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Abstract

As aC2IScentre of expertise,DRDC Valcartier devotes part of its R&D program to the security
and reliability of military information systems. The MaliCOTS project (Malicious Code Detection
in COTSSoftware; 1997-2001) demonstrated that the risk associated with critical software could
be managed in large part by:

i Execution monitoring (e.g. surveillance of the programs and users’ behaviour),

ii Static verification of code prior to execution (e.g. control flow safety),

iii Certification at compile time (e.g. buffer overflows and type safety).

One of the main conclusions of the MaliCOTS project was that it is mandatory to manage
software risks early in the development cycle. This provides for better management at a lower
cost.

Since modelling aspects were not studied in that project, a new one called Secure OCL ex-
pression (SOCLe) was initiated to study the certification of Command and Control Information
System at the design phase. The primary objective is to manage as much of the risk as possi-
ble early in the software development cycle, thus avoiding subsequent software revisions that are
usually expensive and counter-productive.

In this article, the relevant research from the past five years is summarized and there is also a
description of the secure development cycle that is currently being prototyped.

List of Acronyms

CASE Computer-Aided Software Engineering

C2IS Command and Control Information System

COTS Commercial-off-the-shelf

DBC Design-by-contract

DRDC Defence Research and Development Canada

OCL Object Constraint Language

OMG Object Management Group

OS Operating System

SOCLe Secure OCL expression

UML Unified Modelling Language

1

mailto:robert.charpentier@drdc-rddc.gc.ca
mailto:martin.salois@drdc-rddc.gc.ca


1 Why Certify C2IS Software

Software quality standards have improved greatly over the past ten years. They now appear to be
adequate for most domestic and commercial uses. However, for critical systems such as flight-
control and military systems, reliability and security requirements are much more difficult to attain
because of the intrinsic complexity of combining independently-designed components. Indeed,
modern Command and Control Information System (C2IS) are typically assembled from software
components and sub-systems that are:

1. Commercially available and/or

2. Government-owned and/or

3. Obtained via collateral exchange programs and/or

4. Open-Source.

The quality of such programs varies considerably, as does their compatibility, leaving military
systems wide-open to reliability problems, security risks, and maintenance difficulties.

Many mass-market devices, not necessarily safety-critical in nature, are now carefully de-
bugged so as to avoid the dramatic impact of a mistake that may be discovered only after the
product has been distributed. The Intel Pentium floating-point division unit fiasco is a famous
example of an error that caused major financial losses (estimated at $500 million US [9].)

In the software industry, most editors are now acknowledging their responsibilities in terms
of software quality. However, there is still a considerable amount of work to be done! Flaws
are discovered every day and end-users are getting more and more upset by the burden of having
to apply multiple software updates and repetitive patches in order to maintain their applications
at an acceptable vulnerability level. According to Gartner [8], with the increase in electronic
commerce, the financial impact of poor system design and poor security practices will continue
to grow: "Through 2004, the economic value represented by cybercrimes will increase by 2 to 3
orders of magnitude — i.e. 1000% to 10, 000%"

Clearly, the motivation to have better quality software is very strong and should continue to
increase for both the military and civilian communities for the foreseeable future. To achieve this
increase in security and reliability, many aspects of system development need to be improved,
including development methodologies, programming languages (e.g. Java), and various protection
technologies (e.g.. firewalls, intrusion detection systems, etc.)

As a centre of expertise inC2IS, Defence Research and Development Canada (DRDC) Val-
cartier devotes part of its R&D program to the security and reliability of military information
systems. Emphasis is placed on the Centre’s spectrum of responsibilities, which include software
certification techniques and rigorous ways of specifying and managing security requirements for
C2IS.

The first part of this article presents an overview of these certification techniques, along with
a brief summary of the experimentation that was carried out regarding these concepts. The goal
was to highlight their strengths and weaknesses in the context of the detection of malicious code
in Commercial-off-the-shelf (COTS) software (the MaliCOTS project) .

The second part of this paper focusses on current research that aims at starting the security
process at the design phase in order to manage risk throughout the development chain. In the
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SOCLeproject, Unified Modelling Language (UML) diagrams are used to model aC2IS and
Object Constraint Language (OCL) is used as a property specification language. The constraints
are model-checked for conformity against a more universal security/reliability policy.

2 How is Software Certified

Traditionally, the risks associated with complex software systems have been mitigated by static
code analysis and execution monitoring of software packages prior to integration. In order to as-
sess the effectiveness of these well-known techniques for the detection of malicious code in the
context ofC2IS software, the four-year MaliCOTS project was initiated in 1997. It was discov-
ered that each technique has its own strengths and weaknesses and that they can be organized in
complementary manner. Three techniques were investigated and the following is a summary of the
conclusions.

2.1 Technique #1: Execution Monitoring

Execution monitoring examines the behaviour of the program while it is running. In the prototype,
called DaMon [6], this was achieved by inserting specialized drivers into the Operating System
(OS). These drivers control access to critical resources such as files, communications ports, the
Registry, and process creation/destruction.

Dynamic monitoring is a pragmatic approach that offers several short-term benefits, since it
uses all the information available during execution, including the user’s inputs and the network
transactions. However, although many variants are available, as mentioned in the state of the
art report [11], exhaustive and formal certification is rarely achievable. The main limitation is
associated with the difficulty of identifying a complex behaviour emerging from a long trail of
smallOStransactions. Also, monitoring is reactive in nature and a malicious program could deliver
its payload before it could be stopped.

Tests have shown that dynamic monitoring must be focussed on specific tasks for it to be usable
in practice. Not every task can be efficiently handled by execution surveillance. For example,
identifying dead code in software systems is not dynamic analysis’ strongest point. On the other
hand, surveillance of user behaviour, transactions with the network and monitoring of concurrent
processes appear to be natural application domains (if not the only way of managing such risk!)

2.2 Technique #2: Static Analysis of Code Prior to Execution

Static analysis of code is common in the world of program optimization and software analysis. It
consists in examining the code, perhaps in some abstract representation, without actually running
it. When the source code is not available (as is the case with much of theCOTSsoftware), the
certification must be done on the binary. This is extremely difficult, if not impossible. Interpreting
control flow graphs requires highly-skilled experts who will often encounter undecidable math-
ematical conditions. Copyright issues might also preclude the disassembling or decompiling of
executable code for analysis in some abstract representation.

Among the strengths of this technique, identification of dead code and hidden functionalities
(e.g. the MS Excel’97 flight simulator that has nothing to do with a spreadsheet program) has been
demonstrated in the past. More generally, static analysis has the ability to detect inappropriate
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logic by exploring all possible execution paths in a generic manner, as demonstrated by the Sam-
COTS static analyzer prototype [1]. A large number of commercial and research products (market
survey [12]) have also confirmed the great interest in program visualization and code understand-
ing.

Static analysis and execution monitoring are complementary techniques. They can be cascaded
to maximize their efficiency. However, both techniques require highly-skilled experts and a con-
siderable amount of time in order to perform a good analysis. In fact, it is often criticized as being
too time-consuming for practical purposes. In addition, such a manual certification is also prone
to errors as in any other human-driven activity.

In the context of the MaliCOTS project, it was observed that traditional techniques work well
when the code to be analyzed is rather small, for example, a virus or some embedded software for
microcontrollers. They are not magical solutions that will provide fast and highly-trustable certi-
fication of large applications such as those used inC2IS. They are difficult to maintain over the
life cycle of large software packages, especially if there is no access to the source code, since pe-
riodic upgrades must be re-certified. Still, static analysis and execution monitoring are commonly
used since they offer a realistic short-term solution to the management of the risk associated with
untrusted software. These general conclusions provided the principal motivation to explore more
automated techniques such as the certifying compiler, which is presented below.

2.3 Technique #3: Certification at Compile Time: An Emerging Technique for Automated
Certification

To accelerate and formalize the certification process, the concept of an intelligent compiler has
already shown great potential. The concept is described in detail in [5] and is illustrated in Figure1
(from [4].) Basically, a security policy is formulated and then compared with the code being
developed through a verifier that performs a rigorous code conformity check.

R&D on the detection of malicious code confirms that certifying compilers have the potential to
structure and normalize the integration of trusted components into critical systems. The principal
advantages of using an intelligent compiler include:

a Certification can be detailed and exhaustive even for very large software packages;

b Execution time will not be increased by the security mechanism (unlike the case of wrappers
and interceptors);

c Deployment can be rapid because no (or very little) manual certification is needed (unlike
static and dynamic analyses of pre-packaged software);

d With appropriate engineering, this approach can also facilitate other kinds of certification,
including interoperability compliance, reuse policy and maintainability/reliability specifica-
tions;

e Editors can deliver a trusted component without revealing the intellectual property inherent
in the code; and

f The concept of annotated components can be adapted to manage the risks associated with
mobile code (e.g. self descriptive applets).
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Figure 1: A certifying compiler

The main difficulties encountered with certifying compilers are associated with mathematical
complexity which grows rapidly with the size of the software component, sometimes to an un-
manageable level. A survey of research efforts around the world [10] indicates that a pragmatic
approach to deal with the certification complexity should be based on the modularization of soft-
ware. When such modules are assembled to form a large system, this should be associated with a
formal composition process that includes rigorous security management.

3 Key Lessons Learned from the MaliCOTS Project

As mentioned above, each technique has its own strengths and weaknesses and they are summa-
rized in Table1. The MaliCOTS project provided a better understanding of where and when spe-
cific tools should be used for a particular purpose. Table2 gives a brief overview of the prototype
tools that were developed to detect malicious code inCOTSsoftware.

Additionally, further general conclusions about software certification have been derived from
the MaliCOTS project. Key lessons learned were:

i Security management should begin as early as possible in the design phase of critical systems

(a) To modularize theC2ISwith respect to security enforcement

(b) To avoid retro-fitting security in "canned" systems

ii Security constraints should be expressed explicitly in theC2ISmodel

iii Preliminary certification for coherence and completeness before engaging in source-code
generation is highly desirable.
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Table 1: Basic Comparison of Certification Techniques

Technique: Good for: Limited by:

Execution
Monitoring

• Live access control

• Concurrent processes

• User surveillance

• Viruses and worms interceptor

• Covert channel detection

• Monitoring of temporary files

• Reactive in nature; may be
overridden by execution

• May slow down system response

• It is difficult to keep track of
complex behaviours

• Must be focussed to perform
efficiently

Static
Analysis

• Detection of dead code

• Control flow logic and slicing

• Data flow analysis

• Detection of hidden functionality

• Program visualization and
understanding

• Complexity grows rapidly with
software size

• Very difficult on binary executable
without source code

• Highly-skilled expertise mandatory

• Copyright may preclude analysis

• Obfuscators

• Some properties are unverifiable

Certifying
Compiler

• Memory safety

• Control flow safety

• Data flow analysis

• Type safety

• Mobile code risk management

• Novel and under-estimated
technique

• Certification complexity grows
rapidly with module size

• Security policy must be rigorously
expressed

• Some properties are unverifiable

Since most certification techniques that are applicable to source code lead to a rapid increase
in the certification complexity, it appears mandatory to modularize large systems into small com-
ponents that are independently certifiable. The composability of these modules must be examined
in order to make sure that a large system built from trusted components is still secure.

Also, an often forgotten requirement is that a security policy must be rigorously expressed to be
enforceable. It must be possible to express this policy at many levels of abstraction so as to cope
with the wide spectrum of security requirements. The granularity of security constraints ranges
from high-level rules (e.g. no information leakage), to low level ones (e.g. all temporary files must
be deleted on exiting a program). As stated above, security policies must be applicable to modular
software. Despite many research activities identified in a state-of-the-art paper [13], it appears that
software security modelling is lagging behind the development of certification tools.

In summary, security management must begin at the design stage so as to save time and money
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Table 2: MaliCOTS Prototypes

Technique: Prototype Tool: Key Concepts:

Execution
Monitoring DaMon

• Wrapping of theOS

• Applications require services through an instrumentedOS

– port surveillance (e.g. communication control)

– file monitoring (e.g. secrecy enforcement)

– process monitoring (e.g. prevent denial of service)

– OSconfiguration database (e.g. Registry in
Windows)

Static
Analysis SamCOTS

• Program translation into an abstract notation

• OSAPI checks (e.g. basicOSfunctions verification)

• Pattern recognition of complex malicious behaviour via
their generic description in Schneider-inspired automata

TALCC

• ANSI C certifying compiler

• Based on typed assembly language

• Safety annotations are compared with a security policy

• Model-checking hidden in an easy-to-use tool

Certifying
Compiler

JACC

• Java certifying compiler

• Based on an extension to the Java-type system

• Requires an augmented Java verifier to ensure memory,
control flow, and type safety

and to modularize largeC2IS in a structured manner. This will allow for the assembly of a large
system out of independently-certified modules. This is the focus of the current research, which is
described in the next section.

4 Current R&D Challenges: Modelling Secure Systems

UML is currently the prime notation forC2IS-modelling in Canada. It is also a de facto standard
notation in the software industry.UML has already been proven useful for documentation and
for communication between developers, etc.. In order to build on existing expertise and common
practice, it was decided to extendUML to include security constraints.
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4.1 Why Object Constraint Language (OCL)

In 1998,OCL already appeared to be a good approach [7] for increasing the preciseness and quality
of aC2ISmodel.

Object Constraint Language (OCL) is a notational language proposed by the Object Manage-
ment Group (OMG) to specify constraints (invariants, pre/post-conditions) over object models.
Three studies were carried out to confirm the potential ofOCL. First, Laurendeau et al. [3] inves-
tigated the technical foundations and confirmed the usefulness ofOCL in reducing ambiguities in
UML diagrams by specifying constraints such as pre-/post- conditions and invariants.

As a result of this, it was decided to evaluate further the cost and benefits of usingOCL in
the modelling ofC2IS. In 2000, aC2IS that had been modelled previously inUML in a DRDC
Valcartier project, was ‘enhanced’ withOCL constraints. Dessureault et al. [7] showed thatOCL
is not only useful in improving reliability, but it is also relatively inexpensive to include inUML
diagrams. It was estimated that the additional investment needed to includeOCL expressions
would be only about 10% to 15% if it were done while defining theUML diagrams ofC2IS.

The expressiveness ofOCL was then carefully examined in order to make sure that this notation
could express not only reliability constraints but also security constraints. In [14], the key issue was
analyzed and it confirmed thatOCL is a sustainable and efficient technology to improve reliability
and security inC2ISmodelling.

4.2 How UML/OCL Diagrams can be Certified

These positive evaluations ofOCL led to the creation of theSOCLeproject in 2002. The objective
is to demonstrate howC2IS certification can start at the design phase, usingUML diagrams to
model the system andOCL as a property specification language.

The technical approach involves two main steps [15]:

1. Translate security rules intoUML design models (viaOCL Constraints), and

2. Check for compliance (via model-checking ofOCL security constraints.)

In practice, the architect designs hisC2ISusingUML in the usual way. He makes his descrip-
tion as precisely as possible using state-charts, collaboration diagrams, class diagrams andOCL
constraints. While he is adding syntactic constructs to his description, the design-time verification
tool constructs the underlying model that is formally checked. The process is transparent to the
designer who requires only a basic awareness of it to do his work and the complexities of formal
methods are completely hidden from him.

Since restrictions inherent to graphical diagrams cannot cover the entire behaviour of the sys-
tem and since some properties cannot be verified until source code is written, it is not expected
that the whole risk can be manageable at the design phase. As previously mentioned, some types
of risk can be managed only at compile time or even during execution. However, useful results can
be obtained by certifying the model. For example:

• Notes of conformity for the managed risk at the model level;

• Source code and/or associated annotations for the risk that needs to be managed by the
certifying-compiler;
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• Indications of what should be monitored during execution; and

• Test sets for the residual risk that is unmanageable by other means.

Thus, as the information-processing system takes shape, the compliance certificate is enriched
by notes, which ultimately ensures the enforcement of a large part of the security policy in the
development process (from design to source code.) Also, this process provides a precise identifi-
cation of the residual risk that has not been managed. This residual risk can then be managed by
an execution monitor or guaranteed against by the use of exhaustive but targeted tests.

A rudimentary prototype was developed during the summer of 2002 at l’École Polytechnique
de Montréal. It confirmed the feasibility of model-checking abstractedUML/OCL diagrams [2]. A
thorough literature survey [16] also enumerates research activities from around the world on related
techniques. It provides a comprehensive overview of this field. For readers interested in seeing
some of thisUML/OCL syntax, Annex A presents theUML diagrams of aC2IScomponent that
was enriched withOCL constraints as part of an early evaluation ofOCL in theC2IScontext [7].

In parallel with theSOCLeproject, the feasibility of developing a complete set of secure design
patterns is currently being studied. This could greatly ease secure system development and could
be used as a case study for the certification prototype.

5 Discussion and Conclusions

Over the past decade, a great deal of progress has been made in the certification of critical systems.
Many large software editors are now making serious commitments toward the production of more
reliable and secure software. The impressive success of Open-Source software is largely a result
of the excellent reputation that these products have garnered in terms of quality and reliability.
It is expected that the need for secure and reliable software will continue to increase with the
proliferation of e-commerce and other applications requiring high-confidence software.

After five years of research in software certification, it appears mandatory to associate the
system design closely with the security specification. Security enforcement must start at the design
phase not only to save time and money but also to organize its implementation among the various
engines involved in the process, each with its own strengths and weaknesses.

It is quite likely that the way in whichC2IS are modularized will have to evolve with the
demands for managing the intrinsic and extrinsic security of each component. This is the key
feature to control the state-space growth that has been the traditional pitfall of formal methods for
the past twenty years.
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Annex A

C2IS Design With OCL Constraints1

In order to evaluate the feasibility of integratingOCL into each phase of the software lifecycle, a
small-scale study was performed in 1999-2000. The Case_Atti (Concept Analysis and Simulation
Environment for Automated Target Tracking and Identification) test-bed was selected as a repre-
sentative example ofC2ISand it is presented in the first part of this Annex. The results of applying
OCL to the Case_Atti test-bed are given below in tabular form.

A.1 Case_Atti Test-bed

The software system Case_Atti was largely designed and modelled usingUML notation. Also
there is a one-to-one relationship with the code for many classes of the model. A large part of
Case_Atti was developed using theCASE-tool Rational Rose. Finally, Case_Atti is a system
which is still in use atDRDC Valcartier. This justifies the choice of a sample of Case_Atti as the
subject for theOCL test-bed.

A.1.1 Scope of the Demonstration

The objective of the test-bed was to validate the applicability of a Design-by-contract (DBC) ap-
proach based onOCL to a typicalC2IS. This meant that it was necessary to specify the subject
model, to implementDBC as it should have been initially implemented, to integrateOCL con-
straints derived from contracts into the model and finally to propagate the constraints into the
actual code.

The model of the Case_Atti data filters was identified as a good candidate for the test-bed.
More precisely, the class IMMFilterClass and the classes it interacts with were analyzed to apply
DBC and to integrateOCL constraints. Figure2 shows the model of the class IMMFilterClass
and its main relationships with its surrounding classes. The class IMMFilterClass and its sur-
rounding classes are used to model an approach to handle target manoeuvres within single- and
multiple-target-tracking systems. More precisely, the IMMFilterClass models the IMM (Interact-
ing Multiple Model) filter. In the multiple-model approach, it is assumed that the system state
will adhere to one of a finite number of models or modes. Each model is characterized by its own
particular parameters.

The class IMMFilterClass is a good candidate for applyingDBC andOCL since it has to inter-
act with many other classes in order to fulfil the expected services for which it was designed. There
is multiple inheritance between the class IMMFilterClass and the classes IMMFilterInitClass and
the FilterClass. The class IMMFilterClass has to interact with the aggregates FilterListClass and
LikelihoodFunctionEvaluatorClass to produce the majority of the algorithms within the IMM fil-
ter model. The class IMMFilterClass also has many other interactions with the classes it depends
upon, namely the MatrixArrayByValClass, the SystemTrackIntIndexListClass, the ResidualList-
Class and the ResidualClass.

1Excerpt adapted from a contract report by Dessureault and Caron [7]
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Figure 2: Model of the Class IMMFilterClass

To give a good idea of the program size required to effect the modelling of the IMM filter,
Table3 shows the number of lines of C++ code (including the comments) for the class IMMFilter-
Class and its surrounding classes. It is to be noted that the “list” classes like the ResidualListClass
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Table 3: Number of Lines of Code for the classes of the IMM Filter Model

Class of the IMM Filter Model Number of Lines of Code

IMMFilterClass 1114
FilterClass 223
IMMFilterInitClass 213
FilterListClass 119
LikelihoodFunctionEvaluatorClass 290
StatisticalDistanceEvaluatorClass 201
MatrixArrayByValClass 83
SystemTrackIntIndexedListClass 118
ResidualListClass 118
ResidualClass 229
ListClass 1458

Total for all classes of the IMM Filter Model 4166

are “parameterized” classes that perform the instantiation of the template class ListClass. It should
also be noted that the derived classes GPB1MMFilterClass and GPB2MMFilterClass were not
considered as part of the test-bed.

A.1.2 Derived Contracts & Constraints

As mentioned above, one of the first major tasks of the test-bed was to identifyOCL Constraints
related to the class IMMFilterClass which was chosen as the scope for the test-bed.

TheseOCL constraints are referred to as "derived" constraints because they were obtained a
posteriori by analyzing the existing code (reverse-engineering) and also from discussions with the
individuals involved in the initial creation.

Above all, constraints are obtained by answering two questions:

1. what are the rules that ensure the integrity of an object at all times? and

2. what are the conditions which control the execution of an object’s operation?

Apart from stating them, no formal approach is required to answer the first question (object’s
integrity rules). The second question, though, must be addressed using a formal approach such as
DBC. By describing an object’s collaboration with other objects within contracts, one can identify
the responsibilities of each party and therefore derive the corresponding constraints.

Table4 presents a representative set of contracts where the class IMMFilterClass is involved.
Since the process was partly performed by reverse-engineering, each public method was consid-
ered as a potential contract with the external world and the name of the operation is shown in
parentheses.

Table5 presents the list of the constraints applied to the class (or parts of) IMMFilterClass.
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Table 4: Representative Set of Contracts Where IMMFilterClass is Involved

Client Object Supplier Object Contract (Operation) Client Supplier
Create a new SystemTrack for 
a contact 
(create_SystemTrack())

Obligations
ü Provide a contact which 

cannot be assigned to any 
other SystemTrack.

Benefits
Ø Obtain a new 

SystemTrack.

Obligations
ü Create and return a new 

SystemTrack that has no 
speed value and contains 
a single contact, the one 
provided by the client. 
This SystemTrack is 
called a “no-speed”
SystemTrack.

Benefits
Ø No need to create a 

SystemTrack if no contact 
provided.

FilterManager IMMFilterClass

Update a SystemTrack with a 
new contact 
(create_SystemTrackUpdateRe
port() #1)

Obligations
ü Provide a contact 
ü Provide a VALID and 

COMPATIBLE
SystemTrack

ü VALID systemTrack 
means that the type of the
SystemTrack provided 
must be one of the 
following:
MultipleXYVxVySystem
TrackClass OR 
XYSystemTrackClass

ü COMPATIBLE
SystemTrack means that 
the number of unitary 
tracks contained in the 
SystemTrack is equal to 
the number of simple 
filters contained in this
instance of the 
IMMFilterClass.

Benefits
Ø Obtain a regular 

SystemTrack which has 
been updated and has a 
speed calculated for the 
assigned contact.

Obligations
ü Update the SystemTrack 

with the contact provided 
by the client.

ü Calculate the speed of the 
SystemTrack.

ü Return a regular 
SystemTrack

Benefits
Ø No need to update 

SystemTrack if no contact 
provided.

Ø No need to update 
SystemTrack if no 
SystemTrack provided or 
if the SystemTrack is not 
valid or compatible.

IMMFilterClass
(*)

IMMFilterClass
(*)

Update a “no speed” 
SystemTrack with a new 
contact (initialize())

Obligations
ü Provide a contact 
ü Provide a “no speed” 

Valid and Compatible 
SystemTrack

Benefits
Ø Obtain a regular 

SystemTrack which has 
been updated and has a 
speed calculated for the 
assigned contact.

Obligations
ü Update the “no speed” 

SystemTrack with the 
contact provided by the 
client

ü Calculate the speed of the 
SystemTrack.

ü Return a SystemTrack. 
Benefits
Ø No need to update the 

SystemTrack if no contact 
provided.

Ø No need to update 
SystemTrack if no 
SystemTrack provided , 
or if the SystemTrack is 
not valid or compatible.
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Table4: Representative Set of Contracts Where IMMFilterClass is Involved (continued)

Client Object Supplier Object Contract (Operation) Client Supplier
Update a regular SystemTrack 
with a new contact. 
(create_SystemTrackUpdateRe
port() #2)

Obligations
ü Provide a contact 
ü Provide a Valid and 

Compatible regular 
SystemTrack.

ü Sum of mo de
probabilities (MU) of the 
SystemTrack  must be 
equal to 1

Benefits
Ø Obtain a regular 

SystemTrack which has 
been updated and has a 
speed re-calculated for 
the assigned contact.

Obligations
ü Update the regular 

SystemTrack with the 
contact provided by the 
client

ü Calculate the speed of the 
SystemTrack.

ü Return a regular 
SystemTrack

Benefits
Ø No need to update 

SystemTrack if no contact 
provided.

Ø No need to update 
SystemTrack if no 
SystemTrack provided  or 
if the SystemTrack is not 
valid or compatible.

Ø No need to update the 
SystemTrack if the sum 
of mode probabilities not 
equal to 1.

(*).  Usually, a contract involves different parties since its purpose is to describe interactions between distinct objects. In this special 
case, Client and Supplier are the same because it was decided to take advantage of the process to further document the 
IMMFilterClass operations.
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Table 5: List of Constraints Applied to the Class IMMFilterClass

ConstraintsOperation
Type1 Description OCL Expression2 C++ Assert Expression
Inv Filter list contains at least 1 filter. self.FilterList.get_Collection(

)->size >= 1
assert(FilterList.get_Cardinality()
>= 1);

Inv All filters contained in the filter 
list are of the same type.  To 
simplify the test, all filters should 
have the same type as the first in 
the collection.

self.FilterList.get_Collection(
)->forAll (oclType = 
self.FilterList.get_Collection(
)->first)

FilterIter.first();  First_Type = 
FilterIter.get_Current()-
>get_Type();  for(FilterIter.next(); 
FilterIter.is_NotAtEnd();
FilterIter.next())
{assert(FilterIter.get_Current()-
>get_Type() = = First_Type);}

Inv Type of all filters contained in the 
filter list are of simple type 
(StandardKalmanFilterClass or 
ConvertedMeasurementKalmanFi
lterClass)

self.FilterList.get_Collection(
)->forAll ((oclType.name = 
‘StandardKalmanFilterClass’
) or (oclType.name = 
‘ConvertedMeasurementKal
manFilterClass’))

for(FilterIter.first();
FilterIter.is_NotAtEnd();
FilterIter.next())
{assert(FilterIter.get_Current-
>get_Type() = = 
STANDARD_KALMAN_FILTER
_TYPE || FilterIter.get_Current-
>get_Type() = = 
CONVERTED_KALMAN_FILTE
R_TYPE); }

Inv3 For all lines of  Pij Matrix, the 
sum of the column values is 
greater  than 0

self.ModeTransitionProbabili
ties.get_Lines()->forAll( line: 
Collection | line->sum >0)

for(i=1; i<=Pij.get_LineDim(); i++) 
{sum = 0.; for(j=1; 
j<=Pij.get_ColumnDim(); j++) 
{sum = sum + 
Pij(i,j);}assert(sum>0.);}

(not applicable  for 
Invariant)

Inv3 For all columns of  Pij Matrix, 
the sum of the line values is 
greater  than 0

self.ModeTransitionProbabili
ties.get_Columns()->forAll(
column: Collection | column -
>sum >0)

for(j=1; j<=Pij.get_ColumnDim(); 
j++) {sum = 0.; for(i=1; 
i<=Pij.get_LineDim(); i++) {sum = 
sum + Pij(i,j);}assert(sum>0.);}

Pre Contact provided is not  Null InpData.notNil assert(&InpData != NULL);create_SystemTrack(
InpData:InputDataElement
Class&,
SystemTrackID:SystemTra
ckIDClass,...)
:SystemTrackClass *

Post SystemTrack created and 
returned has no speed.

SystemTrack.oclType.name
= ‘XYSystemTrackClass’

assert(SystemTrack->get_Type() = 
= XY_TRACK_TYPE);

Pre Contact provided is not  Null InpData.notNil assert(&InpData != NULL);
Pre The type (class) of the

SystemTrack provided can only 
be one of these 2 types: 
MultipleXYVxVySystemTrackCl
ass OR XYSystemTrackClass

(SystemTrack.oclType.name
=
‘MultipleXYVxVySystemTra
ckClass’) or
(SystemTrack.oclType.name
= ‘XYSystemTrack’)

assert(SysTrack->get_Type() = = 
MULTIPLE_XY_VX_VY_TRAC
K_TYPE || SysTrack->get_Type() = 
= XY_TRACK_TYPE);

Pre Number of unitary tracks in the 
SystemTrack is equal to the 
number of simple filters 
contained in this IMMFilter

self.FilterList.get_Collection(
)->size = 
SysTrack.SYVxVySystemTr
ackList->get_Collection()-
>size

assert((MultipleXYVxVySystemTr
ackClass &)SysTrack-
>get_NumberOfTracks() = = 
FilterList.get_Cardinality());

create_SystemTrackUpd
ateReport(
InpData:InputDataElement
Class&,
SysTrack:SystemTrackCla
ss&,
TimeAlig:TimeAlignerPar
ameterClass&,
SystemTrackUpdateReport
Mask:int,
SystemTrackID:SystemTra
ckIDClass,
ToInformationBag:NonCo
mputationPurposeInformati
onBagClass *)
:SystemTrackUpdateRepor
tClass *

Post SystemTrack updated and 
returned must have a speed.

SystemTrack.oclType.name
<> ‘XYSystemTrackClass’

assert(SystemTrack->get_Type() != 
XY_TRACK_TYPE);

Pre Contact provided is not Null InpData.notNil assert(&InpData != NULL);
Pre The type (class) of the

SystemTrack provided can only 
be one of these 2 types: 
MultipleXYVxVySystemTrackCl
ass OR XYSystemTrackClass

(SystemTrack.oclType.name
=
‘MultipleXYVxVySystemTra
ckClass’) or
(SystemTrack.oclType.name
= ‘XYSystemTrack’)

assert(SysTrack->get_Type() = = 
MULTIPLE_XY_VX_VY_TRAC
K_TYPE || SysTrack->get_Type() = 
= XY_TRACK_TYPE);

Pre Number of unitary tracks in the 
SystemTrack is equal to the 
number of simple filters 
contained in this IMMFilter

self.FilterList.get_Collection(
)->size = 
SysTrack.SYVxVySystemTr
ackList->get_Collection()-
>size

assert((MultipleXYVxVySystemTr
ackClass &)SysTrack-
>get_NumberOfTracks() = =
FilterList.get_Cardinality());

Pre SystemTrack provided has no 
speed.

SystemTrack.oclType.name
= ‘XYSystemTrackClass’

assert(SystemTrack->get_Type() = 
= XY_TRACK_TYPE);

initialize(
InpData:InputDataElement
Class&,
XYSysTrack:XYSystemTr
ackClass&,
TimeAlig:TimeAlignerPar
ameterClass&,
SystemTrackUpdateReport
Mask:int,
SystemTrackID:SystemTra
ckIDClass,
ToInformationBag:NonCo
mputationPurposeInformati
onBagClass*)
:SystemTrackUpdateRepor
tClass *

Post SystemTrack updated and 
returned must have a speed.

SystemTrack.oclType.name
<> ‘XYSystemTrackClass’

assert(SystemTrack->get_Type() != 
XY_TRACK_TYPE);
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Table5: List of Constraints Applied to the Class IMMFilterClass (continued)

ConstraintsOperation
Type1 Description OCL Expression2 C++ Assert Expression
Pre Contact provided is not  Null InpData.notNil assert(&InpData != NULL);
Pre The type (class) of the

SystemTrack provided can only 
be one of these 2 types: 
MultipleXYVxVySystemTrackCl
ass OR XYSystemTrackClass

(SystemTrack.oclType.name
=
‘MultipleXYVxVySystemTra
ckClass’) or
(SystemTrack.oclType.name
= ‘XYSystemTrack’)

assert(SysTrack->get_Type() = = 
MULTIPLE_XY_VX_VY_TRAC
K_TYPE || SysTrack->get_Type() = 
= XY_TRACK_TYPE);

Pre Number of unitary tracks in the 
SystemTrack is equalto the 
number of simple filters 
contained in this IMMFilter

self.FilterList.get_Collection(
)->size = 
SysTrack.SYVxVySystemTr
ackList->get_Collection()-
>size

assert((MultipleXYVxVySystemTr
ackClass &)SysTrack-
>get_NumberOfTracks() = = 
FilterList.get_Cardinality());

Pre Sum of all MUi (Mode 
probabilities) of the SystemTrack 
must be equal to 1

(SystemTrack.get_MMFilter
Allocation().get_ModeProbab
ilities()->sum) = 1

assert(sum = 0.;  for(i=1; 
i<=MUi.get_Cardinality(); i++) 
{sum = sum + MUi(i);} assert(i = = 
1.);

create_SystemTrackUpd
ateReport(
InpData:InputDataElement
Class&,
MultipleXYVxVySystemT
rack:MultipleXYVxVySyst
emTrackClass&,
TimeAlig:TimeAlignerPar
ameterClass&,
SystemTrackUpdateReport
Mask:int,
SystemTrackID:SystemTra
ckIDClass,
ToInformationBag:NonCo
mputationPurposeInformati
onBagClass*)
:SystemTrackUpdateRepor
tClass *

Post SystemTrack updated and 
returned must have a speed.

SystemTrack.oclType.name
<> ‘XYSystemTrackClass’

assert(SystemTrack->get_Type() != 
XY_TRACK_TYPE);

(1) Types are: invariant (Inv), pre -conditions (Pre) and post-conditions (Post).
(2) They are also presented in OCL Constraints file.
(3) These invariants are inherited from IMMFilterInitClass.
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