Using the IPSec Architecture for Secure Multicast Communication

Thorsten Aurisch
t.aurisch@fgan.de

Christoph Karg
chkarg@fgan.de

Research Establishment for Applied Science
Neuenahrer Straße 20
D-53343 Wachtberg, Germany
Multicast Communication

- Efficient data transmission from one sender to a group of receivers
- Examples of usage
 - Briefing sessions
 - Database replication
 - Audio/video conferencing
- Idea: send data once and duplicate it where necessary
- Requirement: sophisticated routing infrastructure
- Problem: How to secure the data traffic?
Important Questions

- Which scenario for group communication?
- How to secure the multicast traffic?
- How to manage the security settings?
Scenario (Briefing Session)

- Sender 1
- Sender n
- Sender 2

Receiver (1, 1) • Receiver (1, n₁)
Receiver (2, 1) • Receiver (2, m₂)
Receiver (n, 1) • Receiver (n, mₙ)
Receiver (n; 1) • Receiver (n; mₙ)

send
receive
Multicast Security

- Mandatory requirements
 - Secrecy of the data traffic
 - Group authentication
 - Source authentication
 - Forward/backward security
- Group key exchange
 - Key agreement protocols
 - collaborative key negotiation
 - Key distribution protocols
 - generation & distribution via a key server
Scenario (Key Exchange)
Scenario Details

Sender hosts

- Number $n \approx 25$
- Send and receive data
- Connected via broadband networks
- Key exchange via agreement

Receiver hosts

- Number $m \approx 10000$
- Only receive data
- Connected via networks with narrow bandwidth
- Key distribution from a designated sender
Security Concept

- Security: Usage of the IPSec protocol suite
 - Security at network layer
 - Multicast support
 - Algorithms for encryption and group authentication
 - But: No source authentication
 - Hope: several IETF drafts (work in progress)
- To solve: Multicast Internet Key Exchange (MIKE)
 - Negotiation of IPSec settings
 - Key exchange functionality
- Goal: Development of a MIKE daemon
MIKE as part of the IPSec framework

- User Space: Application
- Kernel Space: AF_INET6

- IKE
- MIKE

- SAD
- SPD
- MSAD

- Unicast/Multicast IPSec
- IPv6
- TCP
- UDP
- AF_INET6
- PF_KEY 2
- HF
- ISDN
- Ethernet
MIKE Design Goals

- Two objectives:
 - Prototypical implementation
 - Simulation environment

- Special focus on military environments
 - Narrow bandwidth (wireless communication)
 - Emission control (EMCON)

- Design criteria
 - Separation of key management and application
 - Robust exchange protocols
 - Extensibility
 - Independency from multicast routing mechanisms
 - Usage of existing standards as far as possible
Message Dispatcher

- Task: transmission of key exchange messages
- Prototypical implementation
 - Connection to the Internet
 - Configuration of IPSec kernel module
- Simulation environment
 - Simulation of packet loss, delays, etc.
 - Visualization of key exchange protocols

Diagram:
- MIKE daemon
- Key Manager Group 1
- Group Policy Database
- Group Management Framework
- Message Dispatcher
- PF_KEY 2
- TCP
- UDP
Group Management Framework

- Task: Multicast IPSec management of the host
- Group access control
- Invocation/termination of key managers
- Key exchange message distribution
Key Manager

- Task: negotiation of IPSec settings for one multicast group
- Host authentication and digest validation
- Sender mode
 - Key agreement with other senders
 - Receiver management
- Receiver mode
 - Requesting IPSec settings from the designated sender
Task: provision of security relevant information

Type of information dependent on the accessing component
 ▶ Filtering rules
 → message dispatcher
 ▶ Group access policy
 → group management framework
 ▶ User access control, authentication data
 → key manager
Implementation Details

- Object oriented approach (C++)
- Open source operating system
 - Debian Linux
 - USAGI IPv6/IPSecurity kernel patch
- Development tools
 - GNU Tools (gcc, make, etc.)
 - Standard Template Library
 - Crypto++ Library
- Roadmap:
 - First prototype at the end of 2003
 - Simulation environment in 2004
Conclusion

- Scenario: Briefing sessions
- Security via IPSec architecture
- Setup via Multicast Internet Key Exchange