Methodology for Rapid Development of C2 Planning Systems

Sheena Kelsey Simon Snell 18th June 2003

Introduction

- Developing Geospatial C2 Systems
- Requires more interaction
 - cannot automate solutions
- Support for Decision Makers
- Urgent Operational Requests
- Need for more flexible design methodologies
 - improved capture of user requirements

C2 System Development Issues

- Large scale projects
 - fixed price and/or time
 - long procurement time scales
- User Requirements
 - difficult to elicit and validate
 - finding the real user
 - 'future proof'
- Inflexible methodologies
 - 'opaque to the user'
 - over ambitious

Structured Systems Analysis & Design Methodology (SSADM)

- A British Standard, based on waterfall model:
 - coherent and widely used framework
 - high level of control
 - additional specification added to reflect some of C2 issues
- Limited adoption by C2 project organisations
 - limited, controlled user input
 - input to what not how
 - often associated with

- systems failure, long time scales, high cost

Disadvantages of traditional methodologies

- Technical bias of formal methods
 - disengages the end user
 - neglect of human issues
- Based on assumptions
 - users can state requirements
 - cost, benefit and work could be measured in advance
 - perfect system could be produced first time
- Do not address the difficulties of
 - defining what is required
 - measuring pioneering work

Newer Methodologies

- Rapid developments in technology
 - Object Oriented (OO) design
 - code re-use
 - component software (COTS)
- Facilitates rapid
 - design
 - user feedback
 - procurement
- However...

Requirements Engineering Process

Prototyping

- Technology demonstration
- New concepts/ideas
- User requirement validation -
- Cost effective method for C2 development
 - new technology
 - complexity in all areas
 - data structures
- Known as Rapid Application Development (RAD) methodology

Sophisticated URs

Rapid Application Development (RAD)

- C2 Decision support is 'different'
 - explore problem by generating scenarios

explore solution space (war gaming)

- Cannot be captured by standard, structured development paradigms
- Need extensive user involvement
 - best way through use of prototypes
 - further developed by us to reflect C2 decision making

Design should be driven by the decision maker

Urgent Operational Requirement (UOR)

- Issue with extremely short time scales
 - cannot use current methodologies
- Recent example of planning system
 - prototype developed rapidly
 - parallel system with secure communications
- Extremely rapid application prototyping
 - evolution of RAD method into PRAD

Parallel RAD (PRAD) Method

PRAD Benefits

- System lives on...
 - identifies gaps in current procurement programs
 - captures future requirements
 - spreads ideas and concepts
 - endorsement from real user 'feet in the mud' validation
- Users get the system they want
 - ownership

Conclusions

- Particular issues of C2 need more flexible design methodologies
- Middle-out RAD approach based on prototypes starting to address this
- Refined method of PRAD applicable to UOR
- Processes/method still being refined but believe good basis for rapid development of C2 planning systems

QinetiQ

Any questions?

Sheena Kelsey smkelsey@qinetiq.com Simon Snell shsnell@qinetiq.com

