Comparative Analysis of C2 Structures for the Global Ballistic Missile Defense

J. B. Michael, M. T. Shing, J. Um and M. Perrett

Naval Postgraduate School
Acknowledgment and Disclaimer

The research was funded by a grant from the Missile Defense Agency.

The views and conclusions in this talk are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government.
Outline

Unique Characteristics of Global Missile Defense Warfare

Essential Messaging Requirements

Analysis of Existing C2 Structure

Alternative C2 Structures

Discussion of Simulation Results

Conclusion
Global Ballistic Missile Defense

A new type of warfare
- Large complex global battle space
- Fast tempo
- Little force movement

Battle commanders need to
- Rely on high degrees of automation of all aspects of decision-making with manual override
- Local engagement decision with real-time global threat assignment
- Dynamic, real-time, allocation/re-allocation of resources
Global Ballistic Missile Defense

Need new C2 structures to streamline real-time coordination of battle responsibilities and engagement resources
Our Methodology

- Identify the essential message types passed between commands
- Establish if-then types of responses to these messages
- Establish random probabilities for success and fixed delay times for message processing
- Build simulation models for different C2 structures
- Run the models under three different scenarios:
 - Single Missile/Single AOR
 - Multiple Missiles/Single AOR
 - Multiple Missiles/Multiple AORs
Essential Messages

1. Cueing Data
2. Sensor Tasking
3. Track Data
4. Weapon Assignment
5. Weapons Order Acknowledgement
6. Weapons Order Refusal (CAN'T CO)
7. Weapons/Sensor Pairing
8. Weapons Inventory Update (weapon fired)
9. Engagement Status (subordinate to senior)
Existing C2 Structure (Hierarchical)

Note:
Global Authority – NORTHCOM
Supporting Command –
 Missile Defense Authority (STRATCOM, NORAD)
AOR – Supporting Regional COCOM
Sub-Unit –
 Units under tactical control of Regional COCOM
OMNeT++ Model for the Hierarchical C2 Structure
Simulation Results

Simulation runs show that the amount of messages will overload the network in anything more complex than a single missile/single AOR scenario.
Compressed C2 Structure

Missile Event
Reported by
DSP/SBIRS

Regional CC

NORTHCOM

Engagement
Messages

Missile
Defense
Forces
Flattened C2 Structure

- Missile Event
 - Reported by DSP/SBIRS

- USSTRATCOM
 - Advisory Messages
 - NMCC & Joint Staff
 - Regional CC
 - CJTF or JFACC
 - Engagement Messages
 - Missile Defense Forces
OMNeT++ Model for the Compressed Structure
OMNeT++ Model for the Flattened Structure
Simulation Results

The flat structure sends less messages, BUT...
Simulation Results (cont’d)

It is actually the slowest…
Conclusions

- Removing a layer of command from the existing C2 structure improves the overall performance of the structure in response to missile threats in various scenarios.
 - Elimination of the middle layers of a C2 structure may lead to reduction of the number of essential message classes.
- The message reduction in a flattened structure may be offset by the heavy workload imposed upon the centralized global authority.
- More refined models are needed to fully understand the impact of different C2 structures on missile defense.
For further study...

- Build a model with greater detail in which success is not random, but a function of other factors such as track data latency
- Investigate other alternative C2 structures
- Better model the “current structure,” as soon as we have a better idea of what that means
Questions?
<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Time (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX_SIMTIME_FOR_FINAL_ENGAGEMENT</td>
<td>Maximum time for the entire scenario</td>
<td>600</td>
</tr>
<tr>
<td>TIME_TO_CONSIDER_INTEL</td>
<td>Routing time for each command to forward intel to the next lower level in seconds</td>
<td>10</td>
</tr>
<tr>
<td>TIME_TO_PROCESS_NOGO</td>
<td>The delay between a commands receipt of a “can’t co” message and the re-assignment of the target track to another weapon (if available) in seconds</td>
<td>2</td>
</tr>
<tr>
<td>TIME_TO_EVALUATE_KILL_NO_KILL</td>
<td>Time required for a sensor to determine if a weapon fired at a track was successful in seconds</td>
<td>20</td>
</tr>
<tr>
<td>TIME_TO_PAIR</td>
<td>Time required for a sensor to find the corresponding weapon once ordered to pair with that weapon in seconds</td>
<td>8</td>
</tr>
<tr>
<td>PERCENT_CHANCE_OF_DETECTION</td>
<td>The percentage chance that a sub unit will detect a threat weapon. The primary sensor will always pick up the threat weapon, but in cases where both sensor and sub-units detect the target, a fuzed track will be produced and sent to the next level of the chain of command</td>
<td>40</td>
</tr>
<tr>
<td>TIME_TO_DETECT</td>
<td>The delay time in seconds between sensor tasking and detection of the threat weapon</td>
<td>20</td>
</tr>
</tbody>
</table>
Back-up Slides

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX_SIMTIME_FOR_BOOST_ENGAGEMENT</td>
<td>The time in seconds after which a target has been detected that the engagement may take place at the lowest level. After this time, national assets stateside must be brought to bear on the threat weapon.</td>
<td>120</td>
</tr>
<tr>
<td>SPINUP_TIME</td>
<td>The time in seconds required for a weapon to fire after being tasked for the first time.</td>
<td>10</td>
</tr>
<tr>
<td>MAX_SALVO_SIZE</td>
<td>The maximum number of weapons a single weapons battery can fire</td>
<td>15</td>
</tr>
<tr>
<td>PERCENT_CHANCE_OF_KILL</td>
<td>The percentage chance that a single weapon will be effective</td>
<td>15</td>
</tr>
<tr>
<td>TIME_TO_PROCESS_STATUS</td>
<td>The time delay in seconds required by command to evaluate a status message</td>
<td>1</td>
</tr>
<tr>
<td>TIME_BETWEEN_THREAT_WEAPONS</td>
<td>The time delay in seconds between launches of enemy weapons</td>
<td>130</td>
</tr>
<tr>
<td>GLOBAL_SENSOR_TRACK_HITS</td>
<td>The number of opportunities for the national sensor to detect the track</td>
<td>4</td>
</tr>
<tr>
<td>GLOBAL_SENSOR_TRACK_DELAY</td>
<td>Delay in seconds between global sensor track opportunities</td>
<td>70</td>
</tr>
</tbody>
</table>
interceptors fired per threat missile

Interceptors Fired Per Threat Weapon

<table>
<thead>
<tr>
<th></th>
<th>Scenario #1</th>
<th>Scenario #2</th>
<th>Scenario #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical Structure</td>
<td>9.57</td>
<td>7.62</td>
<td>4.69</td>
</tr>
<tr>
<td>Compressed Structure</td>
<td>9.1</td>
<td>6.91</td>
<td>4.45</td>
</tr>
<tr>
<td>Flat Structure</td>
<td>9.14</td>
<td>7.64</td>
<td>4.57</td>
</tr>
</tbody>
</table>