Computing and Communications Infrastructure for Network-Centric Warfare: Exploiting COTS, Assuring Performance

Dr. James P. Richardson
Mr. Lee Graba
Mr. Mukul Agrawal
Honeywell International, Inc.
{james.p.richardson,lee.graba,mukul.agrawal}@honeywell.com
Command and Control Research and Technology Symposium
June 15-17, 2004
San Diego, CA
NCW as a Hierarchical Control System

- Monitor → Assess → Plan → Act
- C2 Functions
 - Plan
 - Direct
 - Act
- Information
 - Our & Their
 - Organization
 - Materiel
 - Objectives, Plans
 - The Situation
 - The Physical Environment
- Intelligence Functions
 - Abstract
 - Fuse
 - Monitor
 - Assess
- Monitoring and Control Functions
 - C4ISR, Logistics, etc.
 - Mission management
 - Vehicle & weapons control, etc.

Collaborate

Honeywell

Computing and Communications Infrastructure for Network-Centric Warfare- 2

CCRTS 2004
June 15-17, 2004
Our Focus: Software Infrastructure at the Tactical Level

- **Software infrastructure**: application and system services that provide an execution environment for software applications
- **Tactical level**
 - Where the information world meets the physical world
 - Where information-rich applications meet vehicle and weapons control
 - Where communications bandwidth, power, and other resources are at a premium and under enemy attack
Challenges

• Supporting applications with diverse requirements
• Integrating these applications into a coherent system-of-systems
• Incorporating COTS IT components to reduce time to fielding and lifecycle costs
Diverse Application Requirements

Applications requirements vary widely along several dimensions, yet must integrate or co-exist in the system-of-systems

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Definition</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span</td>
<td>Scope of monitoring and control function</td>
<td>Vehicle subsystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vehicle Multi-vehicle</td>
</tr>
<tr>
<td>Dependability</td>
<td>Level of assurance that functional and performance requirements are met</td>
<td>Safety critical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mission critical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>Timing</td>
<td>Cycle/response time requirements</td>
<td>Millisec/sec/minute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hard-/soft-/non-RT</td>
</tr>
<tr>
<td>Workload</td>
<td>CPU cycles memory size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IO & communications bandwidth</td>
<td></td>
</tr>
<tr>
<td>Workload variability</td>
<td>Variation in resource requirements over time</td>
<td>None/small/large</td>
</tr>
<tr>
<td>Security</td>
<td>Authentication, integrity, confidentiality, etc.</td>
<td></td>
</tr>
</tbody>
</table>
Outline

• Architectural assumptions
• System integration and resource management
• Information management
• Summary
Assumed Hardware and Network Architecture

- General Purpose Processor
- µController
- Sensor
- Actuator
- Wired Network
- Gateway e.g. JTRS
- Control Network
- Vehicle

- General Purpose Processor
- µController
- Sensor
- Actuator
- Wireless Network
- Gateway e.g. JTRS
- Control Network
- Vehicle

- General Purpose Processor
- µController
- Sensor
- Actuator
- Wireless Network
- Gateway e.g. JTRS
- Control Network
- Vehicle
Top-Level Software Decomposition

- **Applications**
 - Implement user-visible components of system functionality

- **Application services**
 - Used by multiple applications
 - Are aware of application-specific algorithms and/or data structures
 - Examples
 - Naming services
 - ORB services
 - *Information management*
 - Workflow management

- **System services**
 - Manage computing and communications resources: CPU, memory, communications bandwidth, storage, I/O devices, etc.
 - Are insensitive to application-specific algorithms and/or data structures
 - Examples
 - OS services (POSIX)
 - Transport and lower-level communications services (TCP, UDP, IP, IEEE 802.x, etc.)
 - Time service
Inter- and Intra-Vehicle Protocol Stacks

Vehicle

- General-Purpose Processor
- Applications
 - Application Services
 - System Services
 - Hardware

Transport & Network Layer Protocols

Application Layer Protocols

Physical & Link Layer Protocols

Router

- General-Purpose Processor
 - Applications
 - Application Services
 - System Services
 - Hardware

Transport & Network Layer Protocols

Physical & Link Layer Protocols

μController

- Applications
 - Application Services
 - System Services
 - Hardware

Physical & Link Layer Protocols
Outline

• Architectural assumptions
• System integration and resource management
• Information management
• Summary
Key Requirements

- Assure system performance when applications share computing and communications resources
 - Essential for safety- and mission-critical applications
- Support diverse application requirements in the same system-of-systems
 - Span, dependability, timing, workload, workload variability, etc.
- Execute COTS applications and application services unmodified (out of the box)
 - Windows, POSIX, Java, etc.
- Adapt to changing mission goals, system workload, and resource availability
Alternatives for Assuring Performance

• “Tweak and test” system each time an application is added
 – Adjust execution priorities and cycle times until system works
 – Time consuming and brittle
• Explicitly manage computing and communications resources
 – Prevent an application’s faulty, malicious, or gluttonous behavior from usurping other applications’ resources
 – Resource management includes:
 ◆ Allocating resources to applications
 ◆ Enforcing allocations
 – Space- and time-partitioned operating system
 – Time-partitioned network
 – Static (design time) or dynamic (run time)
Static vs. Dynamic Resource Management

Static Resource Management

• Resources are allocated before the system is fielded
• Needed for safety- and mission-critical applications
• Appropriate for lower-level loops: vehicle/weapon control

Dynamic Resource Management

• Resources are reallocated when application workload, resources, or priorities change
• Needed when application workload and/or resources vary widely and efficient resource utilization is needed
• Applicable for more dynamic applications, e.g. mission planning
Operating System Alternatives

• A single commercial OS
 – *One size doesn’t fit all*: No single operating environment can support this range of requirements
 ✷ Hard real-time vehicle control vs. mission planning
 ✷ POSIX vs. Win32 API vs. ARINC 653

• A single common operating environment specific to military systems
 – *One size doesn’t fit all*
 – Can’t execute COTS applications & application services out of the box

• Conclusions
 – Multiple operating systems required
 – Broadly-accepted APIs are essential
 – Interoperability is essential
Time-Space Partitioned Operating Systems

- Static partitioning—for lower-level, safety/mission-critical functions
 - ARINC 653 standard
 - Used for commercial avionics
 - Several COTS implementations
 - LynxOS-178
 - Green Hills Integrity-178B
 - VxWorks AE653
 - Limited support for traditional OS services
 - 653+POSIX hybrids
- Dynamic partitioning—for higher-level monitoring and control functions
 - Linux variants e.g. TimeSys
- Hypervisor approach—multiple operating systems sharing hardware
Communications Services

- Again, one size doesn’t fit all
- Control network for hard RT functions
 - Assured performance through static allocation
- Wired intra-vehicle network for soft- and non-RT functions
 - IP over (redundant) Ethernet
 - High, constant available bandwidth
 - Bandwidth allocation possible—e.g. AFDX/ARINC 664
- Wireless inter-vehicle network
 - Trend is to IPv6 over JTRS
 - Lower, variable end-to-end bandwidth and availability
 - Performance can’t be assured in battlefield situations
 - Time partitioning is a major research challenge
Dynamic Distributed Multi-Resource Management

• Especially important for soft-RT, distributed applications
• A continuing research challenge
• Requirements
 – Allocate multiple computing and communications resources to applications
 – Adapt to changing mission goals, system workload, and resource availability
• Recommended approach
 – Applications specify resource needs in terms of QoS ranges
 – Policy specification (tied to mission plan) defines relative importance of competing applications
 – Resource management component
 • Allocates resources within QoS ranges
 • Adjusts allocations as workload, resource availability, policy change
Outline

- Architectural assumptions
- System integration and resource management
- Information management
- Summary
Information Management Defined

• Run-time information management functions
 – Storage
 – Retrieval
 – Search
 – Dissemination

• Related design-time information modeling functions

 An essential application service for network-centric monitoring and control functions
Key Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Requirement Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interoperability</td>
<td>Common format and interpretation of shared information</td>
</tr>
<tr>
<td>Multiple implementations</td>
<td>Can’t require common software base in a huge system-of-systems</td>
</tr>
<tr>
<td>Multiple types of information</td>
<td>Persistent structured</td>
</tr>
<tr>
<td>Multiple types of information</td>
<td>Persistent documents, images, etc.</td>
</tr>
<tr>
<td>Multiple types of information</td>
<td>Low-volume, time-critical, volatile</td>
</tr>
<tr>
<td>Search and access</td>
<td>Find relevant databases and documents</td>
</tr>
<tr>
<td>Profile</td>
<td>Define information needs</td>
</tr>
<tr>
<td>Effective use of available bandwidth</td>
<td>Send only what’s needed</td>
</tr>
<tr>
<td>Effective use of available bandwidth</td>
<td>Avoid duplicate transmission</td>
</tr>
<tr>
<td>Effective use of available bandwidth</td>
<td>Send incremental updates</td>
</tr>
<tr>
<td>Integration with system resource management</td>
<td>Adapt to changing information needs, resource availability, mission goals</td>
</tr>
<tr>
<td>Information flow awareness</td>
<td>Monitor information delivery effectiveness</td>
</tr>
</tbody>
</table>
Information Management Approach

- Make maximum use of existing standards
 - SQL, X.500/LDAP, FTP, etc.
- View information dissemination as selective replication
 - *State-oriented* vs. *message-oriented* approach
 - Measure Information Quality of Service in terms of replica *freshness* and *accuracy*
- Integrate with distributed resource management
 - Freshness and accuracy requirements translate to bandwidth and delay
 - Adapt replication to available communications resources

![Diagram of information replication](image-url)
Summary

- Extremely diverse application requirements force a mixture of operating systems and network protocols
 - One size does not fit all
- Broadly-accepted APIs and protocols are essential
- Manage system resources explicitly
 - Distributed, multi-resource management is a research challenge