Modeling and Simulation
in Support of
Network Centric Warfare Analysis

SPAWAR Systems Center (SPAWARSYSCEN) San Diego
Network Centric Warfare Analysis Branch
San Diego, CA 92152-5001
Chris Alspaugh, Dr. Nikhil Davé, Tom Hepner, Andy Leidy, Dr. Mark Stell,
Dr. Cam Tran, Heather Woods, Wonita Youm, and Dr. Albert K. Legaspi

Navy Modeling and Simulation Management Office (NAVMSMO)
OPNAV N61F21
Washington, D.C. 20350-2000
Jim Weatherly

2004 Command and Control Research and Technology Symposium
15-17 June 2004 – Loews Coronado Bay Resort, San Diego, CA
Outline

- Introduction
- Navy Network Warfare Simulation (NETWARS)
- Link-16 Modeling and Simulation (M&S) Efforts
- Efforts in Support of Knowledge Superiority and Assurance (KSA) Future Naval Capacity (FNC)
 - Toward a Unified Naval Network
 - Simulation-Assisted Protocol Design
- Related Efforts
 - Non-Intrusive Knowledge Suite (NIKS)
 - Lab and Field Experimentation
- Conclusion
Background

Who We Are

- SSC-SD 2822 (Network Centric Warfare Analysis Branch)
- Represent Navy Modeling and Simulation Management Office (NAVMSMO), OPNAV N61-M, and N61F, for Joint C4ISR Communication M&S assessment domain
- Supporting Communication M&S for 10 years
- Lead Navy NETWARS developers

What We Do

- Perform C4ISR communication system performance analyses
 - Modeling and Simulation (M&S) is our most commonly used assessment method
Communications System M&S Applications

Capacity Planning/Scalability
- Where are my network bottlenecks?
- How will my network support future growth?

Technology Impact
- How will my new application impact existing systems?
- Impact of NBC attacks on network performance?

Acquisition
- Why is this new router better for my network?

Prototype development and assessment
- Before it is deployed, what are the deficiencies in my new TDMA protocol?
Communications System
M&S Applications (continued)

Operational Decision Aids/Doctrine Development

- JTF OPTASK COMMS development guidance.
Simulation Tools
- Naval Simulation System (NSS)
- NETWARS/OPNET
- QualNet

Existing Communications Model Library
- COTS and GOTS protocols, devices, and systems
- OPNAV N61M C4ISR standard models

Scenario and Traffic Data models
- Navy Defense Reference Model (DRM)
 - Operational scenarios validated by Office of Naval Intelligence
- Probe and Information Exchange Requirement (IER) data
 - Import real probe traffic data into modeled networks
Outline

- Introduction
- Navy Network Warfare Simulation (NETWARS)
- Link-16 Modeling and Simulation (M&S) Efforts
- Efforts in Support of Knowledge Superiority and Assurance (KSA) Future Naval Capacity (FNC)
 - Toward a Unified Naval Network
 - Simulation-Assisted Protocol Design
- Related Efforts
 - Non-Intrusive Knowledge Suite (NIKS)
 - Lab and Field Experimentation
- Conclusion
NETWARS Architecture

Device Model Library

OPFAC Library

Organization Library

IER Library

Scenario Builder

- Set Device Parameters (Configure Models)
- Create OPFACS
- Build Organizations
- Define Comm Requirements
- Perform Collaborative Planning
- Build Scenario

Simulation Domain

- Execute Discrete-Event Simulation
- Create Comm Models

Capacity Planner

- Analyze link utilization and demand priorities

Results Analyzer

NETWARS Architecture
OPFACs of NIPRNET and ADNS Organizations

- 4 Network Operations Centers worldwide
- Templates: PRNOC SIPRNET & NIPRNET
- Template modification for UARNOC, IORNOC, ECRNOC
NSS-NETWARS Integration Overview

NSS

1. Message from ship to aircraft is intercepted by the RTI.
2. Message is sent to NETWARS and translated into NETWARS format.
3. Message transit is modeled in NETWARS providing more accurate communication characteristics. Message is again transmitted through the RTI back to NSS. E-8C and ship will be on Link-16.
4. Message is delivered to NSS object after NETWARS has modeled message transit characteristics.

NETWARS

Detailed NETWARS models of communication assets present in NSS

Run-Time Infrastructure (RTI)

E-8C aircraft (USTAR)

Comm. Satellite

Common Data Link (CDL)

Link 16, Link 11, ...

Comm. Satellite

UAV

Ground targets

Ship
Two main features

- **Extension of the Pegasus Federation Object Model (FOM)**
 - *Combat_Transmission_Request* to notify NETWARS when to send a message
 - *Combat_transmission_Receipt* to return to NSS the status of the transmission, and delay if the transmission is successful

- **DRTI NETWARS Plug-in** to enable NETWARS to interact with NSS. Three components
 - DRTI Process Model and Model Modifications
 - DRTI NETWARS ESA Support Module
 - DRTI Management Module
Federation Object Model

Object Class Structure

<table>
<thead>
<tr>
<th>Class1</th>
<th>Class2</th>
<th>Class3</th>
<th>Class4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground (N)</td>
<td>Base (PS)</td>
<td>Artillery (PS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAOC (FS)</td>
<td>C2 (PS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collector (PS)</td>
<td>Maneuver (PS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aggregate (S)</td>
<td>Support (PS)</td>
<td></td>
</tr>
<tr>
<td>Entity (S)</td>
<td></td>
<td>SAM (N)</td>
<td>Launcher (FS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fidar (PS)</td>
<td>Radar (PS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 (PS)</td>
<td>Other (PS)</td>
</tr>
<tr>
<td>Air (N)</td>
<td>Missile (PS)</td>
<td>TBM (N)</td>
<td>Launcher (FS)</td>
</tr>
<tr>
<td></td>
<td>Rotary/Wing (PS)</td>
<td></td>
<td>C2 (PS)</td>
</tr>
<tr>
<td></td>
<td>Fixed/Wing (S)</td>
<td></td>
<td>Other (PS)</td>
</tr>
<tr>
<td>Sea (PS)</td>
<td>Carrier (PS)</td>
<td></td>
<td>Strike (PS)</td>
</tr>
<tr>
<td></td>
<td>SurfaceCombatant (FS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space (N)</td>
<td>Collector (PS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OMDT Support: http://www.aegisrc.com
Federation Object Model

Communications Interactions

![Object Model Development Tool - [Pegasus_NETWARS.OMD - Parameter Table]](image)

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Parameter</th>
<th>Datatype</th>
<th>Cardinality</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combat_Transmission_Reception</td>
<td>ier_id</td>
<td>long</td>
<td>1</td>
<td>positive integer</td>
</tr>
<tr>
<td></td>
<td>status</td>
<td>long</td>
<td>1</td>
<td>enumerated</td>
</tr>
<tr>
<td></td>
<td>delay</td>
<td>long</td>
<td>1</td>
<td>seconds</td>
</tr>
<tr>
<td>Combat_Transmission_Request</td>
<td>ier_id</td>
<td>long</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>source</td>
<td>string</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>destination</td>
<td>string</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>classification</td>
<td>long</td>
<td>1</td>
<td>enumerated</td>
</tr>
<tr>
<td></td>
<td>perishability</td>
<td>long</td>
<td>1</td>
<td>seconds</td>
</tr>
<tr>
<td></td>
<td>priority</td>
<td>long</td>
<td>1</td>
<td>enumerated</td>
</tr>
<tr>
<td></td>
<td>traffic_type</td>
<td>long</td>
<td>1</td>
<td>enumerated</td>
</tr>
<tr>
<td></td>
<td>actual_size</td>
<td>long</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>start_time</td>
<td>double</td>
<td>1</td>
<td>seconds</td>
</tr>
</tbody>
</table>

OMDT Support @ http://www.aegisrc.com
DRTI Process Model (of the DRTI Node Model) has two main tasks:

- Provide mechanism to apply position updates of entities in NSS to OPFACs in NETWARS
- Provide mechanism to initiate IERs and to return transmission status and delay back to NSS

NETWARS process models `oe_iers` and `oe_status` are modified for sending a message from info provided by NSS, and to support capturing the delivery status of the message.
DRTI NETWARS ESA Module uses the OPNET’s External Simulation Access (ESA) package to provide communication between NETWARS entities and DRTI.

- ESA provides an interface to pass information into and out of the NETWARS domain for scheduling mobility events and sending messages.
- ESA provides services to control the execution of events in NETWARS/OPNET.
DRTI Management Module performs the following tasks:

- Initialize DRTI.
- Subscribe all relevant objects published by NSS.
- Subscribe to the Combat_Transmission_Request interaction and publish the Combat_Transmission_Receipt.
- Provide services to DRTI NETWARS ESA Support Module to advance RTI time and deliver all messages held by DRTI.
Outline

- Introduction
- Navy Network Warfare Simulation (NETWARS)
- Link-16 Modeling and Simulation (M&S) Efforts
- Efforts in Support of Knowledge Superiority and Assurance (KSA) Future Naval Capacity (FNC)
 - Toward a Unified Naval Network
 - Simulation-Assisted Protocol Design
- Related Efforts
 - Non-Intrusive Knowledge Suite (NIKS)
 - Lab and Field Experimentation
- Conclusion
Link-16 Modeling and Simulation Efforts

- Link-16 model was originally developed using OPNET in September 2001 to support a Time Critical Strike (TCS) study sponsored by the Assistant Secretary of Navy for Research, Development, and Acquisition Chief Engineer (ASN RDA CHENG)

- Subsequently, the Link-16 model was reused in several simulation-based efforts at SSC San Diego. Throughout these studies, the model was enhanced to meet additional requirements and evolved into a fairly high-fidelity, general purpose Link-16 communications model

- In 2003, the Link-16 Program Management Office (via ONR) began to use the model for prototyping potential Link-16 system enhancements

- In February 2004, the NETWARS PMO decided to adopt the Navy Link-16 model as the standard for Link-16 modeling for all the Joint Services. SSC San Diego is currently supporting this NETWARS standardization effort, including user interface enhancements and additional Joint Range Extension (JRE) support
Link-16 Model Suite Devices

- S-TADIL J
- JRE A
- IP Networks
- JTIDS
- JRE Processor
- Link 16 Host
JTIDS Device Model

- **Three processors**
 - SE module for modeling voice IER generation and reception. (J-series messages are generated by tactical host and JRE Processor)
 - JTIDS MAC simulates the functionality of JTIDS terminal model
 - Wired Host/JTIDS Interface Protocol

- **Two interfaces**
 - Point-to-point wired transceiver
 - Wireless transceiver to communicate with other JTIDS device models
JRE Processor Device Model

- JREAP, based on MIL-STD-3011, defines the protocols for transmission of Link-16 data over different type of long-haul media
 - JREAP-A: over broadcast SATCOM networks (e.g., MilStar and UHF DAMA)
 - JREAP-B: over point-to-point JRE media such as voice circuits – not supported by the JRE Processor Model
 - JREAP-C: over IP-based networks

- Ten interfaces
 - Four RS-232 ports
 - Four RS-422 ports
 - One 10/100BaseT ethernet port (JREAP-C)
 - One MIL-STD-1553B/X.25/RS-449 interface
Link-16 Host Processor Device Model

- **SE process model** generates and receives J-series message traffic
- **JREAP process model** is an instance of the JREAP process model of the JRE Processor Device Model with modifications to support the local SE for generating and receiving J-series traffic
- **Two interfaces**
 - JREAP-C interface (10/100BaseT)
 - MIL-STD-1553B/X.25/RS-449 interface
Outline

- Introduction
- Navy Network Warfare Simulation (NETWARS)
- Link-16 Modeling and Simulation (M&S) Efforts
- Efforts in Support of Knowledge Superiority and Assurance (KSA) Future Naval Capacity (FNC)
 - Toward a Unified Naval Network
 - Simulation-Assisted Protocol Design
- Related Efforts
 - Non-Intrusive Knowledge Suite (NIKS)
 - Lab and Field Experimentation
- Conclusion
A Unified Naval Network will reduce network maintenance efforts and network outages between ships and shore sites

Two routing architectures considered

- The current Open Shortest Path First (OSPF) Design extended to a single worldwide routing domain
- Proposed Traffic Flow Engineering (TFE) architecture using the Enhanced Interior Gateway Routing Protocol (EIGRP)

A comparative study was conducted using the M&S tool QualNet
Route Filters within Navy Shore Site

= EIGRP Route Filter

Shore WANs

Premise Router

Firewall

Fleet Router

Firewall

Core Router

Distribution Router

Policy Router

Frequency Router # 1
Frequency Router # 2
Frequency Router # 3
Frequency Router # 4
Frequency Router # 5
Frequency Router # 6
Frequency Router # 7

SATCOM

Ships

DISA WANs

Outer Core: To Other Navy Shore Sites

Inner Core: To Other Navy Shore Sites

2004 Command and Control Research and Technology Symposium
15-17 June 2004 – Loews Coronado Bay Resort, San Diego, CA
OSPF vs EIGRP Bandwidth Consumption on a SATCOM Link

- **OSPF Ship-to-shore**
- **OSPF Shore-to-ship**
- **EIGRP Ship-to-Shore**
- **EIGRP Shore-to-Ship**

Axes:
- **Y-axis:** Log10 Bits Per Second
- **X-axis:** Time (seconds)

Data Points:
- 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900
Outline

- Introduction
- Navy Network Warfare Simulation (NETWARS)
- Link-16 Modeling and Simulation (M&S) Efforts
- Efforts in Support of Knowledge Superiority and Assurance (KSA) Future Naval Capacity (FNC)
 - Toward a Unified Naval Network
 - Simulation-Assisted Protocol Design
- Related Efforts
 - Non-Intrusive Knowledge Suite (NIKS)
 - Lab and Field Experimentation
- Conclusion
The Goals of the Intra Battle Group Wireless Networking (IBGWN) project of the ONR Naval Battle Force Network (part of KSA FNC) include better adaptive, mobile, wireless networks connecting multiple Naval platforms within a battle group as well as joint battle fields.

A Simulation-Assisted Routing Design Analysis, based on link-layer (Layer 2) routing, was conducted using the M&S tool QualNet.
Routers and Networking Radios
The connectivity matrix accounted for most of the bandwidth consumption.
The increase in overhead is linear with the inverse of update interval.
Outline

- Introduction
- Navy Network Warfare Simulation (NETWARS)
- Link-16 Modeling and Simulation (M&S) Efforts
- Efforts in Support of Knowledge Superiority and Assurance (KSA) Future Naval Capacity (FNC)
 - Toward a Unified Naval Network
 - Simulation-Assisted Protocol Design
- Related Efforts
 - Non-Intrusive Knowledge Suite (NIKS)
 - Lab and Field Experimentation
- Conclusion
Non-Intrusive Knowledge Suite (NIKS)

- Developed by the Cooperative Association for Internet Data Analysis (CAIDA, www.caida.org) under the direction of our Branch that served as the government Technical Agent for DARPA Network Modeling and Simulation (NMS) program.

- Provide accurate and standardized datasets of network performance needed:
 - to perform VV&A of M&S programs, and
 - to diagnose operational networks and systems.

- Have applied for US Patent for NIKS.
NIKS operates on tcpdump (www.tcpdump.org) and CAIDA’s CoralReef software.

- The main module of NIKS is crl_delay that records all relevant info (such as source and destination IP addresses and ports, sequence numbers, packet lengths) and derived statistics of latencies for each TCP connection
 - TCP Round Trip Times for all TCP packets at any ethernet port
 - One-way latency between two ethernet ports when both ports see the same packet

- Similar info for other observed protocols (such as UDP or ICMP) is also recorded.
Outline

- Introduction
- Navy Network Warfare Simulation (NETWARS)
- Link-16 Modeling and Simulation (M&S) Efforts
- Efforts in Support of Knowledge Superiority and Assurance (KSA) Future Naval Capacity (FNC)
 - Toward a Unified Naval Network
 - Simulation-Assisted Protocol Design
- Related Efforts
 - Non-Intrusive Knowledge Suite (NIKS)
 - Lab and Field Experimentation
- Conclusion
Our lab and field experimentation efforts are associated with

- FORCEnet (Navy’s initiative)
- Joint Rapid Architecture Experimentation (JRAE) (Joint Service initiative)

These experimentation efforts complement our M&S activities, providing for VV&A and enabling studies with greater focus on operational environment factors and Human Systems Integration (HIS)
Lab and Field Experimentation: Process

- **Metrics**
 - Clear experimentation objectives facilitate the formation of analysis questions

- **Replication of Network and Applications**
 - Experimentation objectives determine required and acceptable fidelity levels

- **Data Collection**
 - Metrics derived from objectives dictate what data collection is required

- **Experiment Execution**
 - Monitoring collection devices (for data quality) and administering questionnaires/interviews with system operators (for HIS Metrics)

- **Analysis**
 - Quick-Look Report and Final Report
Data Collection Taxonomy of Objectives, Analysis Questions, MOEs, and MOPs

Are message formats between systems interoperable?

Interoperability Key Performance Parameter

Interoperability of critical top-level IERs

Interoperability of critical top-level IERs

2004 Command and Control Research and Technology Symposium
15-17 June 2004 – Loews Coronado Bay Resort, San Diego, CA
Outline

- Introduction
- Navy Network Warfare Simulation (NETWARS)
- Link-16 Modeling and Simulation (M&S) Efforts
- Efforts in Support of Knowledge Superiority and Assurance (KSA) Future Naval Capacity (FNC)
 - Toward a Unified Naval Network
 - Simulation-Assisted Protocol Design
- Related Efforts
 - Non-Intrusive Knowledge Suite (NIKS)
 - Lab and Field Experimentation
- Conclusion
Conclusion

Making Use of the Full Spectrum of Modeling and Simulation (M&S) environments is the key focus of our activities in Support of Network Warfare Analysis

- Develop standard, reusable, interoperable models to reduce cost and enhance model assessment time
- Work with all facets of the M&S community, which includes Joint Services, government agencies, deployed operational commands, academia and industry, to support the warfighter with the best possible analytical capability
- Continue to enhance our capability by working with
 - DoD High Performance Computing Modernization Office (HPCMO) to improve simulation runtime performance,
 - DARPA Network Modeling and Simulation (NMS) program office to leverage new technologies in M&S,
 - DMSO and NAVMSMO to support policy, standards and guidance.