CCRTS 2006
The State of the Art and the State of the Practice
June 20 – 22, 2006

Maritime Domain Awareness: The Key to Maritime Security Operational Challenges and Technical Solutions

Mr. George Galdorisi
Ms. Rebekah Goshorn

SPAWAR Systems Center San Diego
“Global Maritime Domain Awareness is the first step to an effective end game. Global MDA will allow us to detect, surveill, identify, classify, and interdict vessels of interest. Global MDA gives us the cued intel that will provide the situational awareness and clarity necessary to determine if a vessel is friend or foe.”

Admiral Thomas Collins
Commandant, U.S. Coast Guard
National Defense University
December 1, 2004
“Our goal is to gain increased information sharing and enhanced situational awareness in order to facilitate international cooperation to improve security and cue effective threat responses. Development and fielding of Maritime Domain Awareness tools and applications will be central to this effort.”

Admiral Walter Doran
Commander, U.S. Pacific Fleet
Remarks at “West 2005”
February 2, 2005
A Process to Instantiate Maritime Domain Awareness

- The nature of the Maritime Domain Awareness challenge
- Policy and operational approaches for Maritime Domain Awareness
- Functional and technical approaches to the MDA operational challenge
Maritime Domain Awareness: The Nature of the Challenge
“It seems to me that it is in the maritime domain that we have the greatest potential to substantially improve our homeland defense.”

Paul McHale
ASD for Homeland Defense
December 21, 2004
The Nature of the Challenge
A Vast and Increasingly Crowded Space

- Oceans encompass over 140 million square miles
- Maritime trade has increased 220% since 1975
- Over 100,000 ocean-going ships
- Over 10,000,000 fishing vessels and pleasure craft
- Six billion tons of trade carried by sea in 2001
- Bulk of trade—46,000 vessels servicing 4,000 ports
- Oil demand - 77 to 120 million barrels by 2025
- Pacific Rim maritime commerce on a steep rise
The Nature of the Challenge
Oceans as a Medium for Unlawful Activity

- Terrorism
- Piracy
- Transnational crime
- Illegal immigration
- Drug and Contraband Smuggling
- Transportation of WMD
The Nature of the Challenge
Sorting Suspect Vessels From the Rest

• Specific needs differ in community of nations
• All have shared requirement for enhanced MDA
• Pooling resources and sharing a COP are key
• Challenges involve aligning policy and operations
Maritime Domain Awareness: Policy and Operational Approaches to Coordinating International Efforts
“We will not win the Global War on Terrorism if we cannot tell the bad guys from the good guys. We have to develop the capability to do that. A maritime NORAD is essential.”

Admiral Vern Clark
Chief of Naval Operations
Signal Magazine
December 2004
Policy and Operational Approaches to Coordinating International Efforts

• Formulating international policy is challenging
• UN and IMO have started a framework
• Maritime security a key issue for the United States
• U.S. approach to policy and operations to enhance MDA
Policy and Operational Approaches to Coordinating International Efforts

- 1974 International Convention for the Safety of Life at Sea
- United Nations Security Council Resolution
 - Resolution of September 28, 2001
 - Comprehensive measures - combat international terrorism
- International Maritime Organization Action
 - Report of May 20, 2002
 - *Oceans and the Law of the Sea*
 - Comprehensive report addressing crimes at sea
 - Focuses on attacks on ships in the territorial sea
“The security of the maritime domain is a global issue. The United States, in cooperation with our allies and friends around the world…will work to ensure that lawful private and public activities in the maritime domain are protected against attack and criminal and otherwise unlawful or hostile exploitation.”

Fact Sheet
Maritime Security Policy
National Security/Homeland Security
January 13, 2005
Maritime Security: Key Issue for the United States

- The National Strategy for Maritime Security
- National Plan to Achieve Maritime Domain Awareness
- U.S. DoD top priority: Global War on Terrorism
- U.S. DoN focus: GWOT – MDA top priority
- U.S. DHS focused on Maritime Domain Awareness
- U.S. Coast Guard: MDA/AIS/COP/PSI +++
“A Maritime NORAD would be an automated, ocean wide, vessel-monitoring surveillance network.”

Rear Admiral Gene Brooks
NORTHCOM Deputy Ops Director
United States
Approach to Policy and Operations

- International agreements such as the LOSC
- Supporting international agreements
 - PSI
 - CSI
 - ISPS
 - C-TPAT
- Supporting regional agreements
 - RMSC
 - SEACAT
- Beyond “Maritime NORAD”
Maritime Domain Awareness: Functional & Technical Approaches to Solving the Operational Challenge
“The heart of the Maritime Domain Awareness program is accurate information, intelligence, surveillance and reconnaissance of all vessels, cargo and people extending well beyond traditional maritime boundaries.”

President George W. Bush
Securing the Homeland, Strengthening the Nation
January 20, 2002
Technical Approaches to Solving Operational Challenge

• **Functional Component**
 – “What is it we need to accomplish for MDA?”

• **Technical Capabilities**
 – “What tools do we need to use to achieve this?”
A U.S. Coalition-Compatible Functional Approach
Functional Component
“What is it we need to accomplish for MDA?”

• Core competencies
• Repeated iteratively
• Bound the challenging technical trade space
• Provide vehicle for international cooperation
Functional Capabilities
Core Competencies for Maritime Domain Awareness

- Focused Sensing and Data Acquisition
- Dynamic Interoperable Connectivity
- Responsive Information Management
- Dynamic Decision Support
- Information Assurance
- Consistent Representation
- Distributed Collaboration
A U.S. Coalition-Compatible Technical Approach
Technical Capabilities

“What tools do we need to use to achieve this?”

• Seven core competencies all important
• Some present greater challenges than others
• Focus on the “bookends” – FSDA & DDS
• If we get those right – we are close to a solution
Technical Capabilities
Focused Sensing and Data Acquisition
“The IT revolution represents the most significant global transformation since the Industrial Revolution beginning in the mid-18th Century.”

National Intelligence Council
Technical Capabilities:
Focused Sensing and Data Acquisition
Technical Capabilities
Focused Sensing and Data Acquisition

• Track all vessels all the time
• Understand what the tracks are telling us
• Adapt to normal and expected changes
• Use AIS and models to detect anomalies
• Universe of available sensors is quite large
• Automated sensor fusion is a key requirement
Technical Capabilities: Focused Sensing and Data Acquisition

- **Tool**: to better use and extract data from existing sensors
- **Need**: to address/answer several questions:
 - What data structures are being used?
 - How is data registered?
 - Is data discoverable from other sensors?
 - What is pedigree of information?
- **Goal**: to have autonomous sensors and establish thresholds to alert operator of abnormal activity
Focused Sensing & Data Acquisition
Technology Sorting by Zones

• High Seas
• Exclusive Economic Zone
• Territorial Sea and Contiguous Zone
• Ports, Bays, and Inland Waterways
Sensor Activity in Different Zones

Overview:
Sensor CONOPS follows common paradigm to detect and identify all vessels, resolve anomalies, then take action

- DETECT
 - Wide area surveillance
 - Detect vessels by zone, cooperative, emitting and dark

- IDENTIFY
 - Vessel classification and identification to “declutter” the picture
 - Declared identification (AIS) or vessel fingerprints (SEI)

- ASSESS RISK
 - Vessel history and particulars (ownership, cargo)
 - Try to resolve vessels with unknown identification
 - Follow-up tasking to ID, collect details, other data

- TRACK
 - Maintain a track throughout passage in area of interest
 - Correlate and integrate with COP

- DETECT ANOMALIES
 - Alert to threat-like or unusual behavior

- INTERCEPT
 - Remaining high risk or suspect vessels intercepted
 - Boarded, inspected, detained as required
Technologies That Support MDA on the High Seas
Technologies That Support MDA on the High Seas

• Existing Capabilities
 – Satellites and Global Position Tracking devices
 – Long-range Unmanned Aerial Systems
 – Automated Identification System (AIS)
 • Buoys, international reporting, platform relays
 – Advance Notice of Arrival (ANOA) system

• Emerging Technologies
 – Tagging and tracking technologies
 – Automated data mining and data fusion
 – Long range surveillance (MMA-UAS)
Technologies That Support MDA in the Exclusive Economic Zone
Technologies That Support MDA in the EEZ

- Existing Capabilities
 - Satellite radars
 - Over the horizon radars
 - Acoustic means to generate contacts
 - Vessel reporting systems

- Emerging Technologies
 - ADS
 - DADS
 - High-speed manned and unmanned surface and air systems
 - Data correlation and data fusion
Technologies That Support MDA in the Territorial Sea and Contiguous Zone
Territorial Sea and Contiguous Zone

• Immediate threat from unidentified vessels

• Existing Capabilities
 – Patrol boats / vessels / aircraft
 – AIS shore stations
 – Vessel reporting systems

• Emerging technologies
 – ADS
 – DADS
 – Larger naval and Coast Guard vessels (Deepwater)
 – Enhanced data correlation and data fusion
Technologies That Support MDA in Ports, Bays, and Inland Waterways
Technologies That Support MDA in Ports, Bays and Inland Waterways

• Most “congested” area
 – Contact-identification and sorting more difficult
• Existing Capabilities:
 – Patrol aircraft
 – Airplanes and helicopters
• Emerging Technologies
 – High-speed data correlation and data fusion
 – Networked surface and air assets (GIG/FORCEnet)
 – Knowledge management
From Seabed to Space ...

- **Sensors / Collection**
 - Systems w/ integrated comms/ networking and onboard processing to support automated fusion and cueing and formatting to support Service Oriented Architecture

- **Correlation**
 - Algorithms to improve correlation of complex signals
 - Automation of correlation functions

- **Fusion**
 - All-source fusion to support pattern recognition and anomaly detection

- **Supporting Decision-making and deriving meaning, not just volumes of data**

... across the zones
Technical Capabilities
Dynamic Decision Support
“Modern warfare strains the capacity to communicate…the challenge is building a system that ensures that we get the right information to the right place at the right time….”

The Wall Street Journal
April 10, 2002
Technical Capabilities
Dynamic Decision Support

- Backbone is the Global Information Grid
- Maritime Context – U.S. Navy FORCEnet
- Initial Design – “Composeable FORCEnet”
- “Coalition-friendly” design and operation
Global Information Grid (GIG) Naval Component - FORCEnet

FORCEnet Is an Inherently Joint/Coalition Concept, Both Relying on and Providing Essential Capabilities to the Joint/Coalition Community and Other Services and Agencies

Key Components of Joint Battle Management C2

Sea Strike, Sea Shield, Sea Basing

Sea Strike, Sea Shield, Sea Basing

Navy FORCEnet

AF C2 ConstellationNET

Army Warnet

Tactical C3

USCG Deepwater

Coalition Interagency

Joint C2 (JC2)

DNC, SIGP/SIMP, FIOP, SIAP, Teleport, TCS, JTRS, JISR, DCGS, GIG-BE, NCES

Joint BMC2 (USJFCOM)

Strategic C2 (STRATCOM)
Network Centric Warfare Is the Theory

Net-centric Operations Is the Concept

FORCEnet Is the Process of Making the Theory and Concept a Reality

“FORCEnet is defined as the operational construct and architectural framework for naval warfare in the Information Age, integrating warriors, sensors, command and control, platforms, and weapons in a networked, distributed combat force”

Source - FORCEnet: A Functional Concept for the 21st Century:
Naval Network Warfare Command
February 2005
Composeable FORCEnet Architecture
Maximizes Interoperability

- Client
- Collaboration
- Client
- Translation Services
 - Replay/FF
 - TEMPORAL
 - GEOSPATIAL
 - FUNCTIONAL
- Knowledge Management
- Legacy Sources
- Open Web Sources
 - QoS
 - Bandwidth Management
- IP Router based Network
Composeable FORCEnet Architecture

It’s about Composeable Functionality – Not the Specific Components

Client (IE5.5+)

Temporal (Replay/Forward)

Collaboration

Geospatial

Translation Services

Information Broker

Agents

Open Web Sources

QOS

Legacy Sources

Bandwidth Management

Information Broker

Translation Services

Knowledge Management VICTOR

K-Web MS Sharepoint

IP Router based Network

Client (ABA)

DCTS

GeoViz

WEB COP GeoViz

GRS

XTCF

LSI’s

Legacy Sources GCCS-M DADS PC IMAT

Bandwidth Management BMAC

QOS BCN

Open Web Sources

Data / Info Sources

Normalization Tier

Composeable FORCEnet Architecture
CTF-74 TASW CFn Battle Watch Captain

CFn Geo Display
- GCCS-M Tracks
- PC-IMAT overlays
- GALElite AOUs
- CVOA overlays
- AREPS overlays
- Documents
- Digital Nautical Charts
- ADRG charts
- DBDB-V in 3D
- Map-Chat

DMS Messages

CTF74 Web Site

ONI Web Page

Acoustic Full Field View

Tactical Chat Rooms

CFn Web based C2 provides improved understanding
“Ensuring the security of the Maritime Domain must be a global effort in which U.S. Government efforts are developed and furthered with the support of other governments.”

NSPD-41/HSPD-13
December 21, 2004
Summary and Conclusions

• The importance of gaining situational awareness in the maritime domain will increase
• Policy and operational approaches have been fragmented and uncoordinated – *until now*
• Technologies to generate actionable intelligence have not been available – *until now*
• These technologies are now available and emerging supported by a C4ISR infrastructure
• Focusing on functional capabilities first will enable optimal technical solutions – *start now*