Extensible Battle Management Language (XBML)
A Methodology for Web Enabling Command and Control for Network Centric Warfare

Michael R. Hieb, Ph.D.
Alion Science & Technology
Michael.R.Hieb@us.army.mil

Andreas Tolk, Ph.D.
VMASC - Old Dominion University
atolk@odu.edu

William P. Sudnikovich
Atlantic Consulting Services, Inc.
wsudnikovich@acsinc-nj.com

J. Mark Pullen, D.Sc.
George Mason University
mpullen@gmu.edu

2004 CCRTS, 15-17 June 2004, San Diego, CA
BML as an Enabler for Network Centric Operations

- **Network Centric**
  - Know precisely, in real-time, location of all friendly and enemy forces

- **Robotics Integrated into Force**
  - Amplify capability of manned elements
  - Multi-functional (RSTA, armed, sustainment)

- **Increased Reliance on Extended Range Engagement**
  - Organic plus strategic and tactical support
  - Long range ISR and precision fires

- **Capable of Air-Mobile Operations**
  - Commercial and minimum DoD strategic and tactical lift
The Problem

• Current and emerging simulations do not have the capability of directly interacting with C4I systems.
  – They require the development of unique interfaces (“black boxes”) for each pairing of a simulation and a C4I system
  – They require significant non-training audience intervention in order to support digital battle staff training and they will continue to do so until a standardized Battle Management Language is developed for communicating between these systems.
  – The most difficult aspect of this problem is in communicating mission type orders from the command nodes to the supporting simulations. Generically this is known as the “Free Text Problem.”
Current Situation

- Our current “BML” is a loosely knit “language” tailored to interpersonal communication.
- Its vocabulary is found in Doctrinal Manuals, but it lacks clearly delineated rules governing its use (semantics and syntax).
- It is riddled with ambiguity and overlapping definitions.
- As such, it is incapable of transitioning to the full range of automation that the DoD is implementing.
- It will not support the integration of advanced modeling and simulation with “digitized” command and control.
What Is Battle Management Language (BML)?

• BML is the unambiguous language used to:
  – Command and control forces and equipment conducting military operations, and
  – To provide for situational awareness and a shared, common operational picture.
Principles of BML

- BML must be unambiguous
- BML must not constrain the expression of a commander’s intent
- BML must use standardized data representations
- BML must allow forces to communicate information pertaining to their mission, their status and their environment
BML Scope

- C4I
- C4I
- Simulation
- Robotic Forces

BML Order

BML Messages & Situational Awareness Information
BML Views

Doctrine

Protocol

Representation

BML
BML Concept

Messages

Data/Object Models

Doctrine

XML/ Data Replication

C4I Data Model

BML

FM-1-02 Other FMs ARTEPAs
US Army BML Proof of Principle

BML GUI

XML – BML Parser

CAPES

Multi-Source Database Augmented with BML

C4ISI

OTB

BML acts as the common denominator

2004 CCRTS, 15-17 June 2004, San Diego, CA
**Course of Action Analysis Example**

Graphics convert to BML

**Division Mission**
Division attacks on order in zone to seize OBJ SLAM.

**Division Concept of Operations**
Form of maneuver: Penetration
Main effort: BLUE-MECH-BDE2, on order BLUE-ARMOR-BDE1
Supporting effort: BLUE-MECH-BDE1, BLUE-ARMOR-BN1

Deep: None
Reserve: BLUE-AVN-BDE1
Security: BLUE-CAV-SQN1
Tactical Combat Force: BLUE-MECH-TM1

**Tasks to Subordinates**

<table>
<thead>
<tr>
<th>Who</th>
<th>What</th>
<th>When</th>
<th>Where</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE-MECH-BDE1</td>
<td>Attacks</td>
<td>On order</td>
<td>Zone</td>
<td>Fix (MRR1)</td>
</tr>
<tr>
<td>BLUE-MECH-BDE2</td>
<td>Attacks</td>
<td>On order</td>
<td>Zone</td>
<td>Penetrate (MRR2)</td>
</tr>
<tr>
<td>BLUE-ARMOR-BDE1</td>
<td>Follows and Assumes (B-M-BDE2)</td>
<td>On order</td>
<td>Zone</td>
<td>Seize (OBJ SLAM)</td>
</tr>
<tr>
<td>BLUE-AVN-BDE</td>
<td>Occupy</td>
<td>On order</td>
<td>AA EAGLE</td>
<td>Reserve</td>
</tr>
<tr>
<td>BLUE-ARMOR-BN1</td>
<td>Follow and Support (B-A-BDE1)</td>
<td>On order</td>
<td>Zone</td>
<td>Support (B-A-BDE1)</td>
</tr>
<tr>
<td>BLUE-CAV-SQN1</td>
<td>Screen</td>
<td>On order</td>
<td>Zone (PL AMBER to PL BLUE)</td>
<td>Protect (Division left flank)</td>
</tr>
<tr>
<td>BLUE-MECH-TM1</td>
<td>Tactical Combat Force</td>
<td>On order</td>
<td>DSA</td>
<td>Protect (Division Rear Area)</td>
</tr>
</tbody>
</table>
### Paragraph 1: Enemy Most Probable CoA

<table>
<thead>
<tr>
<th>Who</th>
<th>What</th>
<th>When</th>
<th>Where</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MRD</td>
<td>ATTACKING</td>
<td>START NET: 2920001JAN98 and END NLT: 011000FEB98</td>
<td>Area of Operations 1 ID (M)</td>
<td>seize: PLBALAM</td>
</tr>
<tr>
<td>10 MRD</td>
<td>ATTACKING</td>
<td>START NET: 2920001JAN98 and END NLT: 011000FEB98</td>
<td>Area of Operations 1 ID (M)</td>
<td>seize: AA BEITON</td>
</tr>
<tr>
<td>101 MRR</td>
<td>DEFENDING</td>
<td>ON ORDER</td>
<td>Area of Operations 1 ID (M)</td>
<td>seize: OBJJAB</td>
</tr>
<tr>
<td>102 MRR</td>
<td>ATTACKING</td>
<td>START NET: 2920001JAN98 and END NLT: 011000FEB98</td>
<td>Area of Operations 1 BDE 1 MECH DIV</td>
<td>support: 101 MRR</td>
</tr>
<tr>
<td>1 IMRB</td>
<td>ATTACKING</td>
<td>START NET: 2920001JAN98 and END NLT: 011000FEB98</td>
<td>Area of Operations 1 ID (M)</td>
<td>support: 102 MRR</td>
</tr>
<tr>
<td>10A TR</td>
<td>ATTACKING</td>
<td>START NET: 2920001JAN98</td>
<td>Area of Operations 1 ID (M)</td>
<td>seize: PLBALAM</td>
</tr>
</tbody>
</table>
Army, Joint and NATO Doctrine Hierarchies

**NATO Model**
- Personnel
- Intel
- Operations
- Logistics
- Planning
- C4I
- CIMIC

**Joint Model**
- Personnel
- Intel
- Operations
- Logistics
- Planning
- C4I

**Army Model**
- Personnel
- Intel
- Operations
- CSS
- Planning
- C2
- Warfighter Support

**Similarities**
- Hierarchies have Capstone/Keystone pubs
- Similar Staff Structures Staffs 1–6
- Consistency in Numbering

2004 CCRTS, 15-17 June 2004, San Diego, CA
BML Scalability

International
- XML/Data Replication
- Coalition Data Model
- BML
- NATO Doctrine

Joint
- XML/Data Replication
- Joint Data Model
- BML
- Joint Doctrine

Service
- XML/Data Replication
- Service Data Model
- BML
- Service Doctrine

2004 CCRTS, 15-17 June 2004, San Diego, CA
Extensible Modeling and Simulation Framework

• What is XMSF?
  – The Extensible Modeling and Simulation Framework (XMSF) is defined as a set of Web-based technologies and services, applied within an extensible framework, that enables a new generation of modeling & simulation (M&S) applications to emerge, develop and interoperate.

• XMSF Precepts
  – Web-based technologies can provide an extensible modeling and simulation architecture, to support a new generation of interoperable applications
  – Simulation support is needed for operational warfighting capabilities
  – XML-based architecture can provide a bridge between emerging rehearsal/reality/replay requirements and open/commercial Web standards
  – Web = best tech strategy + best business case
What Is XBML?

- XBML is BML provided as a Web Service
- XBML is being developed as an integral part of the Extensible Modeling and Simulation Framework
Applying XMSF Principles to BML

- BML must utilize Web Standards for Message Transmission
  - SOAP
  - XML
- BML must use a standard “vocabulary”
  - the Command and Control Information Exchange Data Model (C2IEDM)
- This results in:
  - Distributed, Flexible Interfaces
  - Common Syntax and Semantics between Services, and Coalition Partners
  - Unambiguous terms needed for Simulation Execution
XBML Testbed Distributed Interfaces

BML GUI

SOAP

MSDB Data

MSDB Updates

SOAP

JDBC Interface

OTB

UDP

SOAP

SOAP

ODBC

C4ISI

MSDB

XML Parser

XML document

SOAP

SOAP

SOAP

CAPES

Data for OTB

2004 CCRTS, 15-17 June 2004, San Diego, CA
Why use the C2IEDM for XBML?

- History of C2IEDM
- Developed by NATO data modeling experts (ATCCIS Permanent Working Group)
- Based on the Information Exchange Requirements on the Battlefield
  - Unambiguous Representation of Information
  - Extensible Data Model
- NATO Standard ADatP-32
- Use by the NATO Data Administration Group
- Core Data Model for various C4I Systems
- Reference Data Model for various Simulation Systems
- Data Model for Multilateral Interoperability Program (MIP)
5 Ws in C2IEDM

ACTION-OBJECTIVE
- ACTION-id (FK)
- ACTION-OBJECTIVE-index
- ACTION-OBJECTIVE-category-code

ACTION
- ACTION-id
- ACTION-category-code
- ACTION-name

WHY
- ACTION-OBJECTIVE

WHEN
- ACTION-TASK-id (FK)
- ACTION-TASK-minimum-duration
- ACTION-TASK-maximum-duration
- ACTION-TASK-estimated-duration
- ACTION-TASK-planned-start-date
- ACTION-TASK-planned-end-date
- ACTION-TASK-planned-start-time
- ACTION-TASK-planned-end-time

LOCATION
- LOCATION-id
- LOCATION-category-code

WHERE
- LOCATION

ORGANISATION
- ORGANISATION-id (FK)
- ORGANISATION-category-code
- ORGANISATION-nickname-name
- ORGANISATION-type-id (FK)

WHO
- ORGANISATION

WHAT
- ACTION
- ACTION-category-code
- ACTION-TASK
- ACTION-EVENT

UNIT-TYPE
- UNIT-TYPE-id (FK)
- UNIT-TYPE-category-code
- UNIT-TYPE-mobility-code
- UNIT-TYPE-service-code
- UNIT-TYPE-size-code

ORGANISATION-TYPE
- ORGANISATION-TYPE-id
- ORGANISATION-TYPE-category-code

ORGANISATION-TYPE-CATEGORY-CODE
- UNIT-TYPE
- POST-TYPE

MATERIAL-POINT

FEATURE-LOCATION

PERSON-POINT

2004 CCRTS, 15-17 June 2004, San Diego, CA
Joint BML Implementation Concept: Extend the C2IEDM

Nation X
Ground

Coalition
Joint

Nation Y
Ground

BML

5Ws in
C2IEDM

Nation X
Air

Agency Z
Disaster Relief

Nation Y
Maritime
Extending the BML Vocabulary to Air Operations

• Begin with Air C2DIF (Command and Control Data Interchange Format)
  – Vetted in over 120 Exercises/Events/Demonstrations/Tests

• Includes the Following Categories
  – Air Battle Plan
    • Air Tasking Order (ATO)
    • Airspace Control Order (ACO)
    • Special Instructions (SPINS)
    • Mission Feedback
    • Friendly Order of Battle (FRoB)
    • Scenario Data (UOB)
  – Mission Representation
    • Includes More Detailed Mission Planning Aspects of ATO Directed Missions
    • Supports the “Decrease of the Controller Footprint Goal”
XBML Coalition Concept

Coalition Planning System

Coalition C4I System

http transport

XML Format
C2IEDM Semantics
5 Ws Representation

Ground Simulation

Air Simulation
Conclusions

• BML can provide a true common language between humans, machines, Services and national militaries
  – Will enable command and control interoperability within Joint and coalition environments

• The concept of simulation applications implemented as Web services will support future network centric operational concepts

• We have demonstrated the capability of distributed, remote operation of web-enabled components