Threat Networks and Threatened Networks: Social Network Analysis for Counter-Terrorism

Q1: What are the problems?

- Extending basic research in the science of network analysis to improve military and intelligence approaches to attacking and defending warfighting networks
- Development of improved tools for conducting basic research in the analysis of critical warfighting networks and for the disruption of opposing networks

Q2: Why care?

- Scientific: New Laws
- Practical: Intentional attack vs. Random attack, Immunization (ex: SARS)

Q3: What do we do?

Collaborators: S. Havlin / L. Braunstein / S.V. Buldyrev / R. Cohen / G. Paul / S. Sreenivasan

*

THREE TAKE HOME MSGS:

Msg #1:

6 degrees of separation

versus

100 degrees of separation

Msg #2: Efficient immunization strategies

Random or Targeted (How?)

versus

"Acquaintance immunization" (No prior knowledge needed)

Msg #3: On the threshold of uncovering new principles and applications of networks.

Financial support: Office of Naval Research

Examples of Real World Problems

• In terror or intelligence networks:

efficiency

versus

secrecy

• In vaccination strategy:

risks of vaccination

versus

safety

• In information warfare contexts:

cost of spreading information

versus

need to make sure the right people get the messages

• In command and control contexts:

creating "all channel networks"

(linking everyone to all information and enabling everyone to communicate)

versus

information overload and "babble" as well as problems of information control

3 kinds of networks

Real world example of scale free network: Airline route map

Resilience to attack

"New"

- Random attack: must remove 50% to destroy
- Intentional attack: must remove 1% to destroy
- Random attack: must remove 99% to destroy
- Intentional attack: must remove 1% to destroy

Optimal Path: Minimize total "cost"

For this example:

Shortest path: 3 (cost = 60) Optimal path: 5 (cost = 47)

Generally:

Shortest path = N $^{0.50}$ Optimal path = N $^{0.61}$ N $^{0.50} < N {}^{0.61}$ ex: $(10^6)^{0.50} < (10^6)^{0.61}$ Shortest path: 2 (cost = 22) Optimal path: 3 (cost = 13)

Shortest path = Log N Optimal path = $N^{1/3}$ Log N << $N^{1/3}$ ex: N=10⁶, log10⁶ << (10⁶)^{1/3}

Bombing algorithm

Brute Force: Calculate cost for each path Classic: If $c_1 > c_2 > c_3 > \cdots$, remove c_1 , then c_2 , ... **Modern: "bomb" randomly chosen links**.

An efficient immunization strategy

Immunize at random:

Target the hubs:

Choose at random Immunize the neighbor

Need very high fraction

Very low fraction But need to know the hubs Very low fraction Advantage: No prior information needed

The future projects

Quantifying and modeling properties found in real networks

#1. Clustering of nodes#2. Correlations of high degree nodes#3. Nodes have different infection probabilities

How these properties affect immunization strategies and resilience?

Future project #1: Clustering of nodes "My friend's friends are also my friends"

- ✓ Known for real networks particularly social networks
- ? How clustering affects resilience and immunization strategy?

Future project #2: Correlations of high degree nodes

"If I have many friends then my friends have many friends"

Hubs hang out with other hubs ("Rich intermarry") Non-hubs hang out with other non-hubs ("Poor intermarry")

✓ Known for real network e.g. computer networks, social networks.

? How degree correlations affect resilience and immunization strategy?

Future project #3: Nodes have different infection probabilities

ex: SARS (some people are super-infectious sources, some people are not)
? Effect on immunization strategies?

Threat Networks and Threatened Networks: Social Network Analysis for Counter-Terrorism

Q1: What are the problems?

- Extending basic research in the science of network analysis to improve military and intelligence approaches to attacking and defending warfighting networks
- Development of improved tools for conducting basic research in the analysis of critical warfighting networks and for the disruption of opposing networks

Q2: Why care?

- Scientific: New Laws
- Practical: Intentional attack vs. Random attack, Immunization (ex: SARS)

Q3: What do we do?

Collaborators: S. Havlin / L. Braunstein / S.V. Buldyrev / R. Cohen / G. Paul / S. Sreenivasan

*

THREE TAKE HOME MSGS:

Msg #1:

6 degrees of separation

versus

100 degrees of separation

Msg #2: Efficient immunization strategies

Random or Targeted (How?)

versus

"Acquaintance immunization" (No prior knowledge needed)

Msg #3: On the threshold of uncovering new principles and applications of networks.

Financial support: Office of Naval Research