Evolution of the Standard Simulation Architecture

Dr. Jeffrey S. Steinman
Chief Science and Research Officer
RAM Laboratories, Inc.

Douglas R. Hardy
Scientist
SPAWAR Systems Center, San Diego
Benefits of a Standard Simulation Architecture

- **Reduce software development cost**
 - Modeling tools, constructs, and support utilities
 - Improve reliability by reducing code written by developers

- **Facilitate interoperability, composability, and reuse**
 - Entity and component repositories with object composition tools
 - Abstract interfaces decouple software implementations
 - Layered architecture supports technology insertion

- **Provide high performance**
 - Scalable parallel and distributed computing

- **Maximize configuration flexibility**
 - Flexible assignment of models to hardware platforms
Historical Evolution of the Standard Simulation Architecture

Late 1980’s
- SIMNET
- JTC
- TWOS

Early 1990’s
- DIS
- ALSP
- SPEEDES

Late 1990’s
- HLA
- SMF DSMS

Today
- HLA
- SSA
- Entity & Component Repository

Simulation Technology
Government & industry partnership
- Investments made by both government and industry
- SPEEDES, CCSE, WarpIV

Layered architecture supports inclusive development
- Academic R&D
- Research laboratories
- Multiple industry technology vendors

Success requires government participation
- Standards organizations
- Government programs
Layered Architecture: The Standard Simulation Architecture

<table>
<thead>
<tr>
<th>Direct Federate</th>
<th>Abstract Federate</th>
<th>HLA Federate</th>
<th>HLA Federation</th>
<th>External System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CASE Tools</td>
<td>HPC-RTI</td>
<td>HLA Gateway</td>
<td>External HLA Modeling Framework</td>
</tr>
</tbody>
</table>

- **Entity Repository**
- **Component Repository**

- SOM/FOM Translation Services
- Distributed Simulation Management Services
- Standard Modeling Framework
- Time Management
- Event Management Services
- Standard Template Library
- Persistence
- Rollback Utilities
- Rollback Framework

<table>
<thead>
<tr>
<th>Internal High Speed Communications</th>
<th>External Distributed Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Communications</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
</tr>
<tr>
<td>Threads</td>
<td></td>
</tr>
<tr>
<td>System Services</td>
<td></td>
</tr>
</tbody>
</table>
Interoperability and the Standard Simulation Architecture

- **Network Communications**
 - SSA Federates
 - HPC-RTI Federates
 - Parallel SSA Federate
 - Sequential SSA Federate
 - Any HLA Federate

- **HLA RTI**

High Performance Interoperability with Legacy Systems

Models Interoperate

Legacy Models ↔ New Models

Federate HPC RTI

SSA SimEngine

High-Speed Communication

Federate SSA SimEngine HPC RTI

Events processed by both engines

Optimistic

Conservative
Internal High Speed Communication is Critical for SSA Performance

HP - 1 Byte Message Throughput

Number of Messages Per Second

Number of Nodes

AsyncUnicast Messages/Sec, AsyncMulticast Messages/Sec, AsyncBroadcast Messages/Sec, CoordUnicast Messages/Sec, CoordMulticast Messages/Sec, CoordBroadcast Messages/Sec
Internal High Speed Communication is Critical for SSA Performance

HP - 64 Kbyte Message Bandwidth

Number of Bytes Per Second

Number of Nodes

AsyncUnicast Bandwidth
AsyncMulticast Bandwidth
AsyncBroadcast Bandwidth
CoordUnicast Bandwidth
CoordMulticast Bandwidth
CoordBroadcast Bandwidth
System Composability and IPC Overheads

<table>
<thead>
<tr>
<th>Communication Unit</th>
<th>IPC Mechanism</th>
<th>Granularity (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA Federate</td>
<td>RTI, CORBA</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>SSA Federate</td>
<td>TCP/IP LAN/WAN</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Machine</td>
<td>Beowulf Cluster</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>Node</td>
<td>Shared Memory</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Thread</td>
<td>POSIX Threads</td>
<td>10^{-8}</td>
</tr>
</tbody>
</table>
Model Composability

- UML: Type Of
- UML: Composed Of

HLA Federation

- HLA Federate

SSA Federation

- SSA Federate

- HPC-RTI Federate

Models

- Entity

Sub-models

- Component

Sub-sub-models

- Component

Publish local FOs
Subscribe to remote FOs
Interoperability

- HLA provides standards for interoperability between multiple simulations
 - Coarse grained interoperability

- The Standard Simulation Architecture provides standards for interoperability for models at three levels
 - Between **Federates** within an HLA federation
 - Between **Entities** within a (parallel or sequential) simulation
 - Between **Components** within an entity

- The Standard Simulation Architecture also provides standards for technology insertion
 - Layered architecture compartmentalizes functionality
Architecture Rules for Model Interoperability

- Must preserve the abstraction that an entity may reside on any node when running in parallel, or within any federate when executing in an HLA federation
 - Entity state exchanged with other entities must be provided exclusively through **Federation Objects**
 - Entities interact with other entities exclusively through HLA-style **Interactions**

- **Entities behave like miniature federates…**
 - DSMS Layer provides HLA functionality between entities
 - Operator overloading in C++ automates distribution of attributes
 - Interest management automatically operates on attributes
Hierarchical Composability

Entities contain Components

- SimObj
- Entity
- Model
- Root FoMgr

Components contain other Components

- Component
- SubModelA
- SubModelB

Hierarchical FoMgrs
Federation Object Management

- **Interest Management is automatically provided between Entities**
 - Filtering is automatically performed on attributes as they change
 - Hierarchical grids supports multi-resolution scalability in parallel

- **Interest Management is automatically provided between Components**
 - FoMgrs filter FOs based on Component subscriptions
 - Special component for range-based filtering
Entity1 sends a Detonation Interaction

Entity1

DSMS

FedGateway

Entity2

Detonation Interaction sent through RTI

RTI

Entity3

DSMS

FedGateway

Entity4
Double Abstraction Barrier Principle

- **Interactions between HLA Federates (~milliseconds)**
 - Federates do not know which other federates have subscribed
 - Federates do not know how interaction is processed

- **Interactions between Entities within an SSA federate (~microseconds)**
 - Entities do not know which other entities have subscribed
 - Entities do not know how interaction is processed

- **Polymorphic methods between Components within an SSA entity (~nanoseconds)**
 - Components do not know which classes have registered
 - Components do not know which methods are registered
The **Process Detections** polymorphic function allows the Radar Scan process to invoke the **Fuse Detections** polymorphic method of the Track Fusion component without requiring access to its pointer.

- **Register the Fuse Detections method as a polymorphic method**
- **Double-Abstraction Barrier**
- **Call polymorphic Process Detections function**
- **Invokes polymorphic Fuse Detections method**
Standardization Encourages Three Business Models

- **Government Off The Shelf (GOTS)**
 - Development by government laboratories
 - Government provides life-cycle maintenance

- **Open Source**
 - R&D by research institutions and universities
 - Successful R&D feeds into real programs

- **Commercial Off The Shelf (COTS)**
 - Development by industry
 - Users buy software licenses with support contracts
Standardization Steps

- **Government sponsorship and oversight**
 - Establish SISO working group to study standards issues
 - Management of the standardization process
 - Requires appropriate level of funding and commitment

- **Architecture Participants**
 - **Engineering Team** comprised of proven simulation technologists to refine standards
 - Industry, Government, and University
 - Prototype standardized interfaces and services
 - Joint development of unit and system test suites
 - **Technology Panel** of specialists review individual layers
 - **User Group** generates feedback on services
Summary and Conclusions

- The Standard Simulation Architecture addresses critical needs of DoD simulation community
 - Interoperability between federates, entities, and components
 - Facilitates object composability
 - Layered architecture promotes technology infusion
 - High performance computing
 - Portability and flexibility
 - Reduces software development costs while improving reliability

- Requires government sponsorship and oversight
 - Commitment to standardize and implement the SSA layers
 - Programs must focus on model and component reuse
 - COTS, GOTS, and Open Source business models for technology insertion
WarpIV Simulation Kernel

- WarpIV provides prototype development of the SSA

- RAM Laboratories is currently offering WarpIV to:
 - Universities
 - Research Laboratories
 - Government Programs
 - Industry

- For more information about WarpIV, see our website:
 - http://www.ramlabs.com