Swarm Intelligence: a New C2 Paradigm with an Application to the Control of Swarms of UAVs

Paolo Gaudiano
Benjamin Shargel
Eric Bonabeau

Bruce T. Clough

AFRL

Icosystem Corporation
Cambridge, MA

Control Sciences Division
Wright-Patterson AFB, OH
Overview

- UAVs: Definition and Examples
- Complex Systems and Swarm Intelligence
- Agent-Based Modeling
- ABM for the control of UAV Swarms
- Conclusions and future work
UAV: Definition

A powered, aerial vehicle that does not carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or recoverable, and can carry a lethal or non-lethal payload.

Source: DoD UAV Roadmap 2002
Many Types of UAV
Predator a lethal eye in the sky

WASHINGTON (CNN) -- The Predator drone was designed to gather intelligence on enemy forces without putting U.S. pilots at risk, but it's also found a role as a deadly offensive weapon in America's war on terrorism.

The small, unmanned aircraft has a range of about 460 miles and can stay in the air for up to 24 hours. It can beam real-time video to controllers on the ground without landing.

Predators have been used as reconnaissance planes since 1995. They were equipped with Hellfire anti-tank missiles in February 2001 -- just months before the September 11 attacks and the war in Afghanistan.
UAVs in the press (2)

From Doonesbury, July 2002 - © 2002 Garry Trudeau
Controlling Multiple UAVs

Problem Statement:

- Current UAVs require \textit{at least} one operator per UAV
- Technological advances make multi-UAV missions a near-term reality

\textit{Need control strategies that allow one operator to monitor/control multiple UAVs}
UAV Swarms as Complex Systems

A system is complex when:

1. It consists of a large number of elements
2. Significant interactions exist between elements
3. System exhibits emergent behavior: cannot predict system behavior from analysis of individual elements

Traditional “reductionist” approaches cannot cope with complex systems
The Icosystem Game
The Icosystem Game

Combinatorial business chemistry

AGGRESSORS - DEFENDERS
Rule: Defender

Each agent is the protector of a victim threatened by an aggressor. The agents move to position themselves between the victim and the aggressor.

Initially, each agent chooses, at random, a victim and an aggressor within its sight.

Pick new partners ShowHide relationships

Population : 50

Sight : 22

Simulation speed : 58

Copyright © 2001, Icosystem. Reproduction is not permitted without the written consent of Icosystem.
The Bad News

- Cannot predict **emergent behavior** from individual rules, even for such a “simple” complex system

- Individual participants are **unaware of overall system behavior**

- Small changes in rules lead to **dramatically different emergent behaviors**
The Good News

• It is possible to manipulate the behavior of a complex system by changing the rules that control individual elements

• We have developed a methodology to predict emergent behavior in complex systems using bottom-up simulation

Agent-Based Modeling!
Sample Complex Systems
Controlling Emergent Behavior

- How can we control emergence?
- How do we define individual behaviors and interactions to produce desired emergent patterns?

“Here is where we think the problem is..."
Agent-based modeling

- Shift viewpoint from system (centralized) to individual elements (de-centralized)
- Each agent follows local rules
- Behavior depends on interactions with other agents
- Overall system behavior emerges from local interactions
Example: Flow Simulations

- Traditional approach: mathematical description at macroscopic level.
- Example: fire diffusion in airplane cabin
Limitations of Traditional Approaches

- Previous simulation requires extensive computation
- Any modification (e.g., number of seats, load, initial conditions) requires new computation

Compare to agent-based approach
Agent-based Flow Simulations

- The Game
- Boids
- Traffic
Swarm Control of UAVs
Supported by Air Force Research Labs SBIR

- Create Agent-Based Model of UAV swarm
- Test various swarm control strategies for two mission types:
 - Search (area coverage)
 - Search, track and hit targets (SEAD)
- Measure performance systematically under various scenarios and conditions
The UAV Agent-Based Model

- Rectangular search area
- 3-D motion: thrust, pitch, yaw control
- GPS for localization
- Probabilistic ground/target sensor
- Circular collision sensor
- Pheromone emitter & probabilistic sensor
- Communications (noisy) to central control
- Stationary or moving targets
Simulation: Area Coverage/Search

Parameter Settings Panel

3-D View Panel

Area Coverage Grid
Navigation Strategies

- **Baseline**: fly straight until border is detected, turn to stay within search area
- **Random**: inject small “jitter” in heading
- **Repulsion**: avoid UAVs within radius r
- **Pheromone**: avoid areas already covered (by self or others)
- **Global Search**: favor navigation toward unexplored sectors

(Strategies can be combined arbitrarily)
Sample Coverage Patterns

Repulsion ($r=60$)

Pheromone
Systematic Evaluation

Goal: Understand impact of strategies, parameter choices and scenarios:
• 2000x2000 area, single UAV entry point
• 1000-sec simulation
• Swarm size (1-10, 10-110)
• Navigation strategies (individual & combo)

Metrics:
• Area coverage
• Swarm coverage efficiency
• Per-UAV coverage efficiency
Baseline Strategy

Per-UAV Efficiency of Swarm Strategies

Coverage per UAV

UAVs

Coverage

Base
Random Noise Strategy

Effect of random jitter is largely independent of swarm size
Pheromone Strategy

- Inspired by insect behavior
- Example of *stigmergy* (communication through the environment)
- Each UAV lays “pheromone”
- Each UAV can sense local pheromone trace
- Navigation favors uncovered areas (*Urea Strategy?*)
Pheromone strategy results

Efficiency of Swarm Strategies

Per-UAV Efficiency of Swarm Strategies

Pheromone strategy is more effective for larger swarms

Coverage per UAV

UAVs
Combining Strategies

Even a relatively simple, decentralized strategy can yield significant improvement in swarm efficiency!
Extending to Large Swarms

Swarm coverage efficiency

Coverage

UAVs

0.0%
5.0%
10.0%
15.0%
20.0%
25.0%
30.0%
35.0%

10 30 50 70 90 110
Additional Results: SEAD

- Allow targets to move randomly over search area
- Extend UAV behavior to track targets
- Modify simulator to carry out search and suppress missions
- Apply evolutionary computing to identify robust strategies, parameters
Sample SEAD Results

Cumulative Hit Probability

% Targets Hit

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4 8 16 32

UAVs

4 Targets
8 Targets
16 Targets

4 Targets
8 Targets
16 Targets
Future Work

- Systematic evaluation of other mission types, criteria, performance metrics
- Evolutionary design of control strategies
- Human-in-the-loop control
- Extend approach to *Unmanned Ground Vehicles* operating in urban scenario
- Commercialize these and other results