From Garage-Band to World Tour: Technical, Security, and Scalability Challenges of Migrating a Web-Based Program Management Tool from Workgroup-Level to Enterprise-Class in 24 Months

ICCRTS - Sept 2004

Helen Rico & Fred Hall
Air Force Research Laboratory
Information Directorate
Rome, NY

Mike Maciolek
Northrop Grumman IT
Rome, NY
Presentation Outline

- Introduction
- Evolution of the Web-Based Architecture
- Security Considerations
- Application Scalability
- Conclusion
Information Directorate Background

• Headquartered in Rome, NY

• Formerly Rome Air Development Center, then Rome Laboratory, before becoming part of AFRL

• Mission:

The advancement and application of Information Systems Science and Technology to meet Air Force unique requirements for Information Dominance and its transition to aerospace systems to meet warfighter needs.

• Our Business is Science
Introduction

• There was a need to:
 – Report information accurately and timely without retyping
 – Electronically create Laboratory Management Review forms
 – Have engineers and scientists return to R&D tasks in lieu of admin type duties

• The goal is to make reporting quick and easy for the Program Manager (scientists/engineers) and provide secure access to needed effort or program information.
Introduction (cont’d)

• Web-Based Program Management Tool “JIFFY”
• Accessible via any Web browser capable of 128-bit encryption
• Pulls Data from AF Standard Systems
• Accessible by non-.mil Domains
• Two and one-half year transition from Workgroup to Enterprise Level
• Introduction

• Evolution of the Web-Based Architecture

• Security Considerations

• Application Scalability

• Conclusion
Architecture Basics

Two Main Pieces

- Web Server
 - Handles user input and Graphical Display of information

- Database Server
 - Houses information gathered from AF Standard Systems and e-documents related to research programs
Workgroup Architecture

- Served a Handful of Users
- Entirely Windows-Based
 - IIS Web Server
 - MS Access Database
 - Same Physical Computer
 - e-documents stored in Windows File System
- Outside Base Firewall to Facilitate .com/.edu Access
- Development Staff: Two Part-Time Engineer/Programmers, One Full-Time Programmer
Network Cloud at Local TDs

Internet to include JIFFY Users outside .mil, and .gov

IIS & MS Access DB Server (Jiffy)

Hub

Switch

Firewall

Hub

Switched Device

Jiffy Client

Jiffy Client

Jiffy Client

Jiffy Client

TD Web Site

JIFFY Database

TD "User"

Network Cloud at Local TDs

Workgroup Architecture (cont’d)
Workgroup Architecture (cont’d)

• Advantages
 – Good Performance
 – Low Maintenance Costs
 – Quick Development Cycle

• Disadvantages
 – Security Concerns
 • Computer Not Protected by Base Firewall
 • IIS, and MS Access vulnerabilities
 • Windows File System storage of e-documents
 – Not Scalable
Directorate-Wide Architecture

- Few Hundred Users
- Windows-Based IIS Web Server
 - Also used for storage of e-documents
- Sun Solaris Oracle Database Server
- Inside Base Firewall to Enhance Security
 - Firewall Rules Used to Facilitate .com/.edu Access
- Development Staff:
 - Six Programmers
 - Two Part-Time Program Managers
 - One Application Support Person
- Nine Month Development Timeframe
Directorate-Wide Architecture (cont’d)

Internet to include non-local TDs and JIFFY Users outside .mil, and .gov

Network Cloud at Local TDs

Jiffy Client

Jiffy Client

Router

Hub

Switch

Firewall

Hub

Switched Device

Production Subnet

JIFFY Database

TD "User"

IIS Server (Jiffy)

JIFFY DB (Oracle Server)
Directorate-Wide Architecture (cont’d)

• **Advantages**
 - Higher Level of Security
 - More Robust and Scalable
 - Quick Development Cycle

• **Disadvantages**
 - Security Concerns
 • Windows File System storage of e-documents
 - Slight Performance Degradation
 • Initially Was Large (will be discussed later)
Enterprise-Wide Architecture

- Few Thousand Users Geographically-Dispersed across CONUS
- Windows-Based IIS Web Servers
 - On separate Firewall “leg” (Extranet)
 - Three Physical Servers to Share Load
- Sun Solaris Oracle Database Server
 - e-documents stored in the database
- Firewall Rules Used to Facilitate .com/.edu Access
• Development Staff:
 - Nine Programmers
 - Two S/W Testers
 - QA Person
 - Part-Time S/W Security Person
 - Program and Deputy Program Managers
 - Two Application Support People
 - Short-Term Paid Consultant

• 11 Month Development Timeframe
Enterprise-Wide Architecture (cont’d)

Internet to include non-local TDs and JIFFY Users outside .mil, and .gov

Router

Hub

Switch

Firewall

Switched Device

IIS Server (Jiffy)

JIFFY Database

TD1 "User"

TD2 "User"

TD3 "User"

TDx "User"

Network Cloud at Local TDs

Jiffy Client

Jiffy Client

Jiffy Client

TDx Web Site

TD3 Web Site

TD2 Web Site

TD1 Web Site

Jiffy Client

Jiffy Client

Jiffy Client
• Advantages
 – Higher Level of Security
 – More Robust and Scalable
 – Performance Improved

• Disadvantages
 – Longer Development Cycles
 – Higher Maintenance Requirements
• Introduction
• Evolution of the Web-Based Architecture
• Security Considerations
• Application Scalability
• Conclusion
Security Considerations

• Server Access

• Application Access

• User Roles and Permissions

• Traceability
Security Considerations (cont’d)

- **Server Access**
 - Contractor Access to Their Program Info is Crucial Feature
 - Requires .com/.edu Access to Server
 - DMZ (Extranet) Established to Facilitate Secure non-.mil Domain Access
 - Anti-Hacking Measures Incorporated Against; SQL Injection, Anonymous File System Access, Undesired Execute Privileges, URL Hijacking
 - e-documents Moved to Database Diminishes Exposure
Security Considerations (cont’d)

• Application Access
 – Trusted-Agent Account Nomination Process
 – Must Be US Citizen or I-551 “Green Card” Holder

• User Permissions
 – Role-Based Permissions
 – Row-Level Data Security
Security Considerations (cont’d)

• Traceability
 – Track User Activity in Critical Application Areas
 – Track Data Changes in Critical Application Areas
 – Web Server Logs Track User Activity Related to File Access
 – e-documents Moved to Database Diminishes Exposure
 – Allows Post-Mortem Analysis on Hacks
 – Assists in Debugging and Help-Desk Problem Resolution
Presentation Outline

• Introduction
• Evolution of the Web-Based Architecture
• Security Considerations
 • Application Scalability
• Conclusion
Application Scalability

- Performance Issues
- Database Conversion
- Design Testing
- Continuing Improvements
Application Scalability (cont’d)

• Application Performance
 – Response Time
 • Time for Web Server to Return Request
 • Average Number of Requests Served per Second
 – Concurrent Users
 • Number of Simultaneous Users that can Access a System
 • Normal Use Testing
 • Load Testing
 – Problem Areas
 • Early Development not Geared Toward Enterprise Scalability
 • Migration Time Constraints Led to Trade-offs
Application Scalability (cont’d)

![Bar chart showing max concurrent users and avg requests per sec for Workgroup Level and Enterprise Level.]

- Max Concurrent Users
- Avg Requests Per Sec

Legend:
- Workgroup Level
- Enterprise Level
Application Scalability (cont’d)

• Database Conversion
 – Interface Decisions
 • First Choice – MS Generic ODBC – poor performance
 • Moved to Oracle OO4O – significant performance gains
 – Stored Procedures
 • Moved Database Access Logic Into Stored Procedures
 • Consolidate Related Activities into APIs
 – Helps Developers
 – Allows Data Feeds to Properly Interact with System Logic
 • Use Native Database Routines for Speed and Functionality
Application Scalability (cont’d)

• Design Testing
 – VBScript Classes for Encapsulation
 • Early Development Decision to Encapsulate DB Access Logic in VBScript Classes
 • Poor Performance but Easily Maintainable
 – Profiling Components
 • Ported VBScript Classes to COM Classes
 – Compiled Executables
 – Superior Logging Capabilities
 – Helps Determine Data Access Bottlenecks
 – Automated Testing
 • Reliability and Regression Tests Developed
 • Load Tests Conducted for Performance Measurement
Continuing Improvements

% of Total Database Access

- NavigatePrograms.asp: 31%
- Projects.asp: 27%
- login2.asp: 7%
- login.asp: 14%
- Remaining DB Access Files: 21%
• Continuing Improvements
 – Make Improvements Based on Application Profiling
 – Eye on Performance and Security
Conclusions

• Took Application from Workgroup to Enterprise in 24 Months

• Meets the Needs of the Diverse User Community

• Providing Help Desk and Hands-On Training is Crucial to Acceptance

• Well-Positioned for Long Life in the Enterprise

• Lessons Learned Applicable to any Web-based Application Development Effort
Comments/Questions?