Methodology for Rapid Development of C2 Planning Systems

Sheena Kelsey
Simon Snell
18th June 2003
Introduction

• Developing Geospatial C2 Systems
• Requires more interaction
 – cannot automate solutions
• Support for Decision Makers
• Urgent Operational Requests
• Need for more flexible design methodologies
 – improved capture of user requirements
C2 System Development Issues

- Large scale projects
 - fixed price and/or time
 - long procurement time scales
- User Requirements
 - difficult to elicit and validate
 - finding the real user
 - ‘future proof’
- Inflexible methodologies
 - ‘opaque to the user’
 - over ambitious
Structured Systems Analysis & Design Methodology (SSADM)

- A British Standard, based on waterfall model:
 - coherent and widely used framework
 - high level of control
 - additional specification added to reflect some of C2 issues

- Limited adoption by C2 project organisations
 - limited, controlled user input
 - input to what not how
 - often associated with
 - systems failure, long time scales, high cost
Disadvantages of traditional methodologies

- Technical bias of formal methods
 - disengages the end user
 - neglect of human issues

- Based on assumptions
 - users can state requirements
 - cost, benefit and work could be measured in advance
 - perfect system could be produced first time

- Do not address the difficulties of
 - defining what is required
 - measuring pioneering work
Newer Methodologies

- Rapid developments in technology
 - Object Oriented (OO) design
 - code re-use
 - component software (COTS)
- Facilitates rapid
 - design
 - user feedback
 - procurement
- However...
Requirements Engineering Process

User Requirements

- Capture
- Document
- Maintain

System Requirements
Prototyping

- Technology demonstration
- New concepts/ideas
- User requirement validation
- Cost effective method for C2 development
 - new technology
 - complexity in all areas
 - data structures
- Known as Rapid Application Development (RAD) methodology

Sophisticated URs
Rapid Application Development (RAD)

- C2 Decision support is ‘different’
 - explore problem by generating scenarios
 - explore solution space (war gaming)
- Cannot be captured by standard, structured development paradigms
- Need extensive user involvement
 - best way through use of prototypes
 - further developed by us to reflect C2 decision making

Design should be driven by the decision maker
C2 RAD Methodology

USER

System

DESIGNER

User learning

Middle-out design

Personalised uses

Facilitates implementation

Pressure for evolution

Evolution of system functionality

QinetiQ
Urgent Operational Requirement (UOR)

- Issue with extremely short time scales
 - cannot use current methodologies

- Recent example of planning system
 - prototype developed rapidly
 - parallel system with secure communications

- Extremely rapid application prototyping
 - evolution of RAD method into PRAD
Parallel RAD (PRAD) Method

USER <-> SYSTEM

USER learning

USER request enhancements

Upgrade Emailed to User

DESIGNER <-> SYSTEM

Software upgraded and tested on parallel system
PRAD Benefits

• System lives on...
 • identifies gaps in current procurement programs
 • captures future requirements
 • spreads ideas and concepts
 • endorsement from real user - ‘feet in the mud’ validation

• Users get the system they want
 • ownership
Conclusions

• Particular issues of C2 need more flexible design methodologies

• Middle-out RAD approach based on prototypes starting to address this

• Refined method of PRAD applicable to UOR

• Processes/method still being refined but believe good basis for rapid development of C2 planning systems
Any questions?

Sheena Kelsey
smkelsey@qinetiq.com

Simon Snell
shsnell@qinetiq.com