
2006 CCRTS Command and Control Research and Technology Symposium 
“The State of the Art and the State of the Practice.” 

San Diego, CA, June 20-22, 2006 

 
 
 

A Three-tier Knowledge Management Scheme for C2 Software 
Engineering Support and Innovation 

 
 
 
 

Richard D Corbin 
Northrop Grumman 

Defense Mission Systems 
Bellevue, NE 68005 

Corbinr@stratcom.mil 
 

Christopher B. Dunbar 
FGM Inc., 

7126 N 121st Street 
Omaha, NE 68142 
dunbar@fgm.com  

 
Qiuming Zhu 

College of Information Science and Technology 
University of Nebraska 

Omaha, NE 68182 
zhuq@unomaha.edu 

 
 



2006 CCRTS Paper #C-064 

 1

A Three-tier Knowledge Management Scheme for C2 Software 
Engineering Support and Innovation 

 
 

 
 
 
 
 
 

 
 

Abstract 
To ensure smooth and successful transition of software innovations to C2 systems, it is 
critical to maintain proper levels of knowledge about the system configuration, the 
operational environment, and the technology in both existing and new systems. We present 
a three-tier knowledge management scheme through a systematic planning of actions 
spanning the software transition process from conceptual exploration to prototype 
development, experimentation, and product evaluation levels. The three-tier knowledge 
management scheme is an integrated effort for bridging the development and operation 
communities, maintaining stability and minimal impact to the operational performance of 
C2 systems, while swiftly adapting to technology innovations. A current effort, Command 
and Control Software Engineering and Support - C2SES, underway at United States 
Strategic Command (USSTRATCOM) will serve as a real-world test case for the approach.  
Knowledge management in the C2SES involves engaging a mix of technical expertise and 
qualifications concerning the use of an application by the USSTRATCOM user 
community. The targeted development combines resources of academic research 
laboratories, software industrial technology centers, and military software integration 
laboratories for introducing innovative solutions to C2 operations.   
 
Key Words: Knowledge Management, C2 Software Engineering, Technology Innovation, 

Human and Operational Systems, Software System Support, Net-Centric Applications 
 
 

I. Introduction 
 

I.1. The problem 
This paper addresses the problems and issues of knowledge management (KM) in a C2 software 
engineering support process. The problem is discussed in the context of how to maintain proper 
levels of knowledge in the processes of developing and transiting technological innovations into 
C2 software systems. The innovation processes typically include  

(1) Insertion of new technology (e.g., advanced data dissemination, fusion, and knowledge 
discovery components and decision support agents) into existing systems to enhance the 
C2 system’s operational capabilities,  

(2) Transformation of legacy systems into net-centric integrative systems, and  

Richard D Corbin 
Northrop Grumman 

Defense Mission Systems 
Bellevue, NE 68005 

Corbinr@stratcom.mil 

Christopher B. Dunbar 
FGM Inc., 

7126 N 121st Street 
Omaha, NE 68142 
dunbar@fgm.com  

Qiuming Zhu 
College of IS&T 

University of Nebraska 
Omaha, NE 68182 

zhuq@unomaha.edu 



2006 CCRTS Paper #C-064 

 2

(3) Installation of new systems to replace outdated systems, add novel capabilities to C2 
systems, and support closing the gaps in required capabilities. 

 
Relevant issues of knowledge management to be addressed in this paper include:  

(1) Knowledge acquisition – how to acquire and retain knowledge from existing software 
development teams, personnel, and subject matter experts (SME),  

(2) Knowledge maintenance – how to keep the knowledge up-to-date and validated over time, 
and avoiding knowledge evaporation and obsolesce,  

(3) Knowledge sharing - how knowledge is disseminated/communicated to the team of 
collaborators and shared by all stakeholders, and  

(4) Knowledge enhancement – how to turn weak knowledge into strong knowledge that is 
useful for the C2 software innovation and engineering support tasks.  

 
It is known that “Knowledge management is an approach to discovering, capturing, and reusing 
both tacit (in people’s heads) and explicit (digital or paper based) knowledge as well as the 
cultural and technological means of enabling the knowledge management process to be 
successful [Rec05].”  However, what is “Knowledge” remains to be an issue in some people’s 
mind, especially referring to specific domains and situations. Many knowledge management 
practitioners and researchers considered information and knowledge as synonymous constructs. 
In this perspective, both these constructs can be expressed in the computational rule based logic 
as well as in the form of data inputs and data outputs that trigger pre-defined and pre-determined 
actions in pre-programmed modes [Wi03].  Unfortunately, this model is faulted with significant 
inaccuracy and limitations.  
 
Information systems researchers [Chu71, MM73, Ma97] have discussed limitations of this model, 
particularly for environments characterized by uncertainty and radical change.  Churchman 
[Chu71], who developed five archetypal models of inquiring systems in an effort to expand the 
field of management information systems along a philosophical path, has emphasized that: "To 
conceive knowledge as a collection of information seems to rob the concept of all of its life... 
Knowledge resides in the user and not in the collection."  Similarly, Nonaka and Takeuchi 
[NT95] had proposed the conceptualization of knowledge as justified belief in their argument 
that, “knowledge, unlike information, is about beliefs and commitment.”  On a complementary 
note, Davenport and Prusak [DP98] have defined knowledge as deriving from minds at work: 
"Knowledge is a fluid mix of framed experience, values, contextual information, and expert 
insight that provides a framework for evaluating and incorporating new experiences and 
information. It originates in the minds of the knower. In organizations, it often becomes 
embedded not only in documents or repositories but also in organizational routines, processes, 
practices, and norms."  
 
From the information technological point of view, knowledge is an entity differentiated from the 
information object in that there is an element of expert review and distillation where knowledge 
is concerned (See Figure 1 for a denotation of data-information-knowledge hierarchy).  This 
view emphasizes that  

1. Knowledge results from the fusion of key elements of information which characterize the 
problem space and includes explicit information (e.g. position of forces, geography, and 
weather) that requires little interpretation and can be communicated quickly and easily; 



2006 CCRTS Paper #C-064 

 3

2. Knowledge yields predictive ability based upon interpretations that in consequence is 
based upon experience and a priori knowledge that includes tacit information (e.g., 
capabilities and tactics of an adversary, local customs, intents.) from which supporting 
facts can be easily transferred while the underlying organizing logic can seldom be 
transferred quickly and easily. 

 

 
Figure 1. The Data-Information-Knowledge Hierarchy 

 
Thus, the difference between information and knowledge is the degree of understanding – a 
functionalism of expertise and experience.  It is seen that information results from the collection 
and assembly of “facts (data)” while knowledge involves the human element.  From this point of 
view, sharing information is easier because it involves the transmission of “facts” which require 
relatively little interpretation.  Sharing knowledge is far more difficult due to the fact that 
reasoning must be conveyed.  Knowledge builds upon the foundation established by information 
and is, by way of contrast, people-intensive.  As an instance, one could think of the handling of 
the former (information) in an automated process of data aggregation, while the handling of the 
latter (knowledge) in a process of conceptual pattern discrimination. 
 
I.2. The Significance  
To render successful transition and capability improvement in C2 software innovation, it is 
critical to maintain proper levels of knowledge within and around the processes.  These include 
the knowledge about the software systems, the operating environment, the development 
processes, and the technologies in both existing and new systems.  The objectives of all the 
efforts of such tasks are to ensure the efficiency and reliability of the overall C2 systems, avoid 
un-mature insertion of technology, and unnecessary interruptions to the system’s operations (e.g., 
minimizing software defect incidents).  
 
Knowledge management for software technology innovation includes processes of knowledge 
discovery, capture, storage, retrieval, sharing, and understanding. It aims at facilitating 
knowledge flow and utilization across every phases of a software engineering process.  To be 
more specific, knowledge management in C2 software engineering is important due to the 
following reasons: 

(1) The software development environment is characterized by frequent technology changes, 
which calls for a continuous stream of new knowledge.  

Information

Data

KnowledgeData 

Situation Awareness 

Situation Assessment 

Object 
Assessment 

Reasoning / Interpolation / 
Extrapolation 

Aggregation / 
Integration  

Acquisition / 
Sensing

Decision Support 



2006 CCRTS Paper #C-064 

 4

(2) The transition of software innovation into practical operations requires a relatively large 
effort in requirement specification, prototyping, design validation, coding, and integration 
of various components.  The risk would be larger if incorrect assumptions or approaches 
were noticed at the later stages of implementation and test.  

(3) The benefits from the software improvement are often intangible and hard to assess.  
Managers and software engineers need to assess the benefit and suitability to mission 
enhancement and effectiveness at proper levels and stages with necessary knowledge 
from both sides in hand.  

 
In other words, knowledge management in software engineering support has the mission to 
enhance the stability of the software system transition, and ensure swift adaptation of new 
technology to the C2 operations.   
 
In the remainder of this paper, we will discuss the coupling of knowledge management tasks 
with the software development, transition, and maintenance processes section II, where 
knowledge management appear to be a critical component in C2 software engineering support, 
innovation, and performance improvement.  Section III deals with the major knowledge 
management issues in a typical software development and transition process.  We present a 
three-tier knowledge management scheme through a systematic planning of actions spanning 
from conceptual exploration to prototype development, product evaluation, and process 
execution levels.  Section IV presents a current C2 software engineering effort, the Command 
and Control Software Engineering and Support - C2SES, underway at United States Strategic 
Command (USSTRATCOM).  The project will serve as a real-world test case for the three-tier 
knowledge management scheme and an integrated effort for bridging the technical and 
operational communities.  We conclude the presentation with a summary of the scheme and 
approach in section V.  
 
 

II. Knowledge Management in C2 Software Development and Innovation 
 
II.1. Knowledge management issues in C2 software innovation  
As we all understand that software engineering is a multi-phased knowledge intensive process.  
The tasks of maintaining appropriate levels of knowledge in the process consist of many facets 
that can be described as different sub-problems.  Examples of these sub-problems include:  

(1) Liquidity of knowledge - Knowledge moves with people.  For example, when employees 
leave for other opportunities or for retirement, they carry away certain amount of 
knowledge (e.g., in the form of experiences) no matter how well the knowledge has been 
documented.  

(2) Latency of knowledge - To gain knowledge requires time.  For example, when new 
employees are hired and they need to get up to speed by acquiring technical and subject 
matter knowledge, which often takes some time.  

(3) Lack of knowledge sharing protocol – The power of knowledge lies on its sharing.  For 
example, domain experts need to pass their knowledge to team players. To do that they 
need to know exactly to where and to whom the knowledge should be passed.  

(4) Loss of knowledge locations, traces, and links – It is known that knowledge must be 
properly kept in places that are easily accessible.  However, it is often overlooked or 



2006 CCRTS Paper #C-064 

 5

misplaced, especially when under complex conditions and heavy work load.  For example, 
when an urgent software fix was called upon, it was not clearly documented with respect 
to who was involved in a previous software fix and how it was done (i.e., what/where is 
the authoritative knowledge base for a specific software fix?).  

 
A common problem in knowledge management is the ability to easily and efficiently locate and 
access the right knowledge at the right time to solve a particular problem.  The knowledge is 
probably already present in many forms and organizations, potentially in hardcopy or some 
softcopy data management systems.  The problem is to identify where it is or who has it.  
Technology can help capture some of the information but it is not the ultimate answer.  That is to 
say, technologies such as software tools alone cannot solve the knowledge management 
problems totally.  To have an effective knowledge management process, it is necessary to adopt 
a systematic scheme for planning, stipulating, and distributing the tasks and activities 
comprehensively.  A key concept in this scheme is to take knowledge management as an active, 
affective and dynamic component of the software engineering process.  That is, consider 
knowledge management as an inseparable dimension in the whole software development, 
transition, and maintenance processes.  This leads to a scheme known for taking of knowledge 
somehow as information in action [Ma97].  
 
The representation of knowledge as information in action rather than static computerized 
representations is notable because of several reasons.  The active, affective, and dynamic (AAD) 
representation of knowledge makes sense from a pragmatic perspective of knowledge 
management in software engineering processes.  The AAD representation of knowledge is better 
aligned with theoretical representations of the knowledge construct beyond the domain of 
information technology management [Ma97].  It is active as knowledge is best understood in 
action - it is not the theory but the practice of theory that makes the difference.  It is affective as it 
takes into consideration not only the cognitive and rational dimensions but also emotional 
dimensions of human decision-making.  It is dynamic as it is based upon ongoing reinterpretation 
of data, information, and assumptions while proactively sensing how decision-making process 
should adjust to future possibilities of alignment and adaptation.  From a pragmatic perspective, 
the dynamic representation of knowledge provides a more realistic construct in general, where 
human and social interactions are present while situating this construct more proximal to 
performance outcomes [Ma97].  
 
II.2. Coupling of knowledge management and software engineering processes 
While knowledge management and process engineering were being evolved in parallel 
practically, there was no serious effort to fuse them into a consistent, holistic architecture.  For 
example, knowledge management programs over the past decade have focused on organizing 
employees into communities of practice and building repositories of “best” or proven practices.  
There was (and still is) a general lack of understanding of how valuable the coupling of software 
engineering processes and the knowledge management practices can be.   
 
One of the problems for an effective knowledge management practice is to understand the 
variants in different software engineering processes and how best these processes can be 
integrated with a knowledge management approach.  Engineering processes do not just exist as 
structured or unstructured.  They fill a range in between the two extremes.  For example, 



2006 CCRTS Paper #C-064 

 6

software engineering processes are filled with methods and metrics (e.g., CMMI).  However, 
how a specific software fix was accomplished also depends on who did it (a human factor).  
Knowledge management schemes need to work adaptively in the whole range of the situations.  
That is to say, knowledge management must be closely linked to a particular group of people and 
of processes.   
 
In the context of incorporating engineering processes with knowledge management practice, let 
us consider specifically a C2 software innovation process, and take a look at what processes it 
consists of.  Namely, at a properly abstracted level, these processes are    

1. Exploration – Identifying novel ideas and promising techniques for improvement to 
existing system capability or a new capability for insertion to existing systems. 

2. Evaluation – Putting together and acting on a plan for assessing the ideas and 
opportunities, comparing and assessing the cost, efficiency, and technical feasibility.   

3. Execution – Placing the innovative idea into development and operation stage upon the 
outcomes of evaluation and planning stages using system engineering techniques.   

 
Figure 2 below shows the multi-phased processes of software engineering and the involvement 
of knowledge management in the processes.  
 

 

 
Key 

Actions 

- Idea exploration, 
generation and 
capturing 

- High level planning 
and estimating 

 
Knowledge 

Features 

 
Knowledge 

Models 

- Competitiveness 
- Technical trends 
- State of Art 

 

- Feasibility study 
- Risk definition and 

mitigation 
- Project planning 

- Cost, risk 
- Technique feasibility, 

and reliability 
- Funding, equipment, 

facility 

 

- Detailed planning and 
tracking 

- Software development, 
implementation, and 
testing 

- Maintenance, and 
upgrading 

- Team capability and 
experiences 

- Technical supports,  
- Contracts and 

procedures 

 

Exploration SE Processes Evaluation Execution 

Diverse                           Formal                       Regulative  
Figure 2 Knowledge management in a multi-phase C2 software innovation process. 

 
II.3. A systematic plan of action 
Driven by a growing understanding that knowledge is mostly intangible, difficult to hold on to, 
and usually a product of collective thought, knowledge management systems (KMS) become an 
interest to many research groups and organizations.  KMS are often defined in terms of inputs 
such as data, information technology, best practices, etc., which by themselves may inadequately 
explain business performance outcomes.  Often, moderating and intervening variables may play 
a significant role in skewing the simplistic relationships based upon correlation of the above 
inputs with business performance outcomes.  Also, usefulness of such inputs and how they are 



2006 CCRTS Paper #C-064 

 7

strategically deployed are important issues often left unquestioned as 'expected' performance 
outcomes are achieved, but the value of such performance outcomes gets eroded by the dynamic 
shifts in the software operating environments. 
 
The dynamic, evolutionary approach of knowledge management calls for a system architecture 
that anticipates change and that fosters the systematic injection of upgraded systems, subsystems 
and components.  One scheme of knowledge management in our C2 software engineering 
support is to establish an orderly combination of related parts and sub-systems, and an outline of 
knowledge organizations.  We recognize that knowledge relevant in C2 software engineering and 
technology innovation includes  
1. Tangible (hard) knowledge: e.g., (1) software products, (2) data repositories, (3) developing, 

testing, and maintenance standards and procedures, etc.;  
2. Intangible (soft) knowledge: e.g., (1) intellects/subject matter experts, and war-fighters (2) 

system administrators, project managers, (3) software engineers, sub-contractors, 
collaborators, (4) operational environment and its variations, etc. “Knowledge does not 
simply exist – people create it.” KMS can help people do better through its impact on 
knowledge making and production.   

 
Our systematic plan of knowledge management includes the following aspects that need to be 
carefully addressed in the software development and transition processes: 
• A systematic account of existence of knowledge.  

“What ‘exists’ is that which can be represented.” When the knowledge about a domain is 
represented in a declarative language, the set of objects that can be represented, called the 
universe of discourse, must be clearly identified.  

• An explicit and formal specification. 
This element concerns how to represent the objects, concepts and other entities that are 
assumed to exist in some area of interest and the relationships that forms the basis of 
knowledge representation.  For example, we can describe the knowledge in terms of the 
ontology by defining a set of representational terms of a program. These definitions would 
associate the names of entities in the universe of discourse (e.g. classes, relations, functions 
or other objects), with human-readable text describing what the names mean and formal 
axioms that constrain the interpretation and well-formed use of these terms.  

• A hierarchical structuring of knowledge. 
Suitable structures of knowledge representation include those constructs that organize 
relativities about data, information, and knowledge by subcategorizing them according to 
their essential (or at least relevant and/or cognitive) qualities in heterogeneous forms that 
accommodate both the static and dynamic features of knowledge management in spatial and 
temporal domains.  

• A set of agents that share the knowledge. 
A good knowledge management scheme should be able to communicate about a domain of 
discourse without necessarily operating on a globally shared theory. For example, we say that 
an agent (a software entity) commits to the ontology of the specific domain if its observable 
actions are consistent with the definitions in the ontology. Nevertheless, the idea of 
ontological commitment is based on the clearly defined knowledge-level perspective.  

 
 



2006 CCRTS Paper #C-064 

 8

III. The Three-tier Approach of Knowledge Management  
 
III.1. A collaborative team organization 
While software engineering processes exist as a multi-phased endeavor, each of the phases is a 
part of a larger picture that includes other elements residing within the whole process or in an 
organization that cannot exist in isolation.  The most notable part of these elements, as pointed 
previously, is the people.  To highlight the importance of human factors, experts in knowledge 
management working with the DoD have expanded the notion of knowledge management to one 
of "sense-making."  Knowledge management and sense-making are critically important for 
future military operations.  For example, getting the right information to the right people at the 
right time is central to Joint Vision 2020 [www.dtic.mil/jv2020], DoD's blueprint for future 
operations.  It is also a key to the concept of network-centric warfare, which experts hope will 
bring future military sensors, decision makers, and shooters together on a shared network to 
improve shared awareness, speed of command, operations tempo, lethality, survivability, and 
self-synchronization.  Again, the success of this mission is tightly linked to the knowledge 
management issues in C2 system operations.  
 
Maintaining an appropriate level of knowledge in the software engineering support teams for C2 
systems is a very important issue.  It is, however, not an easy task for most organizations and it is 
particularly problematic for software development organizations, which are human and 
knowledge intensive.  
 
III.2. A notion of continuous improvement process 
We use the notions of continuous improvement and iterations as the main vehicle for planning, 
executing, evaluating, and improving software innovation processes.  The processes include the 
development of sub-systems (organizations) dedicated for conceptual study of software 
innovation, for experimentation of innovative technology, and for evaluations of the soundness 
and maturity of the new technology.  In a collaborative organization, the process for qualitative 
analysis of software innovations is as follows.   
1. First, a set of theoretic concepts (suspected of containing important innovations) is identified 

by the engineering team according to their knowledge level.  This is the exploration process 
of software innovation, and the knowledge involved appears as set of technology briefs or 
research reports.  

2. Then, a set of key concepts is chosen that represents the topic area or issue that needs to be 
investigated. The techniques and theoretic foundations would be searched for the 
reasonability and applicability. This forms the evaluation process of software innovation.  
The stage includes some intellectual tasks of assessing the innovative technology ideas and 
looking for trends. Experiments would be conducted (including prototyping) to justify the 
applicability.   

3. Finally, a new software package would be created to implement and test the innovation.  This 
enters the execution process of the software innovation.  

 
III.3. A three tier software engineering support structure 
We adopt a three level structure of knowledge management for C2 software engineering support 
and innovation in corresponding to the three processes discussed in sections above.  Thus, the 
three knowledge management levels for C2 software innovation are readily defined as: 



2006 CCRTS Paper #C-064 

 9

1. The Exploration Level  
2. The Evaluation Level  
3. The Execution Level  

 
It is apparent that tasks for the three levels of knowledge management are to be carried out in 
parallel to the three processes of a software innovation process.  That is to say, the software 
engineering process and corresponding knowledge management structure is organized in a three-
tier structure as shown in Figure 3.  Naturally, all these levels should keep close interactions with 
the end-users (operators, systems engineers, and administrators) at every stage of the software 
innovation and technology transition processes.  
 

 

Exploration      Evaluation      Execution

CCC222SSSEEESSS PPPrrroooccceeesssssseeesss 

KKKnnnooowwwllleeedddgggeee MMMaaannnaaagggeeemmmeeennnttt

 
Figure 3 Three-tier structures of C2SES processes and knowledge management. 

 
For example, tasks of knowledge management at these levels could be organized as the follows. 

• The Exploration level is tasked to continually observe the technological trends, develop 
plans for C2 software innovation and improvement, and provide resources to C2 specific 
subject matter expertise.  

• The Evaluation level is tasked to keep close eyes on the software product specifications 
for implementing and demonstrating the technical feasibility of innovations in a 
reconfigurable laboratory environment. 

• The Execution level is tasked to carefully examine the software validity and certifications 
which include tasks of collecting feedbacks from field operations, and taking issues on 
trouble shooting, version tracking, and transition scheduling. 

 
The notion of continuous improvement and iterations is the main vehicle for us to carry the 
planning, executing, evaluating, and improving cycles of the three-tier knowledge management 
scheme in C2 software innovation process.  Built on the three-tier knowledge management 
scheme, the processes for qualitative introduction of software innovations in C2 software 
engineering then take the following steps.  
1. First, identify a set of theoretic concepts (containing important innovations in principle) that 

is conducted by the innovation exploration team according to their knowledge level. An 
intellectual investigation of the ideas and their trends in development will be conducted.  
This would be the set of technology briefs or research reports.  

2. Second, a set of key concepts is chosen that represents the topic area or issue that needs to be 
evaluated.  The feasibility of the techniques and the theoretic foundations of the innovation 
will be studied for verifications of the reasonability and potential applicability accordingly.  



2006 CCRTS Paper #C-064 

 10

3. Third, experiments will be conducted (including prototyping) to justify the applicability.  The 
work will lead to a new software package created to implement and test the innovation idea.  

 
We discuss the practical aspects of the three tier knowledge management scheme for C2 software 
innovation in next section.  
 
 

IV. Practice of Knowledge Management in C2SES 
 
IV.1. Organizational structure of knowledge management in C2SES 
The Command and Control Software Engineering and Support (C2SES) project underway at 
United States Strategic Command (USSTRATCOM) requires a mix of technical expertise and 
qualifications for development and transition of software innovations.  In these processes, 
organizational models are essential to knowledge management.  As it is well said, 
“Organizational models set context.”  The characteristics of C2 systems call for a strict and 
conservative scheme of knowledge management in the entire engineering support process.  By 
clearly understanding the linkages between process execution steps and identifying critical 
sources of external information helps establishing an overall taxonomy for the required 
knowledge.   
 
The C2SES program is organized in line with the three-tier knowledge management structure 
that organizes the processes according to proper knowledge management levels.  The multi-
phased process aims at introducing software improvements through an incremental/evolutionary 
approach.  The C2SES team uses the combined resources of academic research laboratories, 
software industrial technology centers, and military software integration laboratories to introduce 
innovative solutions to current problems, test interoperability among existing and proposed 
applications, and demonstrate promising technology solutions.   
 
We emphasize the coupling of the software engineering processes and the knowledge 
management tasks, as well as the roles of people in making the connections.  The C2SES 
managerial team understands the urgent needs (and has been successful) to attract and nurture 
knowledge workers and provide the environment for extraordinary thinking – for problem 
solving, executing complex engineering functions, and innovation (Table 1 [NGC05]).  
Knowledge relevant to each of these identities are abstracted, structured, and clustered in a 
suitable manner that facilitate its understanding, verification, validation, maintenance, 
management, testing, and interoperability.  
 

Table 1. Roles, Responsibilities, and Authority in C2SES Software Development process  
Role Responsibilities 

Systems 
Engineering (SE) 

Develops and/or manages system-level requirements, requirements analysis, 
interface identification, management, and control, requirements traceability, 
Technical Performance Measures (TPMs), requirements allocation to hardware 
and software, system architecture, concept of operations, interface engineering, 
performance analysis, specialty engineering, integrated logistics support, models 
and simulations, and trade studies, and verification and validation. 



2006 CCRTS Paper #C-064 

 11

Role Responsibilities 
Software 
Development 
(SW) 

Establishes and maintains the architectural design, detailed design, 
implementation, and unit test of software components per design and 
implementation standards.  Develops or supports the development of user 
documentation.  Establishes and maintains Software Data Files (SDFs). 

Test Establishes and maintains test plans, test cases, and test procedures, integrates 
components into an operational system, conducts formal qualification tests, 
documents test results, and analyzes performance.  Establishes and maintains Test 
Data Files (TDFs). 

Quality 
Assurance (QA) 

Ensures activities are conducted and products are produced in accordance with the 
contract, organizational policies, standards, and the defined process.  Ensures 
quality products are delivered.  QA retains an independent reporting chain to the 
division.  The C2SES Mission Assurance Plan (MAP) defines the approach for QA 
activities. 

Configuration 
Management 
(CM) 

Manages configuration identification, configuration control, change management, 
configuration status accounting, and configuration audits of development artifacts.  
The C2SES Configuration Management Plan (CMP) defines the approach for CM 
activities. 

Data 
Management 
(DM) 

Manages control, receipt, delivery, distribution, and tracking of both deliverable 
and non-deliverable documents and records.  The C2SES Data Management Plan 
(DMP) defines the approach for DM activities. 

Process Group Defines, oversees, and improves software development process assets, such as 
standards, procedures, templates, forms, tools, and the defined process tailored 
from the organizations standard process.  Responsible for interfacing with the 
division Engineering Process Group (EPG).   

 
The C2SES team closely monitors activities within the Knowledge Management domains and 
identify changes in the underlying hardware and software infrastructure, which may impact the 
operation and performance of USSTRATCOM C2 applications/tools under the purview of the 
C2SES program.  The team is committed to proactively seeking out and recommending 
candidate C2 software engineering projects for research and demonstration to the user 
community.  As infrastructure changes are identified, the team reviews any impact assessments 
and formulates a recommended test approach to include the amount of testing required to 
minimize risk to the program.  
 
IV.2. Coupling the C2SES processes and knowledge management activities 
 
IV.2.1 Knowledge management at exploration level  
As the USSTRATCOM C2 mission evolves and matures, it is expected that the C2 applications 
and tools will also evolve to sustain, enhance, and optimize the C2 capabilities, as well as effect 
disciplined changes supporting mission requirements.  The C2SES team recognizes that an 
Evolutionary Life-Cycle Model (Figure 4) fits well for these purposes.  
 
The Evolutionary Life-Cycle Model is an iterative approach and thus has multiple cycles from 
requirements through system deployment.  The number of iterations may vary based on schedule 
and operational needs or based on the depth and understanding of system requirements.  As with 
any of the Life-Cycle Models, the Evolutionary Model can be tailored to meet the needs of the 
program, such as unique contractual requirements.  For example, the Evolutionary Life-Cycle 



2006 CCRTS Paper #C-064 

 12

Model can be tailored to reflect the Spiral Model through the introduction of risk reduction 
measures such as fast prototyping.  This model is better suited for larger development activities 
or where risk is inherent in the development.  
 

 
Figure 4. C2SES Evolutionary Life-Cycle Model 

 
The three-tier knowledge management scheme allows knowledge to be shared more easily and 
consequently enables more collaborative software engineering support and executions.  For 
example, research in agile methods and eXtreme Programming technique was conducted by 
scientists from Peter Kiewit Institute of Information Science, Engineering and Technology at the 
University of Nebraska.  The emergence of intelligent, agent-based, adaptive software can 
greatly improve C2 capabilities at the operational level by providing decision support for both 
planning and execution.  Intelligent agents that continuously monitor the events in the C2 
environment can assist command center operations in providing information for staff planners to 
conduct threat analysis, terrain analysis, asset scheduling and tracking, route planning, logistics, 
fires coordination, communications, force protection, and coordination with allied troops and 
coalition forces.    
 
The Evolutionary Life-Cycle Model calls for closely monitoring activities within the software 
engineering processes at the exploration level to identify changes in the underlying hardware and 
software infrastructure, which may impact the operation and performance of C2SES applications.  
As infrastructure changes are identified, the C2SES team reviews any impact assessments and 
formulate a recommended test approach to include the amount of testing minimizing risk to the 
program.  During the planning stages of any significant software development effort, both 



2006 CCRTS Paper #C-064 

 13

system and software engineering engage in a series of one or more concept exploration cycles to 
identify system and software level requirements.  During concept exploration, risks are analyzed 
to determine whether a plan-driven or an agile development methodology will be implemented.  
When necessary, information used for this analysis is derived from prototyping, data collection, 
and other data analysis activities. 
 
IV.2.2 Knowledge management at evaluation level 
The C2SES process analyzes the system requirements allocated to software to identify the 
necessary software functional capabilities, performance requirements, control requirements, 
design constraints, and interface requirements.  Additional requirements, i.e., derived 
requirements, are defined and documented as needed to complete the software requirements level 
of abstraction, e.g., to address topics such as user interfaces, safety, and security.  Software 
requirements analysis develops a comprehensive set of specifications that serve as the basis for 
software development.  
 
Knowledge maintained and managed in the evaluation level include 
• Creating a Software Development Plan (SDP) to define the approach for developing, 

integrating, maintaining, and/or supporting software. The C2SES project uses the Northrop 
Grumman Mission Systems (NGMS) SDP Template.  This plan establishes the common 
approach to be employed by all software development groups on the program, including 
subcontractors.  This plan is used as the basis for managing software development activities 
during all life cycle phases of the program, and applies to newly developed, modified, reused, 
and acquired software.  This plan is compliant with contract requirements, the NGMS Policy 
& Requirements Manual (PRM), and the NGMS Quality Management System (QMS).   

• Updating the SDP due to changes in the contract, customer direction, program scope, 
requirements, available and estimated resources, organizational policies or processes, or 
when actual measurements vary significantly from the plan.  Plans are reviewed for update at 
least annually and revised as required, to ensure consistency with the NGMS PRM and other 
program plans.  More frequent reviews and updates are performed as necessary to ensure 
plans are current and useful.  Updates are subject to the configuration and change 
management process defined in the C2SES Configuration Management Plan (CMP). 

• Evaluating the risks of performing an abbreviated test, and provide appropriate software 
specification with a recommended test approach.   

• Developing an architectural design to implement the approved software requirements and 
provide a sound foundation for software product design. 

 
The software requirements specifications and interface requirements specifications are reviewed 
by all affected organizations, including system engineering, test, and quality assurance.  The 
specifications are reviewed for understandability, feasibility, consistency, completeness, and 
testability.  Reviews are also performed with customer and user representatives to validate their 
needs and expectations are clearly identified, understood, and prioritized.  Knowledge entities in 
the evaluation tier are present in the C2SES software development resources.  An excerption of 
the entries is shown in table 2.  
 

Table 2. C2SES software development resource management (excerpt) 
Tool Application 



2006 CCRTS Paper #C-064 

 14

PCTR Policy Compliance and Tailoring for the Defined Process 
e-Toolkit and PAL Organizational Process Assets Repositories 
Lessons Learned Database Organizational Repository for Lessons Learned 
Self Assessment Tool (SAT) SEI CMMI Self Assessment 
Risk Manager’s Assistant Risk Management 
Software Development Plan 
Template (SM 921.3) 

Software Development Plan Development (this plan) 

Software Change Request Database Change Management 
Wiki Repository Requirements Traceability 
JDeveloper or Eclipse Design Modeling, Debugger, Graphical User Interface 

(GUI) Builder 
Java 2 Standard Edition Java 
Development Kit (J2SE JDK) 1.3 

Compiler 

Office of Cost Estimation and Risk 
Analysis (OCERA) Code Counter 

Code Counter 

McCabe Cyclomatic Complexity 
 
IV.2.3. Knowledge management at execution level 
The software development process adheres to the guidance provided in the specification 
document, and is executed in conjunction with a variety of development activities in response to 
a range of events.  The coupling of software development processes and the knowledge 
management activities at this level includes documentation of the software development and test 
results in the Software Production Documents and Test Reports, and place the data under 
configuration management control.   
• The objective of Software Detailed Design activity is to complete the design of each software 

product or component identified in the approved software architecture.  There are two design 
activities for each product: completing the detailed design of the interfaces and partitioning 
the product into software units.  The software product design is reviewed by all affected 
organizations, typically in a series of incremental reviews.  The design is reviewed for 
understandability, feasibility, consistency, completeness, correctness, and conformance to 
standards.  Software engineering enters any identified problems in requirements, architecture, 
or design in the program’s problem reporting tracking system 

• The Software Implementation and Unit Test activity establishes and maintains the software 
code baselines for the software products in the approved software architecture and as defined 
by the product design.  The principal activities are: refining the partitioning of the product 
design into units, developing the unit test plan, implementing the units in accordance with the 
program programming standards, and executing the unit test plan.  The responsible engineer 
develops the code using the program-specified tools and standards.  When the code compiles 
correctly, the engineer executes the unit test plan and verifies that the expected results are 
obtained. 

• The Software Integration activity integrates software units into software builds to continue 
developmental software testing. Software builds are typically modes or major functional 
elements of the system.  This activity results in a sequence of distinct builds, each with 
defined capability to accomplish development life-cycle objectives.  The sequence and 
content of builds are chosen to mitigate risks and provide needed capability.  The principal 
objective of the first build is typically to expose any problems or risk factors in the 
integration environment and procedures.  Subsequent builds are chosen to expose any critical 



2006 CCRTS Paper #C-064 

 15

risks related to the software design.  The final build adds very little new functionality, but it 
is devoted to any updates related to requirements changes and software updates. 

 
Knowledge management at the execution level also involves the following tasks. 
• Document software build and installation instructions in each application Software Version 

Description (SVD).  These instructions will provide sufficient detail so that system 
administrators will be able to build and deploy the C2 applications to the appropriate 
environment.  An SVD will be provided with each software delivery.   

• Prepare and maintain operator trouble-shooting guide.  This guide will provide operators and 
help desk personnel with step-by-step instructions on resolving software operation and 
connectivity problems 

• Implement and execute test processes designed to verify and validate application capabilities 
against defined requirements and to evaluate the impact of infrastructure changes on 
application performance.   

• Work with the IPT (Integrated Product Teams) to prepare training materials to aid users, 
testers, and other USSTRATCOM organizations in the proper use of software, identify 
additional training materials necessary to support the installation, configuration, and 
monitoring the software applications, and update these materials with each major software 
release to reflect changes in application features and functionality.   

 
The right metrics need to be selected to ascertain a selected knowledge management scheme 
accomplishes what the organization needs to accomplish.  An important precursor to selecting 
right metrics for measurement of success is to examine whether the goal is reached.  Success of 
knowledge management should be measured in combination of knowledge quantity (count of the 
number of axioms or assertions entered and validated per unit time) and knowledge quality (how 
accurate the error-free of the axioms and assertions).  The process includes the adoption of 
commonly accepted software standards.  
 
Depending upon the build content or customer direction, some technical reviews may be formal 
(i.e. a scheduled meeting), informal (i.e., via email or Wiki), or not required at all.  Procedures 
for preparing and conducting Technical Reviews are documented in the SDSPM.  The 
Verification and validation activities occur throughout the program life-cycle to ensure the 
delivered product meets requirements and customer and user needs.  Products to be verified and 
the verification method to use are identified.  Products to be validated and the validation method 
to use are identified in Table 3.  The types and extent of validation to use ensures products meet 
customer and end user needs and requirements.  The detailed schedule for verifications and 
validations of major product releases are documented.   
 

Table Error! No text of specified style in document. C2SES Validation Method for Products 
Product Validation Method 

Requirements Technical reviews to ensure the customer and users review the requirements.  
Customer and user participation in technical working groups and simulations 
and models.  Requirements are also validated against the customer/user 
requirements to ensure they correctly reflect the customer and users needs. 



2006 CCRTS Paper #C-064 

 16

Product Validation Method 

Design Technical reviews to ensure the customer and users review the design.  
Incremental demonstrations of the prototype to the customer and users to 
obtain feedback, including delivery of prototypes to the customer and users 
for more thorough review. 

Implementation Participation in code walkthroughs (not peer reviews, since the customer and 
user are not “peers”). 

Test Peer reviews to ensure system-level tests are derived from customer needs 
(i.e., Concept of Operations (CONOPS)).  Acceptance tests. 

User Documents Delivery of draft versions to the customers and users for initial feedback. 
 
 
The following software documents carry the contents important to knowledge management at the 
development and execution level.  
 
1. Technical Data Packages (TDPs) capture software development and test artifacts in a 

centralized location.  TDPs are maintained electronically to the maximum extent possible via 
the C2SES Wiki Electronic Project Folders.  When only hardcopy exists, such as signature 
pages, convert the material to electronic form via scanning, and provide the original 
hardcopy to CM for retention.  TDPs provide customers, managers, and relevant stakeholders 
with visibility into software development and test status and are the principal working logs 
for software developers and testers.  Each Configuration Item (CI) is required to have at least 
one TDP that may be further decomposed into component and/or unit level TDPs.  For 
different builds or releases, create new TDPs or expand existing TDPs.  The TDPs are 
reviewed periodically by APMs and WPMs to ensure they are maintained and kept up-to-
date.  The TDPs are randomly audited by QA to ensure compliance with policies, plans, and 
the defined process.  

 
2. The Software Data File (SDF) is the software development organization’s means of capturing 

software development related artifacts in a centralized repository.  The SDF is established 
during the requirements phase and is maintained throughout the life of the program.  The 
SDF virtually or physically contains the artifacts identified in Table 4. 

 
Table 4. Software Data File (SDF) Contents 

Section Purpose 
Cover Sheet A cover sheet for each build or release of software that includes a high level 

description of the CI, component, or unit name, the responsible engineer, and 
due date and date complete columns for each section of the SDF.  As each 
section of the SDF is completed, the cover sheet is updated and signed off to 
indicate development progress. 

Requirements List of software requirements applicable to the CI, component, or unit name.  
Include either copies of the applicable requirements or pointers to the applicable 
requirements.  Requirements Traceability Matrix showing requirements 
applicable to the CI, component, or unit name. 

Design Design diagrams, design documents, interface descriptions, and/or threads and 
use cases applicable to the CI, component, or unit name. 



2006 CCRTS Paper #C-064 

 17

Section Purpose 
Implementation Location of the source code, make files, build scripts, and executables, 

preferably from a controlled CM library system, applicable to the CI, 
component, or unit name. 

Test Unit test plans, test cases, procedures, and test results indicating pass or fail for 
the CI, component, or unit name.  Integration test and subsequent tests are stored 
in the TDF, not the SDF. 

Problem Reports List of problem reports submitted against the CI, component, or unit name which 
includes the status of each problem report.  Copies of each PR may be included. 

Reviews and 
Audits 

Review material (presentations) and review results (agendas, minutes, and action 
items) from requirements, design, implementation, and test peer reviews, PDR 
and CDR technical reviews, management reviews, technical working groups, 
and non-conformances from audits. 

Notes Additional information deemed relevant to the CI, component, or unit name 
which is useful to developers, maintainers, or reviewers, such as trade studies, 
key design decisions, technical performance measurements, engineering notes, 
Interoffice Correspondences (IOCs), metrics reports, deviations and waivers, 
turnover memos, key e-mails, etc. 

 
3. The Test Data File (TDF) is the test organization’s means of capturing test related artifacts 

(excluding unit test) in a centralized repository.  The TDF is established during the test phase 
and is maintained throughout the life of the program.  The TDF virtually or physically 
contains the artifacts identified. 

 
VI.3. Tools and mechanisms for knowledge management in C2SES 
The whole process of knowledge management for software innovation discovery, assessment, 
testing, implementation, and installation would benefit greatly from tool support.  For example, a 
Visual Query Interface can be helpful in identifying and organizing the experience packages to 
be used as the basis of the synthesis. Tools like Nvivo (from QSR International; more 
information at http://www.qsr.com.au/products/nvivo.html) can be used to automate the 
searching and coding, as well as facilitate searching for trends and packaging the results.  
 
A trend in knowledge management today is to enable distributed teams of subject matter experts 
(SMEs) to enter and modify knowledge directly, easily, and without the need for specialized 
training in knowledge representation, acquisition, and manipulation.  This was the goal of the 
DARPA’s RKF (Rapid Knowledge Formation) program.  The resulting tools of that program 
have been made available to provide specific answers to knowledge management questions and 
could be applied in many different software engineering and knowledge management processes 
and situations.   
 
Most of the work carried out through the C2SES project is based on flows of information and 
knowledge, from one level of management to the next, from one worker to the other, and 
between the client and developer.  Web-based collaborative software tool suite can be used to 
support C2SES knowledge management.  Figure 5 illustrates the linkage by a construct of 
knowledge map to disclose data, information and knowledge assets of the various roles involved 
in the software engineering support and knowledge management processes. 
 



2006 CCRTS Paper #C-064 

 18

 
Figure 5. Web-based Knowledge Management Tools  

 
It is seen from the above structure that much knowledge worker activities deal with keeping 
multiple instances of similar (and different) processes with multiple sources of active 
information in-flight at the same time.  Effective systems need to be equally adapted at 
information and knowledge management levels as well as process execution and performance 
measurement phases.  For example, software requirements analysis is performed using a 
storyboarding approach as a form of scenario-based requirements elicitation.  Software 
requirements are developed using the use case analysis methodology.  Software design is 
performed using the object-oriented design methodology 
 
The C2SES software Wiki web-site functions as the repository for software requirements, 
traceability information, testability information, computer resources utilization budgets, and any 
other artifacts created during this activity.  A web portal tailored to the C2SES management and 
the command and control personnel is utilized so that various software developers, engineers, 
and managers have access to the same information.  A networked environment also promotes 
and facilitates the acquisition, sharing, and application of knowledge.  
 
 

V. Conclusion 
 
Knowledge management is a sound field with real benefits such as reduced training time for new 
employees, improved decision making and better operational efficiency.  However, it is difficult 
to get it done right.  One misconception about knowledge management is that all it is needed is 
about technology.  What is the best method for capturing worker knowledge?  Usually people 
begin a knowledge management project by focusing on the technology needs, whether they want 
a database or a portal.  Technology can help capture some of the information but it is not the 
ultimate answer.  The key is the people and the process.  The one-size-fits-all mentality, coupled 
with the tendency to focus on technology rather than people and process, has obscured the real 
benefits that a good knowledge management scheme can bring.  That is to say, technologies such 
as some software tools alone cannot solve the knowledge acquisition problem entirely.  To have 
an effective knowledge management, it is necessary to adopt a systematic scheme of planning, 
stipulating, and distributing the knowledge management tasks and activities.  This is a reason 

Web Portal 

Analytical Tools 

Data Warehouse Tools 

Taxonomy & Classification 

Document Authoring & Records 

Collaboration Tools 

Operational Data Stores 

Software 
Engineering 

Process

Knowledge 
Management 

Index and search 



2006 CCRTS Paper #C-064 

 19

that those who have successfully tackled knowledge management projects have taken a 
systematic approach.  The approach treats the people and process as central pieces of the effort 
and addresses the relevant issues accordingly.   
 
The area of information technology in C2 systems has seen several important developments in 
recent years.  Among them are growing awareness and understanding of the importance of 
knowledge management to sound processes including software engineering and decision making.  
To highlight the importance of human factors, experts in knowledge management have expanded 
the notion of knowledge management to one of “sense-making.”  It is a key to the concept of 
network-centric warfare, which will bring future military sensors, decision makers, and shooters 
together on a shared network to improve shared situation awareness, speed of command, 
operation tempo, lethality, survivability, and self-synchronization.  We hope the concept of 
layered knowledge management presented in this paper and the practice of the concept to C2 
software innovation will offer an example to the effort of more efficient knowledge management 
in military applications.   
 
We presented a systematic plan for introducing technology innovation to C2 software systems.  
We recognize that knowledge is broader, deeper, and richer than data or information.  It is a mix 
of experience, value, contextual information, and expert insight that provides a framework for 
evaluating and incorporating new experiences and information.  Knowledge comes from people.  
Our three-tier Knowledge Management scheme for C2 Software Innovation is a systematic plan 
of action for bridging the technical and operational communities.  The objectives of the 
approach is to keep a balance among the factors of (1) smoothly and timely transforming legacy 
systems to updated, innovative, and modern systems, (2) maintaining continual, un-interrupted 
operation of the C2 software system, (3) minimizing software defect incidents, and (4) reducing 
or keeping C2 software maintenance and innovation at a controllable level of cost.  By 
identifying needs for layered knowledge management, the C2SES team emphasizes the 
importance of using the three tier infrastructure to wring out potential new capabilities with 
thoroughly tested applications in a secured operational environment prior to fielding.  We believe 
that it is an effective means, though not necessary the only means, for timely introducing 
technology innovations into mission-critic C2 software systems.   
 
The knowledge management tenet of “getting the right information to the right people at the 
right time” and using it to make good decisions requires an understanding of human cognitive 
processes and capabilities as well as the technical means of retrieval, storage, discovery, and 
capture.  By taking a proactive approach to knowledge management, the C2SES team is on a 
route to realize the improvements to the whole process in gaining and organizing knowledge 
toward innovations of C2 software systems.   
 
 
References 
[AL01] M. Alavi, and D. E. Leidner, “Review: Knowledge management and knowledge 

management systems: Conceptual foundations and research issues,” MIS Quarterly, 25(1), 
107-136, 2001.  

[AV02] Jan Achterbergh, and Dirk Vriens, “Managing viable knowledge,” Systems Research 
and Behavioral Science, V19, i3, pp. 223, 2002.  



2006 CCRTS Paper #C-064 

 20

[BCL01] Victor Basili, Patricia Costa, Mikael Lindvall, Manoel Mendonca, Carolyn Seaman, 
Roseanne Tesoriero, and Marvin Zelkowitz, “An Experience Management System for a 
Software Engineering Research Organization,” Fraunhofer Center for Experimental 
Software Engineering,Maryland, 2001.  

[BLC02] V. R. Basili, M. Lindvall, and P. Costa, "Implementing the Experience Factory 
Concepts as a set of Experience Bases," Proceedings of 13th International Conference on 
Software Engineering & Knowledge Engineering, pp.102-109, 2002.  

[BW99] R. B. Brown, and M. J. Woodland, “Managing knowledge wisely: A case study in 
organizational behavior,” Journal of Applied Management Studies, 8(2), 175-198, 1999. 

[Chu71] C. W. Churchman, The design of inquiring systems: Basic concepts of systems and 
organizations, Basic Books, Inc., New York, NY, 1971. 

[CWP04] Marion G. Ceruti, Dwight R. Wilcox, and Brenda J. Powers, “Knowledge 
Management for Command and Control,” proceedings of the 2004 Command and Control 
Research and Technology Symposium, San Diego, CA, June 2004. 

[DB99] John Derrick, and Boiten, Eerke Boiten, “Testing Refinements of State-based Formal 
Specifications,” Software Testing, Verification, and Reliability, 9(1):27-50, December 1999. 

[DP98] T. Davenport and L. Prusak, Working Knowledge, Harvard Business School Press: 
Boston, MA, 1998.  

[Du97] Soumitra Dutta, “Strategies for Implementing Knowledge-Based Systems,” IEEE 
Transactions on Engineering Management, Vol. 44, No. 1, pp.79-90, Feb. 1997. 

[KIN00] G. Krough, K. Ichijo and I. Nonaka, Enabling Knowledge Creation, New York: Oxford 
University Press, 2000. 

[NT95] Ikujiro Nonaka and Hirotaka Takeuchi, The Knowledge Creating Company, New York: 
Oxford University Press, 1995.   

[FV95] Michael A. Friedman, and Jeffrey M. Voas, Software Assessment: Reliability, Safety, 
Testability, John Wiley & Sons, Inc., 1995.   

[Har03] S. Harvey, “Knowledge management: how do you do it?” Training Journal, July 2003.  
[HAU00] Chin-Yu Huang, Sy-Yen Kuo, Michael R. Lyu, and Jung-Hua Lo, “Quantitative 

Software Reliability Modeling from Testing to Operation,” Proceedings of the Eleventh 
International Symposium on Software Reliability Engineering, IEEE Computer Society Press, 
pp. 72-82, October 8-10, 2000. 

[HP99] D. G. Hoopes, and S. Postrel, “Shared knowledge, "glitches" and product development 
performance,” Strategic Management Journal, 20, 837-865, 1999.  

[Ift03] Z. Iftikhar, “Developing an instrument for knowledge management project evaluation,” 
Electronic Journal of Knowledge Management, 1(1), 55-62, 2003.  

[JES00] Daniel R. Jeski, “Estimating the Failure Rate of Evolving Software Systems,” 
Proceedings of the Eleventh International Symposium on Software Reliability Engineering, 
IEEE Computer Society Press, pp. 52-61, October 8-10, 2000. 

[LYU96] Michael R. Lyu (Editor-in-Chief), Handbook of Software Reliability Engineering, 
Computer Society Press, McGraw-Hill, pp. 95-98, 1995. 

[LOA00] Michelle Lee, A. Jefferson Offutt, and Roger T. Alexander, “Algorithmic Analysis of 
the Impacts of Changes to Object-oriented Software,” Proceedings of the Thirty Fourth 
International Conference on Technology of Object-Oriented Languages and Systems 
(TOOLS USA '00), pp. 61-70, August 2000. 

[LRJ01] M. Lindvall, I. Rus, R. Jammalamadaka, and R. Thakker, "Software Tools for 
Knowledge Management," Proceedings of DACS State-of-the-Art Report, 2001.  



2006 CCRTS Paper #C-064 

 21

[Ma97] Y. Malhotra, “Knowledge Management in Inquiring Organizations,” Proceedings of the 
Americas Conference in Information Systems, pp. 293-295, 1997.  

[Ma01] Y. Malhotra, (Ed.), Knowledge Management and Business Model Innovation, Hershey: 
PA, Idea Group Publishing, 2001. 

[Ma 04] Y. Malhotra, “Why Knowledge Management Systems Fail? Enablers and Constraints of 
Knowledge Management in Human Enterprises,” In Michael E.D. Koenig & T. Kanti 
Srikantaiah (Eds.), Knowledge Management Lessons Learned: What Works and What 
Doesn't, Information Today Inc., pp. 87-112, 2004. 

[McD99] R. McDermot, “Why information technology inspired but cannot deliver knowledge 
management,” Management Review, 5(1), pp. 103-117, 1999. 

[MM73] R. O. Mason, and I. I. Mitroff, “A Program for Research on Management Information 
Systems,” Management Science, 19, 5, pp. 475-487, 1973. 

[NGC05] Northrop Grumman Corporation, Command and Control Software Engineering and 
Support (C2SES) Software Development Plan, Prepared by David Richardson, 30 November 
2005.    

[OL98] Daniel E. O’Leary, “Knowledge-Management Systems Converting and Connecting,” 
IEEE Intelligent Systems, pp.30-33, May/June 1998. 

[PRR00] G. Probst, S. Raub, and K. Romhardt, Managing Knowledge. Chichester: Wiley, 2000. 
[PS99] S. L. Pan, and H. Scarbrough, “Knowledge management in practice: an exploratory case 

study,” Technology Analysis and Strategic Management, 11(3), pp. 359-374, 1999. 
[Rec05] L. Russell Records, “The Fusion of Process and Knowledge Management,” BPTrends, 

September 2005, www.bptrends.com (as of December 22, 2005).  
[Ti00] A. Tiwana, The Knowledge Management Toolkit: Orchestrating IT, Strategy, and 

Knowledge Platforms (second ed.). USA: Prentice Hall, 2000.  
[TV02] H. Touskas, and E. Vladimirou, “What is organizational knowledge,” Journal of 

Management Studies, 38(7), 973-993, 2001.  
[Wa01] D. Wastell, “Barriers to effective knowledge management: Action research meets 

grounded theory [case study],” Paper presented at the 9th European Conference of 
Information Systems, Bled, Slovenia, June 27-29, 2001.  

[Wi03] K. Wigg, Knowledge Management Foundations, ed. S. Press, Arlington, 2003.  
 


