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ABSTRACT 

 
A game theoretic approach to threat intent inference 

 
In the adversarial military environment, it is important to efficiently and promptly predict 
the enemy’s tactical intent from the lower level spatial and temporal information. In this 
paper, we propose a decentralized Markov game (MG) theoretic approach to estimate the 
belief of each possible enemy COA (ECOA), which is utilized to model the adversary 
intents. It has the following advantages: 1) Decentralized. Each cluster or team makes 
decisions mostly based on the local information. We put more autonomies in each group 
allowing for more flexibilities; 2) Markov Decision Process (MDP) can effectively model 
the uncertainties in the noisy military environment; 3) Game model with three players: 
red force (enemies), blue force (friendly forces), and white force (neutral objects); 4) 
Deception. With the consideration that asymmetric enemy may manipulate the 
information available to friendly force; we integrate the deception concept in our game 
approach to model the action of purposely rendering partial information to increase the 
payoffs of the enemy. A simulation software package has been developed with 
connectivity to the Boeing OEP (Open Experimental Platform) to demonstrate the 
performance of our proposed algorithms. Simulations have verified that our proposed 
algorithms are scalable, stable, and satisfactory in performance. 
 



1.    Introduction 
 
Game theory provides a framework for modeling and analyzing various interactions 
between intelligent and rational decision makers, or players in conflict situations, in 
which every individual decision maker is not in complete control of other decision units 
entering into the environment. The idea of the game can be tracked back to the 
Babylonian Talmud which is the compilation of ancient law and tradition set down 
during the first five centuries A.D..  However, it was not until 1944 that the mathematical 
theory of games was invented by John von Neumann and Oskar Morgenstern [1]. 
 
Mathematically, Game theory is used to study strategic situations where players choose 
different actions in an attempt to maximize their returns, which depend upon the choices 
of other individuals. To make optimal movement in multi-agent systems, strategies of 
other agents should be taken into account and therefore it is essential to be able to model 
the behavior of the opponents.  
 
In the adversarial military environment, it is important to efficiently and promptly predict 
the enemy’s or adversary tactical intent from the lower level spatial (terrain) and 
temporal information. Standard AI tools for solving decision-making problems in 
complex situations, such as dynamic decision networks and influence diagrams, are not 
applicable to these kinds of situations. Game theory, on the other hand, provides a 
mathematical framework designed for the analysis of agent interaction under the 
assumption of rationality where one tries to identify the game equilibria as opposed to 
traditional utility maximization principles. A game component in multi-agent decision-
making thus uses rationality as a tool to predict the behavior of the other agents [11-15]. 
 
In this paper, the focus is on the application of Markov Game [2], the multi-agent 
extensions of Markov Decision Processes (MDPs), to the estimation of enemy course of 
actions (COAs) [3], which approximately model the intent of targets. By successfully 
assessing possible future threats from the adversaries, the decision makers can make 
more effective targeting decisions, plan friendly COAs, mitigate the impact of 
unexpected adversary actions, and direct sensing systems to better observe adversary 
behaviors. We have achieved the following important results. First, we developed a 
highly innovative framework for threat intent prediction in an urban warfare setting based 
on Markov (Stochastic) game theory. It consists of three closely coupled activities: 1) the 
processing and integration of information from disparate sources to produce an integrated 
object state; 2) the reasoning and grouping the cooperative objects which perform 
common tasks; 3) predicting the intensions and CoAs of asymmetric threats. Second, we 
have implemented an adversary Markov game model with three players: red force 
(enemies), blue force (friendly forces), and white force (neutral objects). This is a 
significantly extension of existing game theoretic tools for modeling and control of 
military air operations, which does not explicitly consider the neutral force (or civilian) as 
an intelligent player [13]. Inherent information imperfection is considered and 
implemented in two methods: 1) decentralized decision making scheme; and 2) deception 
with bounded rationality. Third, a software prototype has been developed with 
connectivity to the MICA (Mixed Initiative Control of Automa-Teams) Open 



Experimental Platform [4] (ontology-based virtual battlespace) to demonstrate the 
performance of our proposed approach. It has verified that our proposed algorithms are 
scalable, stable, and perform satisfactorily according to the situation awareness 
performance metric. 
 
The paper is organized as follows. In section 2, we will summarize the technical approach, 
which includes basic ideas of Markov game, threat intent inference framework, and 
moving horizon control approach for game solution. Section 3 describes the experimental 
results. Section 4 concludes the paper. 
 
2.    Markov Game Framework 
 
We propose a Markov game (MG) theoretic approach to estimate the belief of each 
possible enemy COA (ECOA) because 1) Decentralized. Each cluster or team makes 
decisions mostly based on the local information. We put more autonomies in each group 
allowing for more flexibilities; 2) Markov Decision Process (MDP) can effectively model 
the uncertainties in the noisy military environment; 3) Game model with three players: 
red force (enemies), blue force (friendly forces), and white force (neutral objects). Game 
framework is an effective and ideal model to capture the nature of military conflicts: the 
determination of one side’s strategies is tightly coupled to that of the other side’s 
strategies and vice versa. With the consideration that an asymmetric threat (terrorist) may 
act like a neutral or white object (civilian), we also model the actions of white units in our 
game framework; 4) Deception [10]. With the consideration that asymmetric enemy may 
manipulate the information available to friendly force; we integrate the deception concept 
in our game approach to model the action of purposely rendering partial information to 
increase the payoffs of the enemy.   

 
The game intent inference framework is shown in Fig. 1.  It is constructed from the initial 
state and evolved according to the transition rule. At each time k, blue and red actions are 

 
Fig. 1 Stochastic game model for intent inference 



decided according to the various sensor data, rules of engagement, rationality, terrain 
information and current state. These actions decide the updated probability distribution 
over the state space according to the transition rules, which also takes terrain information 
as one of the inputs. Only one state is selected as the next state. In the real battle, the state 
is chosen by the nature while in our model it is drawn based on the probabilities of all 
possible states. The bigger the probability is, the easier it will be drawn. 
 
By definition, a Markov (stochastic) game is given by (i) a finite set of players N ; (ii) a 
finite set of states S ; (iii) for every player Ni ∈ , a finite set of available actions iA  (we 
denote the overall action space i

Ni AA ∈×= );  (iv) a transition rule )(: SASq ∆→× , (where 

)(S∆  is the space of all probability distributions over S ); and  (v) a payoff function 
NRASr →×: . For the intent inference problem, condition (i) is obviously satisfied. 

Conditions (ii) and (iii) hold because we assume that rules of engagement and terrain 
information are known and each player has a limited set of COAs given by the doctrines, 
and terrain information, etc. For example, a river will limit the actions of ground forces. 
(iv) and (v) are designed according to the specific situations including  terrain 
information.  For our threat prediction problem, we obtain the following discrete time 
decentralized Markov game: 
 
Players (Decision Makers) --- Although, in our distributed (decentralized) Markov game 
model, each group (cluster, team) makes decisions, there are three main players: enemy, 
friendly force, and white objects. All clusters of enemy (friendly force, or white objects) 
can be considered as a single player since they have a common objective.  
 
State Space --- All the possible COAs for enemy and friendly force consist of the state 
space. An element Ss ∈  is thus a sample of enemy and friendly force COAs composed 
of a set of triplets (Resource, Action Verb, and Objective). As an example, an enemy 
COA might be: the red team 1 (Resource) attacks (Action Verb) the blue team 2 
(Objective). In the context of this report, it is assumed that, for the enemy COAs, the 
Resource is always an adversary entity while the Objective is a friendly asset. Similarly, 
for the friendly force COAs, Resource is a friendly asset and Objective is an adversary 
entity. ),,( WRB ssss = and WRB SSSS ××= , where BB Ss ∈  is the COAs of Blue (friendly) 
force and },,|),,{( BB
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of White force (neutral objects). 
 
Action Space --- At every time step, each blue group choose a list of targets with 
associated actions and confidences (probability distribution over the list of targets, i.e., 
the sum of the confidences should be equal to 1) based on its local battle field 
information, such as the unit type and positions of possible targets, from level 2 data 
fusion. Let B

iD  denote the action space of the thi  blue team. Each element B
id of B

iD  is 
defined as 
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where B
ip  is the probability of the action-target couple ( B

ia , B
it ), which defined as the 

action B
ia  to target B

it . Therefore, the action space of blue side B
iRi

DA B∈
×=1 . As an 

example, for the blue small weapon UAV 1 in blue team 1, its action might be 
Bd1 ={(attack, red fighter 1, 0.3), (fly to, red fighter 2, 0.5), (avoid, red fighter 3, 0.2)}.  

 
Similarly, each red cluster (obtained from the level 2 data fusion) determines a 
probability distribution over all possible action-target combinations.  Let R

iD  denote the 
action space of the thi  red cluster. Each element R

id of R
iD  is defined as 
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where R
ip  is the probability of action R

ia  to target R
it .  Therefore, the action space of red 

force R
iRi

DA R∈
×=2 .  A possible action for red platform 1 (red fighter 1) is Rd1 ={(attack, 

small weapon UAV 1, 0.6), (move to, blue solider 2, 0.2), (avoid, blue solider 1, 0.2)}. 
Remark: Action and Action Verb are different concepts. Action is a set of triplets with 
associated probabilities while Action Verb is just a component of triplet composed of 
Resource, Action Verb and Objective. All Actions are included in 1A  for player 1 (Blue 
force) and 2A  for player 2 (Red force). All Action Verbs are enumerated in BA  for player 
1 (Blue force) and RA  for player 2 (Red force).  
 
The actions of white objects are relatively simple.  The main action type is the 
movement. Let W

iD  denote the action space of the thi  white unit.   Each element B
id of B

iD  
is defined as  
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where W
ip  is the probability of action W

ia  to target W
it . 

 
Transition rule --- Due to the uncertainty properties of military environments, we assume 
that the states of the Markov game have inertia so that the decision makers have more 
chance in pursuit of the objective of the previous actions. We define an inertia factor 
vector Ti

m
iii

i
),,,( 21 ηηηη �=  for player i, where im  is the number of the teams or clusters of 

player i , and 10 ≤≤ i
jη , imj ≤≤1 . So, for the thj  team of the thi player, there is a 

probability of i
jη  to keep the current action-target couple and a probability of (1- i

jη ) to 
use the new action composed of action-target couples.  
 
There are two steps to calculate the probability distribution over the state space S, where 

1, +kk ss  are states of time step k and k+1 respectively, 321 ,, kkk aaa ,  are the decisions of 
player 1 (blue force or friendly force) , player 2 (red force or enemy),  and play 3 (white 
force) respectively, at time step k. 
 

• Step 1: with the consideration of inertia factor vector iη , we combine the current 
state with decisions of both players to obtain fused probability distributions over 



all possible action-target couples for red and blue forces. To do this, we first 
decompose the current state into the action-target couples for each team of each 
player (red force or blue force). Let )( k

i
j sΨ denote the resulting action-target 

couple related to the thj  team of the thi player. For example, if there is one triplet 
of (blue team 1, attack, red fighter 2) in the current state 

ks , then the action-target 
couple for blue team 1 (the first team of blue force) is )(1

1 ksΨ = (attack, red fighter 
2). Secondly, for each specified team, say the thj  cluster of player 2 (enemy 
force), we fuse its action-target couples via modifying the probability of each 
possible action-target couple based on the following formula 
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There are four cases in Eq (6): 1) The action-target couple ),( R

j
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j ta  only occurs in 

the current action of thj  cluster of player 2 and is not in the current state
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Similarly, the new probability distribution for the thj  team of player 1 (blue 
force) is  
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The new probability distribution for thj  team of player 3 (white force) is 
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• Step 2: we determine the probability distribution over the all possible outcomes 
of state 1+ks ,  
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where 1m  is the number of the teams or clusters of player 1 (blue force), 2m  is the 
number of the teams or groups of player 2 (red force) and 3m  is the number of the 
units of player 3 (white force). )},,{( B
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probabilities of the enemy and white force, respectively. So the probability 
distribution over the all possible outcomes of state 1+ks  (composed of all possible 
sub-states of blue force and red force) can be calculated via equation (7). 
 

Payoff Functions --- In our proposed decentralized Markov game model, there are two 
levels of payoff function for each player (enemy, friendly force, or white force). 
 

• The lower level payoff functions are used by each team, cluster or unit to 
determine the team actions based on the local information. For the thj  team of 
blue force, the payoff function is defined as ),,~( B
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B
j Wdsf , where ss B

j ⊆~  is the 

local information obtained by the team, and B
kW , the weights for all possible 

action-target couples of blue force, is announced to all blue teams and determined 
according the top level payoff functions by supervisor of Blue force. 
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aimed platforms. Similarly, we obtain the lower level payoff functions for the thj  
team of red and white force, 
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Remark 1: For some asymmetric threats, such as suicide bombers, the payoff 
functions may only consider the loss of the blue side. For some camouflage, and 
concealment entities, their objectives are to hide themselves and move close to the 
blue units. Other deception units will do some irrational movements to hide their 
true goals with the cost the time. 
 
Remark 2: The white units only care about their possible losses. For an example, 
when a dangerous spot is detected, normal white units will find a COA to keep 
themselves as far as possible from the spot.      
 

• The top level payoff functions are used to evaluate the overall performance of 
each player. 
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where k is the time index. In our approach, the lower lever payoffs are calculated 
distributedly and sent back to commander/supervisor via communication 
networks. 
 
Remark 3: Since the gain functions )~,,,( B
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for red force and )~,,,( W
j

W
i

W
i

W stajg  for white force are different functions, 
asymmetric force and cost utilities can be straightforwardly represented in our 
model. In addition, after an irregular adversary is detected, a different type of 
gain function will be assigned dynamically.   

 



The strategies --- In this paper, we try several well known types of strategies. 
 

• Min-max strategies [5]. This kind of strategies will give a conservative solution 
to minimize the possible maximum “loss”. Actually, in our problem, it is a max-
min solution in the sense that each player maximizes the possible minimum his 
payoffs. So, this kind of strategies is also called safest solutions.  

 
• Pure Nash Strategies with finite horizon.  In game theory, the Nash equilibrium 

(named after John Nash [6] who proposed it) is a kind of optimal collective 
strategy in a game involving two or more players, where no player has anything 
to gain by changing only his or her own strategy. If each player has chosen a 
strategy and no player can benefit by changing his or her strategy while the other 
players keep theirs unchanged, then the current set of strategy choices and the 
corresponding payoffs constitute a Nash equilibrium. In our approach, we use a 
game search tree (shown in Fig. 2) to find the solution.  In our proposed 
approach, the solution to the Markov game tree is obtained via a K time-step 
look-ahead approach, in which we only optimize the solution in the K time-step 
horizon. The suboptimal technique is used successfully for reasoning in games 
such as chess, backgammon and monopoly. 

 
• Mixed Nash Strategies.  A mixed strategy is used in game theory to describe a 

strategy comprised of possible actions and an associated probability, which 
corresponds to how frequently the action is chosen. Mixed strategy Nash 

 
Fig. 2  A game tree search approach to find pure Nash strategies with finite planning 

horizon  (moving planning window) 



equilibria are equilibria where at least one player is playing a mixed strategy. It 
was proved by Nash that that every finite game has Nash equilibria but not all has 
a pure strategy Nash equilibrium.  

 
• Correlated Equilibria [7]. Unlike Nash equilibria, which are the concept of 

equilibria formulated in independent strategies, the correlated equilibria were 
developed from the correlated strategies in noncooperative games. The correlated 
equilibrium of a Markov game describes a solution for playing a dynamic game 
in which players are able to communicate but are self-interested. Based on the 
signals generated by the correlated devices and announce to the each decision 
maker, players choose their actions according to the received private signals. 
There are two types of correlation devices: autonomous and stationary devices. 
An autonomous correlation device is a pair , where (i) 

i
nM  is a finite set of signals for player i at time step n, and (ii) )()(: nn MnMd ∆→ , 

i
nNin MM ∈×=  and 121)( −×××= nMMMnM � . A stationary correlation device is a 

pair , where )(Md ∆∈ and i
Ni MM ∈×= . Actually, a stationary 

correlation device is a special case of an autonomous correlation device, where 
i
nM  is independent of n  and nd  is a constant function that is independent of n .  

 
Given a correlation device , we define an extended game  . The game 

 is played exactly as the original game, but at the beginning of each stage n, 
a signal combination Ni

i
nn mm ∈= )(  is drawn according to the probability function 

),,,( 121 −nn mmmd � and each player i is informed of i
nm . Then each decision maker 

must base his choice of actions on the received signal. Any deviator will be 
punished via his min-max value. The punishment only occurs if a player disobeys 
the recommendation of the device. It was proved in [7] that every Markov game 
with an autonomous correlated device admits a correlated equilibrium. 

 
• Sequential Nash Strategies [8]. A sequential game is one in which players choose 

their strategies following a certain predefined order, and in which at least some 
players can observe the moves of other 
players who make decisions preceded 
them. The sequential game is a natural 
framework to address some real 
problems, such as the Action-Reaction-
Counteraction paradigm used in military 
intelligence and advertising campaigns 
strategies of several competing firms in 
economics. In our approach, we use a 
turn-by-turn scheme shown in Fig. 3.  At 
each step k, the control strategy from 
only one player, say, player 1 (blue 
force), is applied and the corresponding 
outcome will be observed by player 2 

 
Fig. 3 Two-player Sequential Game 



(enemy force) before it decides its next action. This is helpful in estimating the 
opponent’s intent because each time only one action is applied and the state 
changes from the action is observed.  

 
• Leader-Follower Strategies [9].  With the consideration of the limited and non-

perfect communication, we use the Stackelberg conception to model the 
cooperation part between the commander and the local teams. The commander 
(called the leader) declares incentives to the local teams (called followers) in 
order to induce them to accept his desired system behavior as the common desired 
behavior. The Leader-Follower strategy is useful in our clearly defined 
hierarchical systems which have asymmetric information structures (in our case 
the leader, or commander know the cost functional of every decision maker, or 
local teams while the followers know only their own). 

 
 
To efficiently reason the enemy’s intent or COAs, we divide our approach into two 
phases: training phase and reasoning phase. In the first one, we measure or observe the 
enemy’s actions and compare them with the actions generated by our model. The results 
are used to tune or adjust the transition rules. In the reasoning phase, we fix the transition 
rules and use the generated red actions as the intent of enemy. 
 
Deceptions [10] are used to make the other player act in our own advantage by making it 
believe that the game is in a state other than the actual one.  It is only possible in partial 
information games. We propose an equilibrium approach to deception where deception is 
defined to be the process by which actions are chosen to induce erroneous inferences so 
as to take advantage of them. This framework differs from the earlier literature on multi-
stage games with incomplete information in that whether the player has a perfect 
understanding of the strategy employed by his opponent. We introduced two types of 
deceptions: cognitive type and strategy environment. 
 
Cognitive types are defined as follows. Each player i forms an expectation about the 
behavior of the other player by pooling together several nodes in which the other player 
must move. Each such pool of nodes is referred to as a class of analogy. Players are also 
differentiated according to whether or not they distinguish between the behaviors of the 
various types of their opponent. Formally, a cognitive type  of player i is characterized by 
(Ani, di) where  Ani stands for player i’s  analogy partition and di is a dummy variable that 
specifies whether or not type ti distinguishes between the behaviors of the various types tj 
of player j. We let di = 1 when type ti distinguishes between types tj’s behaviors and di = 
0 otherwise. 
 
A strategic environment is described by (Y,ui,p) where p denotes the prior joint 
distribution on the type space Q = Q1 � Q2. To simplify notation we will assume that the 
types of the two players are independently distributed from each other, and we will refer 
to pi = (pti)ti as the prior probability of player is type where pti denotes the prior 
probability of type ti. 
 



3.    Simulations and Experiments 
 
In the Simulation part, we build a virtual battle-space and a typical urban scenario based 
on the Ontology concept, which is an explicit, formal, machine-readable semantic model 
that defines the classes (or concepts) and their possible inter-relations specific to some 
specified domain.  To simulate our data fusion approach, we implemented and tested our 
battle-space, scenario and algorithms on the MICA Open Environment Platform (OEP) 
based on the Boeing C4Isim simulation, which models the collection, processing, and 
dissemination of battlefield information. 
 
We used a scenario shown in Fig. 4 to demonstrate the performance of our proposed 
threat prediction and situation awareness algorithm. In the shown urban environment, the 
blue force’s missions are to capture and secure two bridges which are guarded by the red 
force. The two bridge locations are well connected via wide roads highlighted by dashed 
lines. The red force includes armed vehicles, fighters and asymmetric forces hiding in 
and acting like the white objects (the civilians and vehicles). The blue force consists of a 
few fighters with close air support provided by several unmanned aerial vehicles (UAVs) 
such as small sensor UAVs and small weapon UAVs, which will, if needed, do some 
searching and fighting tasks too. We assume the total offense force and total defense 
force are almost at the same level. There is no dominant one. There are several choices 
for the red force to guard these objectives efficiently. They can deploy all red units to 
protect one location. However, the blue force can capture other places first. The blue 
force faces the same dilemma. So the main challenge for both sides is to understand the 
situation from the fused sensor data and predict the intent of the opponent under the 
“believed” war situation. 
 

 
Fig. 4: A Simulated Scenario  

 



For this scenario, in a specific simulation run (correlated equilibrium method) as shown 
in Fig. 5, blue team 1 and blue team 3 were assigned to capture Bridge 1 and Bridge 2, 
respectively, almost in the whole simulation period of 30 minutes. On the other hand, 
Red team 1 and Red Team 3 were guarding Bridge 1 and Bridge 2 almost all the time. 
Blue Team 2 was strategically moving based on the threat prediction from the Markov 
game. At the same time, the Red Force was dynamically deploying Red Team 2 and 
trying to keep a balance between the Blue force and the Red force at each bridge. As 
shown in the movie of the demo, we can see that after about 15 minutes of movement, at 
Bridge 1, the Blue force achieves domination with 2 Blue teams (Blue Team 1 and Blue 
Team 3) to attack 1 red team (Red Team 1). The Blue force captures and secures Bridge 
1 before Red Team 3 reaches Bridge 1 to help Red Team 1. During this Phase 1 battle, 
our algorithm detected two asymmetric adversaries with deception (a person and a 
vehicle) which were hidden in a vast of background harmless civilian activity.  After the 
capture of Bridge 1, the Blue side deployed a part of the remaining force of Team 1 and 
Team 3 to secure the bridge and others to help Team 2 to capture Bridge 2. Finally, the 
Blue side won the urban battle at a cost of 5 Blue soldiers and 6 small weapon UAVs. 
Another hidden asymmetric threat with deception (terrorist) was detected and killed in 
the Phase II battle of capturing Bridge 2. 
 

 
Fig. 5: Result of a simulation run 

 



In addition to the explained run, we 
performed many experiments. We 
compared the results using the various 
options, such as without game theoretic 
fusion (without levels 2 and 3), without 
asymmetric Threat Prediction (with level 
2 but the payoff function of game model 
at level 3 doesn’t change dynamically), 
Game approach with mixed Nash 
Strategy, and game approach with 
Correlated Equilibria. The results (since 
the simulation is stochastic, results are 
the mean of 10 runs for each case) are 
shown in Fig. 6 (Only the damage information of the Blue side is shown). From the 
damage comparison results, we can see that our proposed Markov game framework with 
correlated equilibrium and deception consideration for threat detection and situation 
awareness is better than the other methods. 
 
4.    Conclusions 
 
Game theoretic tools have a potential for threat prediction that takes real uncertainties in 
Red plans and deception possibilities into consideration. In this paper, we have evaluated 
the feasibility of the advanced adversary intent inference algorithm and their 
effectiveness through extensive simulations. It has verified that our proposed algorithms 
are scalable, stable, and perform satisfactorily. 
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