SA
Quantitative Analysis of Situational Awareness (QUASA)
Applying Signal Detection Theory to True/False Probes and Self-Ratings

Barry McGuinness

Principal Scientist
Human Factors Dept
Advanced Technology Centre
BAE Systems
Bristol, UK

barry.mcguinness @ baesystems.com
Characteristics of SA

- Mode of cognition that facilitates effective action
 - Critical in situations that are potentially complex, demanding, high-tempo, uncertain and/or unpredictable.
 - Consists of mental representations of a situation and its implications:

 - **OBJECTIVE AWARENESS**:
 - The operational environment and the constellation of elements within it
 - terrain, weather, buildings, platforms, people; locations, movements, actions, states
 - derived from observations or data in context

 - **SITUATIONAL UNDERSTANDING**:
 - The global characteristics of the situation -- type and status
 - inferred from current awareness in context

 - **OPERATIONAL APPRECIATION**:
 - The implications of the situation w.r.t. one’s operational goals / plans / tasks
 - Getting better or worse? Critical points ahead? Need a new course of action?
 - inferred from situational understanding in context
LOE 2 Information Sharing Agreements

<table>
<thead>
<tr>
<th>Country</th>
<th>ML</th>
<th>TL</th>
<th>BL₁</th>
<th>BL₂</th>
<th>Coalition</th>
<th>Private</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
</tbody>
</table>
IOE 2 information sharing agreements
QUASA data - LOE 2

Calibration: team A

Actual SA vs Perceived SA

Symbols:
- A1
- A2
- A3

4 CRTS, San Diego
QUASA data - LOE 2

Calibration: team B

Actual SA vs Perceived SA
QUASA data - LOE 2

Calibration: team C

Actual SA vs. Perceived SA for team C.
QUASA data – LOE 2

Calibration: team D

Actual SA vs. Perceived SA graph with data points for C1 to C7.
QUASA data - LOE 2

Calibration: team E

Actual SA vs. Perceived SA

Legend:
- C1
- C2
- C3
- C4
- C5
- C6
- C7
- C8
- C9
- C10
- C11
- C12
- C13
QUASA data – LOE 2

Calibration scores
- using A’ as actual accuracy

<table>
<thead>
<tr>
<th>Team (nation)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived accuracy</td>
<td>0.716</td>
<td>0.795</td>
<td>0.803</td>
<td>0.832</td>
<td>0.774</td>
</tr>
<tr>
<td>SA accuracy (correct responses)</td>
<td>0.647</td>
<td>0.691</td>
<td>0.656</td>
<td>0.706</td>
<td>0.692</td>
</tr>
<tr>
<td>SA accuracy (A’ score)</td>
<td>0.744</td>
<td>0.776</td>
<td>0.737</td>
<td>0.792</td>
<td>0.778</td>
</tr>
<tr>
<td>Calibration bias</td>
<td>-0.03</td>
<td>+0.03</td>
<td>+0.07</td>
<td>+0.03</td>
<td>+0.01</td>
</tr>
</tbody>
</table>

To assess SA calibration, average confidence ratings were transformed (0.5-1.0) and probe accuracy scores (A’, a measure of sensitivity) were subtracted from the result to provide a calibration bias statistic.
QUASA data – LOE 2

Calibration scores
- using A' as actual accuracy

Calibration bias

Mean SA probe hit rates per team in LOE 2.
QUASA data - LOE 2

Calibration curve

Actual SA (A')

Perceived SA

Under-Confident

Over-Confident

LOE 2 teams
- Team A
- Team B
- Team C
- Team D
- Team E

2004 CCRTS, San Diego