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Preface

Experimentation is the lynch pin in the DoD’s
strategy for transformation. Without a properly

focused, well-balanced, rigorously designed, and
expertly conducted program of experimentation,
the DoD will not be able to take full advantage of
the opportunities that Information Age concepts
and technologies offer.

Therefore, experimentation needs to become a
new DoD core competency and assume its rightful
place along side of our already world-class training
and exercise capabilities. In fact, as we gain
experience and acquire expertise with the design
and conduct of experiments and focused
experimentation campaigns, I expect that the way
in which we think about and conduct training and
exercises will become a coherent continuum within
the overall process of coevolving new mission
capability packages.

This Code of Best Practice was developed to (1)
accelerate the process of our becoming more aware
of the issues involved in planning, designing, and
conducting experiments and using experiment
results, and (2) provide support to individuals
and organizations engaged in a variety of
experimentation activities in support of DoD
transformation.

This initial edition of the Code of Best Practice will
evolve over time as we gain more experience and
incorporate that experience into new versions of the



xii

Code. We are interested in learning about your
reactions to this Code, your suggestions for
improving the Code, and your experiences with
experimentation. For this purpose, a form has been
provided in the back of the Code for you.



1

CHAPTER 1

Introduction

Why DoD Experiments?

Experiments of various kinds have begun to
proliferate throughout the Department of

Defense (DoD) as interest in transforming the
defense capabilities of the United States has
grown. DoD transformation is motivated by a
recogn i t ion  tha t  (1 )  the  na t iona l  secur i t y
env i ronment  o f  the  21 s t cen tu ry  w i l l  be
significantly different and as a consequence, the
roles and missions the nation will call upon the
DoD to undertake will require new competencies
and capabilities, (2) Information Age concepts
and  techno log ies  p rov ide  unpara l le led
oppor tun i t ies  to  deve lop and employ  new
operational concepts that promise to dramatically
enhance competitive advantage, and (3) the
DoD’s business processes will need to adapt to
provide the flexibility and speed necessary to
keep pace with the rapid changes in both our
na t iona l  secur i t y  and  in fo rmat ion - re la ted
technologies, as well  as the organizational
adaptations associated with these advances.

CCRP Publications
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Need For a Code of Best
Practice

There is growing concern that many of the
activities labeled experiments being conducted
by the DoD have been less valuable than they
could have been. That is, their contributions to
DoD s t ra teg ies  and  dec is ions ,  to  the
development of mission capability packages
(MCPs), and to the body of knowledge in general
have been limited by the manner in which they
have been conceived and conducted. Given the
prominent ro le that  both jo int  and Service
exper imenta t ion  need  to  p lay  in  the
transformation of the DoD, it seems reasonable
to ask if we can do better. We believe that the
answer is a resounding “yes.”

This Code of Best Practice (COBP) is intended
to (1) increase awareness and understanding of
the different types of experimentation activities
that the DoD needs to employ in order to inform
the transformation, (2) articulate a useful set of
organizing principles for the design and conduct
of experiments and experimentation campaigns,
(3) provide both producers of experiments and
consumers of experimentation results with “best
practice” and lessons learned, (4) provide future
experimenters with a firm foundation upon which
to build, and (5) promote a degree of scientific
r igor  and pro fess iona l ism in  the DoD
experimentation process.
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Scope and Focus

This COBP presents a philosophy and broad set
of guidelines to be considered by professionals
responsib le for  p lanning and conduct ing
experiments within the DoD, and by policy makers
who must judge the validity of experimentation
insights and incorporate them into defense policy
and investment decisions.

The DoD transformation has three dimensions:
what we do; how we do it; and how we provision
and prepare. Experimentation activities are and
w i l l  be  f ocused  on  each  o f  t hese  th ree
dimensions. This COBP is intended to apply
across all three dimensions, but particularly
upon the second of these dimensions – how we
do it – and uses the precepts and hypotheses
of Network Centric Warfare (NCW) to explore
each  o f  t he  face ts  o f  expe r imen ta t i on .
Additionally, the Code presents examples and
discussions that highlight why adherence to
sound experimentation principles is important.

Organization of the Code

To effectively illuminate the many aspects and
stages of experimentation, this Code of Best
Practice proceeds from broad to specific topics, as
well as studying the stages of experimentation as
they occur chronologically.

Chapter 2 briefly discusses the need for a DoD
transformation in the context of the military and
political agendas at the time of this writing. To support
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transformation efforts, the need for superior
experimentation techniques and processes are
introduced. Chapter 3 provides a definition and
overview of experimentation, both as a general
concept and a DoD process. The three uses of
experimentation (discovery, hypothesis testing, and
demonstration) are defined and differentiated by their
roles within the DoD.

Chapter 4 explains the need and purpose for
experimentation campaigns, as opposed to focusing
only on individual experiments. Since the purpose
of any experiment should be to increase or generate
useful knowledge, it must also be the purpose of
the experiment to ensure the validity of that
knowledge. Because no individual experiment,
regardless of preparation and execution, is immune
from human error or the effects of unforeseeable
variables, multiple experiments must be conducted
to verify results.

In Chapter 5, the anatomy of an experiment is broken
down into phases, stages, and cycles of interaction.
By understanding the purpose of each stage of the
experiment (and its relationships to other stages),
the experimentation team can conduct a more
profitable experiment through proper preparation,
execution, feedback, and analysis. An incomplete
execution of the experimentation process can only
result in an incomplete experiment with weak
products. Experimentation formulation is discussed
in Chapter 6. This begins with a discussion of how
to formulate an experimentation issue and proceeds
to a short discussion of specific experimentation
design considerations.
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Chapter 7, Metrics and Measures, examines the
need for generating and specifying the metrics and
measures to be used in the data collection process,
including the need to ensure that team members
use identical definitions of terms and metrics.
Chapter 8 discusses the importance of properly
designing and employing a set of scenarios1 that
provide an opportunity to observe a range of values
for the variables of interest.

Chapter 9 discusses the importance of developing
and implementing data analysis and data collection
plans, both before and during the conduct of the
experiment to ensure that all needed data are
properly identified, collected, and archived, and that
they remain available for future use. The actual
conduct and execution of the experiment is reviewed
in Chapter 10.

The generation of a set of products (as discussed
in Chapter 11) is crucial to the dissemination of the
experimentation results to the sponsors and the
research community. Chapter 12 discusses the
uses, benefits, and limitations of modeling and
simulation as a substitute for empirical data
collection. Chapter 13 concludes this Code with a
discussion of the most common failures and
obstacles to successful experimentation.

1The American use of the word “scenario” is interchangeable
with the British “usecase.”

CCRP Publications
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CHAPTER 2

Transformation
and

Experimentation

Transformation and NCW

Our transformational challenge is clear. In the
words of the President, “We must build forces

that draw upon the revolutionary advances in the
technology of war…one that relies more heavily on
stealth, precision, weaponry, and information
technologies” (emphasis added). Information
technologies have proven to be revolutionary not only
in the nature of the capabilities being developed in
the “Information Domain”1 and the pace of these
advances, but also in promoting discontinuous
changes in the way individuals and organizations
create effects, accomplish their tasks, and realize
their objectives. The DoD’s Network Centric Warfare
Report to Congress2 defines the connection between
DoD Transformation and Network Centric Warfare:
“Network Centric Warfare (NCW) is no less than the
embodiment of an Information Age transformation of
the DoD. It involves a new way of thinking about how
we accomplish our missions, how we organize and

CCRP Publications
To view endnote references, click your mouse on the number marker to take you directly to correlating reference.
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interrelate, and how we acquire and field the systems
that support us… It will involve ways of operating
that have yet to be conceived, and will employ
technologies yet to be invented... This view of the
future is supported by accumulating evidence from
a wide variety of experiments, exercises, simulations,
and analyses.”3

NCW and Experimentation

The report goes on to explain NCW in terms of a set
of tenets that are, in essence, a set of linkage
hypotheses that provide structure and guidance for
the development of network-centric operational
concepts. These tenets serve as a useful set of
organizing principles for experimentation. Thus, DoD
experiments should focus on exploring the basic
tenets of NCW, and developing and maturing
network-centric operational concepts based upon
these tenets.

Tenets of NCW

NCW represents a powerful set of warfighting
concepts and associated military capabilities that
allow warfighters to take full advantage of all
available information and bring all available assets
to bear in a rapid and flexible manner. The four
tenets of NCW are that:

•  A robustly networked force improves information
sharing and collaboration;
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•  Information sharing and collaboration enhance
the quality of information and shared situational
awareness;

•  Shared situational awareness enables self-
synchronization; and

•  These, in turn, dramatically increase mission
effectiveness.

Each tenet represents a testable linkage hypothesis.
The tenets themselves are linked to form a value
chain as shown in Figure 2-1.

Figure 2-1. NCW Value Chain



10 Code of Best Practice for Experimentation

The Domains of NCW

NCW concepts can only be understood and explored
by focusing on the relationships that take place
simultaneously in and among the physical, information,
and cognitive domains.

Physical Domain: The physical domain is the
traditional domain of warfare. It is where strike,
protection, and maneuver operations take place
across the ground, sea, air, and space environments.
It is the domain where physical platforms and the
communications networks that connect them reside.
Comparatively, the elements of this domain are the
easiest to “see” and to measure; consequently,
combat power has traditionally been measured by
effects in this domain.

Information Domain: The information domain is the
domain where information is created, manipulated,
and shared. Moreover, it is the domain where the
command and control of modern military forces is
communicated and where a commander’s intent is
conveyed. Consequently, it is increasingly the
information domain that must be protected and
defended to enable a force to generate combat power
in the face of offensive actions taken by an adversary.
And, in the all-important battle for information
superiority, the information domain is the area of
greatest sensitivity. System performance related
metrics (e.g., bandwidths) have predominated until
recently, but these are no longer sufficient by
themselves for measuring the quality of information.

Cognitive Domain: The cognitive domain is the
domain of the mind of the warfighter and the
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warfighter’s supporting populace. This is the domain
where commander’s intent, doctrine, tactics,
techniques, and procedures reside. The intangibles
of leadership, morale, unit cohesion, level of training
and experience, situation awareness, and public
opinion are elements of this domain. Effects in this
domain present the greatest challenge with respect
to observation and measurement.

A warfighting force that can conduct network-centric
operations can be defined as having the following
command and control-related attributes and
capabilities in each of the domains:

Physical Domain

•  All elements of the force are robustly networked,
achieving secure and seamless connectivity, or

•  Sufficient resources are present to dominate the
physical domain using NCW-derived information
advantage.

Information Domain

•  The force has the capability to collect, share,
access, and protect information.

•  The force has the capability to collaborate,
which enables it to improve its information
position through processes of correlation, fusion,
and analysis.

•  A force can achieve information advantage over
an adversary.
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Cognitive Domain

•  The force is able to develop and share high-
quality situation awareness.

•  The force is able to develop a shared
knowledge of the commander’s intent.

•  The force is able to self-synchronize its
operations.

Experimentation with the application of network-
centric operational concepts should be traceable
directly to one or more of the linkage hypotheses
or to one or more of the attributes and capabilities
that define network-centric operations. Thus, there
will need to be experiments that involve attention
to all three of the domains and the interactions
among them.

Concept-Based, Mission
Capability-Focused
Experimentation

NCW involves changes not only in information-
related capabilities and flows, but also in the way
decisions and processes are distributed across
the force. It has long been understood that, in
order to leverage increases in information-
related capabilities, new ways of doing business
are required.

This is not just a matter of getting the most out of new
information-related capabilities, but these new ways
of doing business are needed to avoid potential
organizational dysfunction. This idea is explored in
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the book Unintended Consequences of the Information
Age. It addresses the concept of mission capability
packages as a framework for dealing with the
introduction of new technology (Figure 2-2).

Thus, the essence of a network-centric capability is a
coevolved mission capability package, one that
derives its power from the tenets of NCW. A mission
capability package begins with a concept of
operations, in this case a network-centric concept of
operations that includes characteristics from each of
the domains described above.

Note that NCW applications exist at different levels
of maturity. For example, a less mature application
may only seek to share information to improve the
quality of information available to the participants;
it would not involve changes to process or command
approach. Conversely, a fully mature network-
centric concept would involve collaboration and a
command approach that features self-
synchronization. The NCW Report to Congress
provides a maturity model (Figure 2-3) that defines
a migrat ion path for the maturing of NCW
capabilities over time and hence, a migration path
for experimentation.
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Figure 2-3. NCW Maturity Model

The “guts” of the network-centric mission capability
package consists of three components:

•  An approach to command and control that is
designed to leverage shared awareness;

•  An organizational form that fosters information
sharing and collaboration; and

•  Doctrine, with associated technology, tactics,
techniques, and procedures.

The information and systems capability necessary
to support the required level of shared awareness
must be combined with the expertise, experience,
and skills of the people, materials, and systems
necessary to support them and carry out the mission.
Taken together, this constitutes a mission capability
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package. All of this is required to turn an operational
concept into a real deployable capability.

The term mission capability package is preferred to
the widely used acronym DOTMLPF (doctrine,
organization, training, material,  leadership,
personnel, and facilities) because it is broader. A
mission capability package, or the innovation it
represents, certainly can impact and must take into
account all the elements of DOTMLPF, but it is also
richer (may have more than one form while under
development) and matures over time as the mission
capability package process is executed. Hence, the
innovation “collaborative work process” may take
several different forms depending on the function
being performed and may be supported by an
evolving set of DOTMLPF elements as it matures.

The objectives of experimentation are therefore to
develop and ref ine innovat ive concepts of
operation and to coevolve mission capability
packages to turn these concepts into real
operational capabilities. One experiment cannot
possibly achieve this objective. Rather it will take
a well-orchestrated experimentation campaign
consisting of a series of related activities to
accomplish this. Hence, this COBP treats both how
to conduct successful individual experiments and
also how to link them together into successful
campaigns of experimentation.

1Alberts, David S., John J. Garstka, and Frederick P. Stein.
Network Centric Warfare: Developing and Leveraging Information
Superiority. Second Edition. Washington, DC: CCRP. 1999.

CCRP Publications
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2Network Centric Warfare Department of Defense Report to
Congress. July 2001.
3Ibid. Executive Summary, p. i.
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CHAPTER 3

Overview of
Experimentation

T he term experimentation arises from the
Latin, experiri, which means, “to try.”

Experimentation knowledge differs from other types
of knowledge in that it is always founded upon
observation or experience. In other words,
experiments are always empirical. However,
measurement alone does not make an experiment.
Experiments also involve establishing some level of
control and also manipulating one or more factors of
interest in order to establish or track cause and effect.
A dictionary definition of experiment is a test made
“to determine the efficacy of something previously
untried,” “to examine the validity of an hypothesis,”
or “to demonstrate a known truth.” These three
meanings distinguish the three major roles that DoD
organizations have assigned to experimentation.

Uses of Experiments

Discovery experiments involve introducing novel
systems, concepts, organizational structures,
technologies, or other elements to a setting where
their use can be observed and catalogued. In the
DoD context, the objective is to find out how the
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innovation is employed and whether it appears to
have military utility. Discovery experiments are similar
to the time honored military practice by which new
military hardware (aircraft, tanks, etc.) was developed
against a set of technical specifications (fly faster,
turn tighter, shoot farther, etc.), then given to technical
user communities (typically Service test
organizations or boards) to work out the concepts of
operation, tactics, techniques, and procedure for
effective employment. For example, when GPS was
a novel concept, one U.S. Marine Corps battalion
was reportedly provided with the capability and given
a few days to decide how they might best employ it,
then run through the standard 29 Palms exercise to
see both how they used the capability and what
difference it made. This discovery experiment was
enabled because a body of knowledge existed on
how U.S. Marine Corps battalions performed the 29
Palms mission, so the sentry GPS was a manipulation
and the 29 Palms setting and U.S.M.C. organization
were, effectively, controls.

The goals of discovery experiments are to identify
potential military benefits, generate ideas about the
best way for the innovation to be employed, and
identify the conditions under which it can be used
(as well as the limiting conditions – situations where
the benefits may not be available). In a scientific
sense, these are “hypothesis generation” efforts.
They will typically be employed early in the
development cycle. While these experiments must
be observed carefully and empirically in order to
generate rich insights and knowledge, they will not
ordinarily provide enough information (or evidence)
to reach a conclusion that is val id (correct
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understandings of the cause-and-effect or temporal
relationships that are hypothesized) or reliable (can
be recreated in another experimentation setting).
They are typically guided by some clearly innovative
propositions (see Chapters 5 and 6) that would be
understood as hypotheses if there were a body of
existing knowledge that supported them. Typical
discovery experiments lack the degree of control
necessary to infer cause and effect, and often
involve too few cases or trials to support valid
statistical inference.

However, these limitations are not barriers to
discovery experimentation. Most new concepts,
ideas, and technologies will benefit from discovery
experimentation as a way of weeding out ideas that
simply do not work, forcing the community to ask
rigorous questions about the benefits being sought
and the dynamics involved in implementing the idea,
or specifying the l imit ing condit ions for the
innovation. Good discovery experiments will lay the
foundation for more rigorous types of experiments
where the hypotheses they generate are subject to
more rigorous assessment and refinement.

Moreover, discovery experiments must be observed
in detail if they are to reach their maximum value.
For example, one of the earl iest discovery
experiments looking at Joint Vision 2010 concepts
found that the subjects altered their working
organization and process during the event. This was
reported as a major finding. However, no tools or
instruments were in place to record how the players
altered their processes and structures, so the
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experiment fell short of specifying precise hypotheses
to guide later research and development.

Hypothesis testing experiments are the classic type
used by scholars to advance knowledge by seeking
to falsify specific hypotheses (specifically if…then
statements) or discover their limiting conditions. They
are also used to test whole theories (systems of
consistent, related hypotheses that attempt to explain
some domain of knowledge) or observable
hypotheses derived from such theories. In a scientific
sense, hypothesis testing experiments build
knowledge or refine our understanding of a
knowledge domain.

In order to conduct hypothesis testing experiments,
the experimenter(s) create a situation in which one or
more factors of interest (dependent variables) can be
observed systematically under conditions that vary the
values of factors thought to cause change
(independent variables) in the factors of interest, while
other potentially relevant factors (control variables)
are held constant, either empirically or through
statistical manipulation. Hence, results from
hypothesis testing experiments are always caveated
with ceteris paribus, or “all other things being equal.”
Both control and manipulation are integral to
formulating hypothesis testing experiments.

Hypothesis testing experiments have been employed
in a variety of military settings. For example, DARPA’s
Command Post of the Future (CPOF) Program ran
an experiment on alternative presentation
technologies and their impact on the situation
awareness of individuals. Similarly, the J-9, JFCOM
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Experimentation Command ran an experiment on
presentation technologies and their impact on
individual and team situation awareness.

Since the number of independent, dependent, and
control variables relevant in the military arena is
very large, considerable thought and care are often
needed to conduct valid hypothesis tests. Moreover,
no single experiment is likely to do more than
improve knowledge marginally and help clarify new
issues. Hence, sets of related hypothesis testing
experiments are often needed in order to gain useful
knowledge. The planning of sets of related
experiments is discussed below under the heading
of experimentation campaigns.

Demonstration experiments, in which known truth is
recreated, are analogous to the experiments
conducted in a high school, where students follow
instructions that help them prove to themselves that
the laws of chemistry and physics operate as the
underlying theories predict. DoD equivalent activities
are technology demonstrations used to show
operational organizations that some innovation can,
under carefully orchestrated conditions, improve the
efficiency, effectiveness, or speed of a military
activity. In such demonstrations, all the technologies
employed are well-established and the setting
(scenario, participants, etc.) is orchestrated to show
that these technologies can be employed efficiently
and effectively under the specified conditions.

Note that demonstration experiments are not
intended to generate new knowledge, but rather to
display existing knowledge to people unfamiliar with
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it. The reasons for empirical observation change to
recording the results reliably and noting the
conditions under which the innovations were
demonstrated in demonstration experiments. Failure
to capture this information will lead to unrealistic
expectations and inappropriate applications of the
innovations. This has happened more than once in
the DoD when capabilities developed for a specific
demonstration were transferred to a very different
context and failed because they had not been
properly adapted. Some demonstration experiments
involve control, but no manipulation.

Experimentation Campaigns

As noted earlier, military operations are too complex
and the process of change is too expensive for the
U.S. to rely on any single experiment to “prove” that
a particular innovation should be adopted or will
provide a well-understood set of military benefits.
Indeed, in academic settings, no single experiment
is relied on to create new knowledge.  Instead,
scholars expect that experimentation results will be
repeatable and will fit into a pattern of knowledge on
related topics. Replication is important because it
demonstrates that the experimentation results are
not the product of some particular circumstances
(selection of subjects, choice of the experimentation
situation or scenario, bias of the researchers, etc.).
Placing the results in the context of other research
and experimentation provides reasons to believe that
the results are valid and also help to provide linkages
to the causal mechanisms at work.
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An experimentation campaign is a series of related
activities that explore and mature knowledge about
a concept of interest. As illustrated in Figure 3-1,
experimentation campaigns use the different types
of experiments in a logical way to move from an idea
or concept to some demonstrated military capability.
Hence, experimentation campaigns are organized
ways of testing innovations that allow refinement and
support increased understanding over time.

The initial concept may come from almost anywhere
– a technological innovation, a concept of operations
developed to deal with new or emerging threats, a
capability that has emerged in civilian practice and
appears to have meaningful military application and
utility, a commission or study generated to examine
a problem, lessons learned from a conflict, an
observed innovation in a foreign force, or any of a
host of other sources.

Ideally, this innovation is understood well enough
to place it in the context of a mission capability
package. For example, a technological innovation
may require new doctrine, organizational structures,
training, or other support in order to achieve the
military utility envisioned for it. In some cases,
research into prior experience, applications, or
research on similar topics may help development
of the mission capability package needed. Simply
placing a technological innovation into the context
of existing doctrine, organization, and training for
discovery experimentation is normally a very weak
and inefficient approach for it will not be able to
properly evaluate the potential of the technological
innovation. In cases where this has been done, the
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potential value of the innovation has been missed
or undervalued.

Discovery Experiments in the
Context of an Experimentation
Campaign

Obviously, some discovery experiments will be
needed first to see whether the innovation shows
serious potential for military utility and impact. These
may involve pure models and computer simulations
to place the new concept in the context of other
factors, or human-in-the-loop experiments to learn
how people relate to the innovation and choose to
employ it, or war games, or field trials. Whatever
formats are chosen should be loosely configured to
encourage adaptation and innovation, but should
also be carefully observed, recorded, and analyzed
to maximize learning. In many cases, these discovery
experiments will involve surrogate capabilities that
create the effect of the innovation, but minimize the
cost of the effort.

Perhaps the most famous ini t ial  discovery
experiments were those conducted by the Germans
to explore the tactical use of short range radios
before World War II. They mimicked a battlespace
(using Volkswagens as tanks) in order to learn about
the reliability of the radios and the best way to
employ the new communications capabilities and
information exchanges among the components of
their force. Similarly, the early U.S. Marine Corps
experimentation with remotely piloted vehicles
(RPVs) during efforts like HUNTER WARRIOR used
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commercially available vehicles to conduct a variety
of missions, from reconnaissance to resupply. In
both cases, the users were able to gain a basic
understanding of the potential uses and limits of
novel technologies. This prepared them for more
rigorous and focused development and testing later.
Similarly, the Command Post of the Future program
in DARPA has conducted a series of “block party”
experiments in which their technologists have
worked together with selected military subject matter
experts (SMEs) to try out new technologies across
a variety of military contexts, ranging from meeting
engagements to urban warfare. An interesting
discovery experiment was generated by the Air
Force in 1994 and 1995 when Lieutenant General
Edward Franklin, U.S. Air Force, then head of the
U.S. Air Force ESC (Electronic Systems Center) at
Hanscom Air Force Base, required that all Air Force
command and control-related programs set up shop
at the end of one of his runways and demonstrate
their capability for interoperability with other
systems funded by the Air Force. A great deal of
discovery occurred as program managers and
contractors struggled to meet this requirement.

Note that not all discovery experiments result in
enough knowledge gain to support moving to the
hypothesis testing level. One major advantage of an
experimentation perspective is that some ideas do
not prove sound, at least as presently conceived and
understood. Hence, Figure 3-1 shows the results of
some discovery experiments as simply establishing
new research and development priorities. In other
words, if there was a real opportunity or a real
problem being addressed during the discovery
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experiment, but the proposed innovation did not look
promising in the experimentation setting, then some
different approach would be needed. This approach
may be a new innovation, some change to another
element of the mission capability package, or
recognition of a limiting condition not previously
understood. In many cases, further discovery
experimentation may also be needed.

Even when an initial discovery experiment is
successful in suggesting military utility and some
way of employing the innovation, more research and
discovery experimentation will usually be required
to val idate the ini t ia l  f inding, to ref ine the
employment concepts, or to determine the
conditions under which the innovation is most likely
to provide significant payoff. At a minimum, the
results of an apparently successful discovery
experiment needs to be exposed to the widest
possible community, including operators and other
researchers. This breadth of exposure is an inherent
part of the scientific method being harnessed for
experimentation. It ensures that constructive
criticism will be offered, alternative explanations for
the findings will be explored, and the related
research will be identified. In many cases, it will
also spark other research and experimentation
intended to replicate and validate the initial findings.
The more important the innovation and the higher
the potential payoff, the greater the community’s
interest and the more l ikely the discovery
experiment will be replicated or created in a
somewhat different domain. All this greatly benefits
the processes of maturing the concept and
developing improved knowledge.
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Hypothesis Testing
Experiments in the Context of
an Experimentation Campaign

When the discovery experimentation process has
produced interesting, important, and well-stated
hypotheses, the experimentation campaign is ready
to move to a hypothesis testing stage. Figure 3-1
stresses that this is a complex stage, highlighting
the idea that there will be both preliminary and
refined hypothesis tests as the innovation matures
and becomes better understood.

Technically speaking, no hypothesis is ever proven.
The strongest statement that a scientist can make is
that the evidence is consistent with (supports) a given
hypothesis. However, propositions can be disproved
by the discovery of evidence inconsistent with them.
To take a simple example, the proposition that the
world is flat was disproved by the observation that
when ships sailed away from port, their hulls
disappeared before their sails. However, that
observation could not prove the world was round. The
idea that the world was curved, but still had an edge,
was also consistent with the evidence.

Science therefore uses the very useful concept of a
null hypothesis, which is stated as the converse of
the hypothesis being tested. Experimenters then
attempt to obtain sufficient evidence to disprove the
null hypothesis. This provides supporting evidence
for the original hypothesis, although it does not prove
it. For example, in Command Post of the Future
experimentation with visualization technologies, the
hypothesis was that:
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   IF sets of tailored visualizations were presented
to subjects, THEN those subjects would have
richer situation awareness than those subjects
presented with standard military maps and
symbols, UNDER THE CONDITIONS THAT the
same underlying information was available to
those creating both types of displays, the
subjects were active duty military officers with at
least 10 years of service, and the subjects’ time
to absorb the material was limited.

This proposition could not be proven, so the more
useful null hypothesis was crafted:

   IF sets of tailored visualizations were
presented to subjects, THEN no improvement
would be observed in the richness of their
situation awareness than that of subjects
presented with standard military maps and
symbols, UNDER THE CONDITIONS THAT the
same underlying information was available to
those creating both types of displays, the
subjects were active duty military officers with
at least 10 years of service, and the subjects’
time to absorb the material was limited.

When significant differences were reported, the null
hypothesis was rejected and the evidence was  found
to be consistent with the primary hypothesis.
Experimentation and research could then move on
to replicating the findings with different subjects in
different experimentation settings, and specifying
which elements in the tailored visualization were
generating which parts of the richer situation
awareness. Hence, the experimentation campaign
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was advanced, but by no means concluded, by the
hypothesis testing experiment.

Selecting the hypothesis to be examined in an
experiment is a crucial and sometimes difficult task.
The innovation and its expected impact need to be
defined clearly. Moreover, establishing a baseline
– how this task is carried out in the absence of the
innovation – is a crucial element. If the hypotheses
are not set up for comparative purposes, the
experiment will contribute little to the knowledge
domain. For example, demonstrating that a new
collaborative process can be used to support
mission planning is not very helpful unless the
hypothesis is drawn to compare this new process
with an existing one. Failure to establish the
baseline leaves an open question of whether any
benefit is achieved by the innovation.

Several rounds of hypothesis testing experiments are
needed for any reasonably complex or important
mission capability package. The variety of applicable
military contexts and the rich variety of human
behavior and cognition argue for care during this
process. Many innovations currently of interest, such
as collaborative work processes and dispersed
headquarters, have so many different applications
that they must be studied in a variety of contexts.
Others have organizational and cultural implications
that must be examined in coalition, interagency, and
international contexts.

As Figure 3-1 shows, some hypothesis testing
experiments also result in spinning off research and
development issues or helping to establish priorities
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for them. In other words, some experiments will
identify anomalies that require research, others will
suggest new innovations, and still others will identify
missing elements that must be researched and
understood before the innovation can be
implemented successfully.

Particularly visible sets of hypothesis testing
propositions are the Limited Objective Experiments
(LOEs) being undertaken by J-9, JFCOM. They have
scheduled a series of hypothesis testing experiments
focused on specific elements of their new concepts,
having recognized that there are a variety of issues
contained in the innovative concepts they are
developing. Their major events, such as Millennium
Challenge ‘02 and Olympic Challenge ‘04, are both
too large and complex to effectively determine the
cause and effect relationships involved in the large
number of innovations they encompass. For example,
during 2001 they ran LOEs on the value of open
source information, alternative presentation
technologies, coalition processes, and production of
their key documents (Operational Net Assessments
and Effects Tasking Orders). Similarly, the U.S.
Navy’s series of Fleet Battle Experiments have each
sought to examine some specific element of Network
Centric Warfare in order to understand their uses
and limits.

Early or preliminary hypothesis testing experiments
often lead to more than one “spiral” of more refined
hypothesis testing experiments as a fundamental
concept or idea is placed into different application
contexts. This is a natural process that is furthered
by widely reporting the results of the early
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experiments, thereby attracting the attention of experts
in different application arenas. For example, good
ideas arising from the Revolution in Business Affairs
are being explored in a variety of DoD arenas, from
military medicine and personnel to force deployment
and sustainment. Each of these arenas has different
cultures, experiences, limiting conditions, and
organizational structures, so no single line of
experimentation is likely to provide satisfactory
knowledge to all of them. Rich innovations can be
expected to generate multiple experimentation
campaigns.

Once an experimentation campaign has refined the
community’s understanding of an innovation, its
uses and limits, and the benefits available from it,
it is ready to move into the formal acquisition or
adoption processes. As Figure 3-1 indicates, a
well-crafted campaign, conducted in the context
of a meaningful community discussion, should
provide the evidence needed for JROC or other
formal assessment and budgetary support.  This
does,  however,  presuppose high-qual i ty
experiments, widely reported so that the relevant
military community understands the results and
findings that indicate military utility.

Demonstration Experiments
in the Context of an
Experimentation Campaign

Many innovations fail to attract sufficient support to
move directly into the acquisition or adoption
processes. This can occur for a variety of reasons,
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but often involves inadequate awareness, skepticism,
or lack of confidence in the user communities. Faced
with these situations, program managers have
sometimes found it valuable to perform demonstration
experiments, where they can display the value of their
innovation to operators. Indeed, both Technology
Demonstrations (TDs) and Advanced Concept
Technology Demonstrations (ACTDs) have proven
increasingly valuable over the past decade.

To be useful, demonstration experiments must place
technologies or other innovations into a specific
context developed in order to demonstrate their utility.
They can only be done effectively and efficiently with
well-developed innovations that have been subjected
to enough discovery and hypothesis testing
experimentation to identify the types of military utility
available, to define the context within which those
benefits can be realized, and to identify the other
elements of the mission capabil i ty package
necessary for successful application. If these criteria
are ignored, the demonstration experiment will
quickly degenerate into an ad hoc assembly of items
optimized on a very narrow problem, proving
unconvincing to the operators for whom it is
designed, and unable to support more general
application after the demonstration.

As noted earlier, demonstration experiments also need
to be observed and instrumented so that the benefits
being demonstrated are documented and can be
recalled after the experiment is over. Failure to capture
the empirical evidence of a successful demonstration
experiment turns it into simple “show and tell” and
prevents carrying the results to audiences that were
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not present during the event. This may be particularly
important if funding support is being sought for the
innovation. Endorsements from senior officers and their
staffs are valuable, but not persuasive in budget
contests where every item comes with a cadre of
supporters, usually from the part of the community that
is perceived as having a vested interest in the
innovation.

Results of a Well-Crafted
Experimentation Campaign

Properly designed and executed, experimentation
campaigns generate several useful products. These
include:

• A richly crafted mission capability package that
clearly defines the innovation and the elements
necessary for its success;

• A set of research results that form a coherent
whole and specify how the innovation should be
implemented, the cause and effect relationships
at work, the conditions necessary for success,
and the types of military benefits that can be
anticipated;

• A community of interest that includes researchers,
operators, and decisionmakers who understand
the innovation and are in a position to assess its
value; and

• Massive reduction in the risks associated with
adopting an innovation.
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An Experimentation Venue is
Not an Experimentation
Campaign

Over the past several years, a few mil i tary
organizations have lost sight of the complexity of
conducting experiments and sought to create large
exercises in which a variety of different experiments
can be conducted. These integrated constructs have
almost always been at least partially field exercises,
often in the context of major command post
exercises. The underlying idea is to generate some
efficiencies in terms of the scenarios being
employed, the missions and tasks assigned, and
the personnel involved. Good examples include the
U.S. Air Force series known as JEFX (Joint
Expeditionary Force Exercise) and the U.S. Marine
Corps series of HUNTER exercises. These
integrated constructs should be understood to be
experimentation venues because they create an
opportunity to conduct a variety of different
experiments. However, they are not experimentation
campaigns because they typical ly include
experiments about different domains.

While large experimentation venues do provide the
opportunity for a variety of specific experiments, they
also can present unique challenges. For example,
different experiments may be interlocked, with the
independent or intervening variables for one
experiment (which are deliberately controlled) being
or impacting on the dependent variable for another.
Similarly, many of these experimentation venues are,
at least in part, training exercises for the forces they
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field. This can mean that current doctrine and
organization, which may differ substantially from
those identified in the mission capability package,
play a controlling role.  It can also limit the availability
of the experiment subjects for training.

Core Challenges of
Experimentation

The core challenges of good experimentation are
no different for the DoD than any other group
seeking to refine and mature a concept or an
innovation. They include:

• Clear specification of the idea;

• Creation of a mission capability package that
articulates the whole context necessary for
success;

• Articulation of the hypotheses underlying the
innovation, including the causal mechanisms
perceived to make it work;

• Specification of the benefits anticipated from the
innovation and the conditions under which they
can be anticipated;

• Development of reliable and valid measurement
of all elements of the hypotheses such that they
can be controlled and/or observed in the
experimentation setting;

• Design of an experiment or experimentation
campaign that provides unambiguous evidence
of what has been observed;
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• Creation of an experimentation setting (subjects,
scenarios, instrumentation, etc.) that provides for
an unbiased assessment of the innovations and
hypotheses under study;

• Selection of analytic methods that minimize the
risks and uncertainties associated with each
experiment or experimentation campaign; and

• Creation of a community of interest that cuts
across relevant sets of operators, researchers,
and decisionmakers.

Meeting these challenges requires thought, planning,
and hard work. The chapters that follow deal with
elements of these challenges.
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CHAPTER 4

The Logic of
Experimentation

Campaigns

Why Campaigns Rather Than
Individual Experiments?

No single experiment, regardless of how well
i t  is organized and executed, improves

knowledge enough to support a major goal like
transformation. First, building knowledge requires
replication. Scientists know that the findings of a
single experiment may be a product of some
unknown factor that was not controlled, the impact
of biases built into the design, or simply the impact
of some random variable unlikely to occur again.
Hence, they require replication as a standard for
building knowledge.

Second, individual experiments are typically focused
on a narrow set of issues. However, the stakes are
very high in transformation and the experimentation
findings required to pursue it will need to be robust,
in other words, they must apply across a wide range
of situations. While models and simulations can be
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used to test the limits of individual experiments, they
are neither valid enough nor robust enough in
themselves to explore the range of conditions
relevant to military operations.

Third, experiments are undertaken on the basis of
existing knowledge from prior experience, research,
and experimentation. In order to understand
experimentation findings fully, they must be placed
back into that larger context. When that occurs,
alternative interpretations and explanations are
often identified for the findings of the single
experiment. Hence, new experiments are often
needed to help us differentiate between these
competing hypotheses before we can claim the
“actionable knowledge” needed for transformation.

Fourth, the kind of rich and robust explanations and
understandings needed to support transformation will
almost inevitably include the unhappy phrase, “it
depends.” In other words, context matters. Hence,
individual experiments, which can only look at a small
number of different contexts, will need to be
calibrated against other experiments and knowledge
to ensure that their limiting conditions are properly
understood. This is essential if new knowledge is to
be applied wisely and appropriately.

Fifth, building useful knowledge, particularly in a
complex arena like transformation, often means
bringing together different ideas. Findings from
individual experiments often need to be brought
together in later experiments in order to see how
relevant factors interact. Hence, sets of related
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experiments often yield richer knowledge than the
individual events.

Final ly, individual experiments are l ikely to
generate some unexpected findings. Because they
are unexpected, such findings are both important
and interesting. They may be an indication of new
knowledge or  new l imi t ing condi t ions.
Exper imentat ion campaigns provide the
opportunity to explore these novel insights and
findings, as well as their implications and limits, in
a more structured setting.

Experimentation Campaigns
Require a Different Mindset

It is a misconception to think of an experimentation
campaign as merely a series of individual
experiments that are strung together. As
summarized in Figure 4-1, campaigns serve a
broader scientific and operational purpose and
require different conceptualization and planning.

An experiment typically involves a single event that
is designed to address a specif ic thread of
investigation. For example, experiments conducted
by the U.S. Army during the past few years have
focused on assessing the impact of introducing
digital information technology into command and
control processes at battalion through corps level.
During this same period, separate experiments
were conducted to assess the contributions of
selected maintenance and logist ics enabler
technologies to sustain combat forces. In each
case, the experiment involved a single thread of
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investigation. By contrast, an experimentation
campaign involves multiple components (e.g.,
l imi ted object ive exper iments,  integrat ing
experiments, simulation experiments) conducted
over a period of time to address multiple axes of
investigation. Each of these axes manipulates
some specific aspect of force capability (e.g.,
networking of command and control, precision and
agility of weapon systems, reorganization of
sustaining operations) while controlling for others.
Taken together,  however,  these axes of
investigation contribute to a broader picture of
force transformation.

Figure 4-1. Comparison of An Experiment to An
Experimentation Campaign

Experimentation campaigns are organized around
a broader framework. Whereas individual
experiments are organized around a set of specific
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issues or hypotheses, campaigns are structured to
address broad operational concepts. In the case of
individual experiments, the specific issues or
hypotheses that are under analysis shape every
aspect of experiment planning (e.g., development
of metrics, scenario, experiment design). The
careful planning of a multi-year experimentation
campaign must be motivated and shaped by
consistent adherence to broad goals and vision
statements moving toward transformation.

Experiments and experimentation campaigns also
differ in terms of their analytic goals. Experiments
are designed to provide objective testing of a
focused set of questions (e.g., are communication
bandwidth and connectivity associated with
improved shared awareness and understanding?).
As such, the experiment is tailored to provide the
best conditions and methods for testing the specific
set of questions. The fundamental planning question
for an experiment is: “Are we researching this issue
or testing this hypothesis in the best, most objective
manner?” By contrast, campaigns respond to a
broader analytic goal. Campaigns are designed to
provide comprehensive insight across a set of
related issues. The focus of campaign planning is
to ensure that each important aspect of force
capability is addressed and that no critical issues
are overlooked. As a result, the various axes of the
experimentation campaign employ a range of
conditions and methods for investigating different
types of issues. The fundamental planning question
for an experimentation campaign is: “Are we
addressing all of the important aspects of the
problem?”
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In terms of decision points, experiments typically
reflect a single decision to design and execute
a  spec i f i c  exper iment .  F rom incep t ion  to
completion, attention is focused on achieving a
single,  coherent outcome. Experimentat ion
campaigns, on the other hand, contain multiple
decision points that provide the opportunity to
either refine alternatives or identify emerging
issues. As a result, operational attention can
shift from event to event, the nature of the
ana ly t i ca l  ques t ions  can  evo lve ,  and  the
experimentation objectives can mature over time
as the campaign yields deeper insights into the
problem space. Experimentation campaigns are
not fixed or static programs. Rather, they should
reflect a degree of adaptibility and innovation to
accommodate learning over time. Campaign
plans must be flexible so that subsequent events
are properly focused to provide for the best
return on investment.

Given a number of  pract ical  and scient i f ic
considerations, experiments are designed to
measure the impact of a few factors or variables
while controll ing other influences on system
performance to the highest degree possible. In
this manner, causal i ty can be isolated and
attributed to a relatively small number of factors.
In this sense, experiments best reflect the root
concept of analysis, the systematic understanding
of  causes and ef fects .  Exper imentat ion
campaigns, by contrast, are designed to assess
the relative importance and impact of many
different factors or variables within the problem
space. The objective of the campaign design is
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to give comprehensive attention to all of the
important influences on system performance. In
this sense, experimentation campaigns best
re f lec t  the root  concept  o f  synthesis ,  the
systematic integration of causes and effects into
improved, actionable knowledge.

S im i la r l y ,  exper iments  bes t  ach ieve the i r
objectives by tailoring scenarios to provide the
best set of conditions for assessing selected
issues or testing a set of specific hypotheses.
Hence ,  p lann ing  a t ten t ion  i s  focused  on
identifying elements of the operational scenarios
that allow for adequate variability to occur among
input and output measures – an analyt ical
requisite for assessing causality. Depending
upon the nature and focus of the experiment, the
scenarios can vary in echelon (e.g., tactical,
operational, strategic), level of complexity (e.g.,
isolated mil i tary functions, joint operations,
effects-based operations), or a few levels of
outcome measure (e.g., situation awareness,
force synchronization, mission effectiveness). By
contrast, campaigns are not limited to a single
level of detail, single level of complexity, or a
few levels of outcome measure. Hence, planning
attention should be given to addressing al l
important influences on system performance
through a range of scenarios. In this manner,
experimentat ion campaigns offer a greater
poss ib i l i t y  o f  (1 )  y ie ld ing  genera l i zed
conclusions, (2) identifying regions of greatest
performance sensitivity, (3) associating the body
of empirical knowledge with the most l ikely
conditions in the real world, and (4) providing
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robus t  ins igh t  in to  t rans format ion- re la ted
programming and policy decisions.

Finally, as compared with individual experiments,
experimentation campaigns require a broader and
more consistent set of performance metrics. A
broader set of metr ics is required because
campaigns typically deal with a more diverse set of
military functions, operational effects, and levels of
system outcome, as compared with focused
experiments. At the same time, however, the set of
metrics adopted within a campaign must be defined
more consistently from the outset since they are the
principal mechanism for linking empirical findings
across different experiments. While developing
appropriate metrics for an individual experiment is
difficult enough, the development of metrics for use
in an experimentation campaign requires even more
thought and skill in order to anticipate how those
metrics will be employed.

Structure Underlying
Experimentation Campaigns

As il lustrated in Figure 4-2, there are three
principle dimensions underlying campaigns of
experimentation:

• Maturity of the knowledge contribution – from
discovery to hypothesis testing to demonstration;

• Fidelity of experimentation settings – from war
gaming to laboratory settings and models to
exercises; and
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Figure 4-2. The Experimentation Campaign Space
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• Complexity of the issues included – from simple to
complex.

The logical structure underlying experimentation
campaigns is always the same – to move along the
“campaign vector” shown in Figure 4-2 from the
lower left front of the experimentation space toward
the upper right rear. In other words, moving toward
more mature knowledge, in more realistic settings,
and involving more complex issues.

Maturity of Knowledge
Contribution

This dimension was already described as the three
basic classes of experiments were introduced.
Initial work in any knowledge domain is best
undertaken in discovery experiments intended to
create a basic understanding of the phenomenon
of interest. In science terms, this is an effort to
describe what is occurring, classify factors and
relevant behaviors correctly, and hypothesize
cause and effect relationships and their limiting
condi t ions.  Discovery exper iments can be
designed based on experience, subject matter
expertise, prior research, or experimentation on
similar or apparently analogous topics. More than
one discovery experiment is normally needed to
generate the insights and knowledge required to
support hypothesis testing experiments. Discovery
experiments should also be used to create, refine,
and validate the measurement tools needed in the
knowledge domain.
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Once the hypotheses can be clearly articulated, a
series of hypothesis testing experiments can be
used to enrich understanding of the issues under
study. These typically begin with efforts to refine
the hypotheses of interest (in science terms, the
set of consistent, interrelated hypotheses that form
a theory. However, the term theory is seldom used
when dealing with experimentation within the DoD
because it is understood to convey a sense that
the knowledge is tentative or impractical. In fact,
there is nothing so practical as a good theory and
the set of conditions under which it applies). These
initial experiments are typically followed by a
number of in-depth experiments that explore
alternative cause-and-effect patterns, sets of
limiting conditions, and temporal dynamics. Most
of the effort necessary to mature knowledge on a
given topic will be consumed in these hypothesis
testing experiments.

As hypothesis testing experiments go forward,
the relevant measures, tools, and techniques
needed for successful experimentation are also
refined and matured. In addition, by circulating
the results of hypothesis testing experiments
widely, researchers often generate feedback that
enables them to better understand the topics
under  s tudy.   Th is  mu l t ip l y ing  e f fec t  on
knowledge maturity is vital to rapid progress. It
allows researchers to learn from both other
researchers and also expert practitioners.

Demonstration experiments, which are educational
displays of mature knowledge, should not be
undertaken until the science underlying the issues
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of interest have been largely resolved. They can only
be done with mature mission capability packages,
including technologies, training, organizational
structures, and leadership. In essence, the underlying
knowledge must be predictive. The cause and effect
relationships hypothesized must be fully understood
and the conditions necessary for success must be
known. Note that demonstration experiments should
be few in number and organized primarily to educate
potential users of the innovation and those
responsible for deciding (1) whether the innovation
should be adopted and (2) how the innovation
should be resourced. They sometimes also yield
knowledge about how the innovation can be
employed effectively. The greatest danger in
demonstration experimentation is attempting it too
soon – when the innovation is immature. Even
weakly resourced demonstration experiments
using mature innovations are more likely to be
successful than premature demonstrations.

Experimentation at different levels of maturity also
yields different products. Discovery experiments are
intended to weed out ideas that have little chance
of success and identify promising ideas. Their
products include sets of hypotheses for testing,
specification of initial limiting conditions or relevant
application contexts, measurement tools, and
research and development priorities. Hypothesis
testing experiments refine knowledge, sharpen
definitions and measures, clarify relationships,
improve understanding of limiting conditions, and
generate r ich insights. They may also help
strengthen and focus research and development
priorities, particularly in the initial hypothesis testing
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phase. Well-crafted sets of hypothesis testing
experiments can yield the knowledge needed for
acquisition efforts, organizational change, and
training initiatives. Demonstration experiments are
intended to directly support decisions about
transformation initiatives.

Fidelity of Experimentation
Settings

Mission capability packages and transformation
initiatives must ultimately be implemented in the world
of real military operations. Their origins, however,
are cognitive – concepts arising in someone’s mind
and developed in dialogue with others.  Well-crafted
campaigns of experimentation are structured to move
from the relatively vague and undisciplined world of
ideas and concepts into more and more realistic
settings. In the sense of scientific inquiry, this is
creating increasingly robust tests for the ideas.
Transformational innovations will be strong enough
to matter in realistic settings.

When a new subject comes under study, a variety
of unconstrained settings are typically used to
formulate the issues and generate preliminary
insights. These might include lessons learned
reported from the field, brainstorming sessions,
subject matter expert elicitation efforts, review of
existing relevant research and experiments, and
workshops designed to bring together experts from
the relevant fields. These approaches have been
widely used by the Joint Staff in developing
concepts like dominant maneuver and precision
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engagement. They were also used by J-9, JFCOM in
order to generate concepts such as Rapid Decisive
Operations (RDO). While these activities can help
explore a new topic, they are not experiments because
they lack the essential empirical dimension.

Placing these ideas into a weakly structured
experimentation environment, such as a war game,
provides the opportunity to collect systematic data
and capture relevant insights.  While the free flow
of ideas and the opportunity for a variety of
behaviors makes these loose environments ideal
for exploring a problem and generating hypotheses,
their inability to be replicated and their low fidelity
to real world situations limits their utility.

Experimentation campaigns should move the
venue from these weakly structured settings into
those with more specific and conscious controls
intended to enrich the fidelity of the setting in which
knowledge is gathered. This can be done by
moving into the laboratory or moving into models
and simulations. In some cases, both can be done
at once.

Moving into a laboratory in order to work in a more
realistic setting may appear counter-intuitive. The
most widely understood purpose of laboratory
settings is to control by screening out many real
world factors. However, laboratory settings are also
used to focus the experiment setting on factors
believed to be important and ensure that their impact
is assessed systematically. For example, war games
intended to examine the effect of differential
information on decisionmaking do not normally
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systematically control for the types of subjects making
decisions or the decision styles employed, despite
the fact that both of these factors are widely believed
to be important. By going into a laboratory setting
where factors like these can be brought under control
through subject selection, research design, and
statistical control procedures, an experimentation
campaign can improve the match between the
experiment and the real world settings where the
findings will be employed.

Similarly, building a model or simulation is always, by
definition, an abstraction from reality. How then, is the
realism of the setting improved if these tools are
brought into play to replace loosely structured war
games? Again, the answer lies in the ability of the
model or simulation to explicitly include factors believed
to be important and to exclude the wide variety of
issues not under analysis.

Note also that by using simulation-driven laboratory
experiments, or human-in-the-loop techniques, both
laboratory and modeling controls can be used to
add realism and filter out extraneous factors. This
is the primary approach used by J-9, JFCOM in their
series of  LOEs designed to develop and refine
operational concepts, organizational structures, and
work processes for JointTask Force headquarters
in the future.

Laboratories and simulations are, however, far less
realist ic than the sett ings needed before a
transformational innovation should be adopted.
Exercises, whether command post (CPX) or field
training exercises (FTX), represent the most realistic
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settings available for experimentation and should be
employed in the later stages of experimentation
campaigns. However, the realism available in
exercises can also be, and has proven in the past
to be, a trap for experimentation. Exercises are
expensive and are typically used to train the forces
involved. Even CPX are typically training events for
commanders and their staffs. Training is about how
the force does business today and will do business
tomorrow in real crises or combat. However,
transformational innovat ions often involve
fundamentally different ways of doing business.
These differences may range across all crucial
elements – doctrine and associated tactics,
techniques, and procedures; force structure and
organization; training and preparation of leaders
and staffs; the information systems used; and so
forth. Hence, “piggybacking” transformational
experimentation on exercises intended to train the
current force is not a useful strategy.

Therefore, the ideal exercises for creating realistic
experimentation settings will be those designed with
the experimentation in mind. This has been done
successfully, primarily when a narrow innovation
was being brought into the nearly current force (for
example, the U.S. Air Force taking training data
about the impact of Link 16 and comparing with the
performance of those without the innovation) and
when the experiment was placed into a force created
for that purpose (as in the Army’s digitization
experimentation and the Navy’s series of Fleet
Batt le Experiments).  At this wri t ing, joint
experimentation has been hampered by the lack of
these realistic exercises. ACTDs are an effort in this
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direction. They represent demonstration experiments
and are supposed to include mature technologies, but
they have not always been transformational. They have
tended to focus on technologies without the supporting
mission capability packages that transformation will
require.

Complexity of the Issues
Addressed

This dimension of experimentation campaigns is
itself multidimensional. A variety of different factors
can impact the complexity of any one experiment
and must, therefore, be considered when campaigns
are designed. They are limited only by the richness
of the knowledge domain under study and the
imagination of the experimentation team. They
include the:

• Number of subjects;

• Variety of actors (echelons, functions, and
relationship to the U.S.);

• Stability of the operating environment;

• Linkage patterns;

• Information flows;

• Quality of the information;

• Degree of uncertainty; and

• Many other factors.
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The key here is to recognize that complexity exacts a
major price in experimentation.  Campaigns typically
begin simply, but cannot end there. Over time and
across different experiments, more and more factors
will need to be considered or examined and ruled out
because they do not have measurable impacts. At
the same time, allowing too many factors into a given
experiment will make it very difficult to sort out the
cause and effect relationships being observed. Very
large designs, typically implying large expenditures,
are required to deal with a variety of complex factors
in the same experiment. Moreover, the tools to
measure the impact of a variety of different factors,
and keep them distinct enough to analyze them, will
be a challenge in many experimentation campaigns.

Designing Experimentation
Campaigns

While the cube shown in Figure 4-2 shows an
experimentation campaign vector that starts at
the or igin for al l  three dimensions, not al l
experimentation campaigns for transformation will
begin at the origin on all dimensions. The key to
selecting the starting point is understanding what
is already known and what experimentation has
already been done.

In studying a new field with little existing knowledge,
i t  is essent ial  to begin at the beginning.
Thecampaign will have to be organized around
simple discovery experiments in weakly structured
settings that mature over time as the domain becomes
understood.
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For examining an issue that has arisen from real world,
military lessons learned and experience, the
experimentation campaign may start in the center of
the experimentation campaign space. Hypothesis
testing in laboratory and simulation settings can be
used to rapidly assess the robustness of the concept
and refine its applications, as well as to isolate and
identify areas requiring further research.

Application of a well-understood knowledge arena
to the DoD may start even further along, in the region
where hypothesis refinement experiments are
conducted in relatively high fidelity, complex
environments. These situations can begin to move
toward demonstration experiments as soon as the
main effects in the experiments prove replicable.

As a practical matter, experimentation teams
seeking transformational issues should be looking
for relatively mature concepts or issues that have
been developed in other fields.  For example, the
search for business practices that have proven
successful in high stakes, dynamic arenas was a
good idea when looking for advantages arising from
the introduction of new information technologies.
Similarly, the existing body of research into the
dynamics at work after natural disasters has proven
to be a rich source of insight on the crucial topic of
designing effective organizations with minimal
infrastructure for a diverse set of stakeholders.

The other practical imperative for experimentation
campaigns is that they must be planned far enough
into the future to ensure that resources are available
to support them.  Given the complexity of conducting
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any experiment, lead time is essential. Adding the
complexity required to accumulate knowledge and
mature a concept makes it essential that serious
planning be done. This complexity also means that
plans for campaigns of experiments cannot be
immutable. Learning in early experiments often
leads to changes in later ones. However, those
changes can be well within the planning parameters
originally established, provided the experiments are
not scheduled too close together and a “lock step”
mentality is avoided.

Conclusion

No single experiment will be adequate to support a
transformation initiative. Hence, experimentation
campaigns should be used to develop mature
knowledge and move concepts along toward
mission capability packages. These campaigns will
change over time in terms of the knowledge they
generate, in the realism of the settings in which they
take place, and in their complexity.
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CHAPTER 5

Anatomy of an
Experiment

Merely knowing what an experiment is (and is
not) does not make it possible to organize and

conduct a successful experiment. This chapter takes
a deeper look into the anatomy of an experiment:
the structures, processes, procedures, and products
needed to make an experiment a success. This is
an end-to-end review of an experiment, from its
formulation to the delivery of its products.

Phases of an Experiment

Figure 5-1 shows an overview of the three major
phases in any experiment: pre-experiment, conduct
of the experiment, and post-experiment. The outputs
of the pre-experiment phase provide “what we know”
and “what we think” as expressed in the experiment
model and experiment propositions in hypotheses,
and “what we are going to do” as expressed in the
detailed experiment plan. The output of the conduct
phase is simply the empirical data generated by the
experiment as well as other observations and
lessons recorded. The output of the post-experiment
phase is a revised model that captures and
incorporates what is learned, empirical data that

CCRP Publications
To view endnote references, click your mouse on the number marker to take you directly to correlating reference.
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others can use, the documentation of supporting
experimentation activities, and other findings and
conclusions such as lessons learned.

Unfortunately, there is a misconception that most
of the effort required in successful experimentation
occurs during the actual conduct of the experiment
(the most visible part, when subjects are being put
through their paces or the experimentation model
or simulation is running). In fact, the bulk of the
effort in successful experiments is invested before
the experiment itself is conducted, in the pre-
experiment phase. Moreover, substantial effort is
also required after the experiment is conducted
when the results are analyzed, understood,
extrapolated, documented, and disseminated. This
weak grasp of the required allocation of effort
across the various elements of the experimentation
process often creates mischief by mismatching
resources against the work needed to produce
quality results. Hence, this chapter looks at the
whole process from the perspect ive of  the
experimentation team, identifies all of the critical
steps, discusses their interrelationships, and asks
what must be done in order to achieve success.

While the detailed discussion of each phase that
follows is largely from the perspective of an
hypothesis testing experiment, all of these steps
are a lso needed in both d iscovery and
demonstration experiments. Given the nature of
DoD transformat ion,  th is  d iscussion also
emphasizes exper iments involv ing human
subjects. Also, given the formidable problem of
exploring warfare in anything that approaches a
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realistic setting, a chapter discussing modeling
experiments has also been included.

Pre-Experiment Phase

The objective of the pre-experiment phase is to
define the experiment’s objectives and to develop
a plan for carrying out the experiment. Experiments,
even if they are not explicitly part of a campaign,
are not isolated events. There is, of course, an
existing body of knowledge to draw upon, including
the results of previous research and existing models
that attempt to capture some or all of the behaviors
and relationships of interest. There may also have
been a number of related experiments, including
some modeling experiments, to draw upon.

Well-run experiments wil l  devote signif icant
resources to learning what is already known. This
can avoid blind alleys, save massive effort later,
and allow the use of precious experimentation
assets to move the state of knowledge forward
rather than simply rediscover existing knowledge.
While termed a literature search in academia, this
effort involves much more in a realistic military
context. First, it means knowing what relevant
research (including experimentation, historical
research, modeling, etc.) has been done and
reported in published sources, including sources
such as DTIC (Defense Technical Information
Center). Second, it means an open source search
on the Internet to see what research has been done,
but is not carried in the formal journals or has not
yet had time to reach them. Since Internet sources
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are not rated for reliability, this effort must be
disciplined and accompanied by an analysis of the
research and publication histories of the scholars,
teams, and organizations responsible for each item.
In addition, lessons learned documents, technical
assessments, and other related materials should be
gathered and reviewed. Finally, lead researchers
who have worked similar topics should be contacted
directly to learn about their current work and exploit
their knowledge of the topic. Investment in this initial
review of knowledge often pays high dividends.

Almost all experiments worth doing require a
multidisciplinary team. Since efforts normally begin
with only a part of the experimentation team in
place, it is important that care is taken to bring the
full range of expertise and experience needed to
bear before settling upon an experimental concept
and developing a plan of action. The types of
experiments needed to develop transformational
mission capability packages will, in all likelihood,
focus at least in part on command concepts,
information, cognitive issues, and organizational
behavior. The reader is referred to the NATO COBP
for C2 Assessment (Section 2-D)1 for a point of
departure on the building of an assessment team.
That discussion includes the nature of the skills
that are required.

The pre-experiment phase consists of four major
activities:

•  Formulating the experiment;

•  Establishing the experimentation team;
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• Generating the initial plan for the experiment;
and

• Drafting the detailed plan for the experiment.

Formulation of the Experiment

Effective formulation is fundamental to the success
of all experiments, but particularly in transformational
experiments because the issues are complex and
inherently involve the many dimensions that form a
mission capability package. Proper attention to
formulation will provide a solid foundation upon which
the experiment can be built.

A review of the existing body of knowledge and
previous experiments will provide the team with a
good idea of what is known and what conjectures
have some apparent merit. The first task in
formulation is to properly understand the issues that
the experiment will address and the context in which
the issues will be addressed. This task involves the
explicit definition of several items, including:

• Propositions, hypotheses, and/or relationships
to be addressed;

• Assumptions that will be made;

• The identity of the dependent variable(s);

• The identity of the independent variables;

• Which of the independent variables will be
controlled; and
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• Constraints on the value of the variables for the
purpose of the experiments.

Specific articulation of the problem is really what
the experiment is all about. The assumptions made
are another important part of the formulation of an
experiment. They determine the scope of the
experiment and clearly identify areas that are not
being investigated. Making explicit assumptions is
very important in helping one and all to understand
and evaluate the empirical data that will result from
the experimentation and its interpretation. It is
always good practice to clearly articulate all of the
key assumptions made.

The independent variables are the inputs. Taken
together, they frame the experiment space. They
focus us on the relationships of interest. The
dependent variables are the outputs or products
of an individual, team, or organization. They
represent the characteristics and behaviors that
are important to the success of military operations.
The NCW value chain2 provides a hierarchy of
measures, any of which might be the focus of a
given experiment. Given the complexity of NCW-
related issues and the military contexts in which
they will be applied, many of the assumptions will
serve to fix the values of some subset of their
relationships to one another.

The heart of any experiment is in what we attempt
to control. Control can be exercised in a number of
ways. While the selection of variables to be
control led is part  of  the formulat ion of the
experiment, how they are to be controlled is
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determined in detai l  when developing the
experiment plan. The formulation task is completed
with the specification of constraints that will be
imposed on the variables. Some of these may be a
reflection of the assumptions; others are a reflection
of the scope of the experiment, or as a result of
practical considerations.

There are two major outputs of formulation. First is
the construction of an experimentation model that
contains the key variables and the relationships
(some known, some hypothesized, some the subject
of discovery) between them. Second is the
specification of the relationships of primary interest,
the related assumptions, and constraints.

Formulating Discovery Experiments

Discovery experiments, however unstructured they
appear to be, are no exception to the need for
careful formulation. They need to be designed
around clearly articulated questions. For example,
“what makes for effective collaboration?” is too
vague. A more articulate question would be “how
do differences in group structure, communications
patterns, work processes, participant intelligence,
participant cooperative experiences, and participant
expertise affect the quality of collaboration?” The
second version will make it much easier to design
for success, including the crucial issues of what data
need to be collected and how the data will be
analyzed and exploited. When possible, the subject
of a discovery experiment should also be stated in
terms of the relevant environment or operating
constraints that will bound the analysis. For
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example, determinants for quality collaboration may
be sought at a particular level of command within a
single Service, joint, or coalition context; or a
specific part of the spectrum of conflict (peace
operations, small scale contingencies, etc.); or using
different types of participants (college students,
retired military, active duty military, etc.). Failure to
be explicit about these limiting conditions can lead
to inappropriate conclusions about what is already
known, what has been learned during the
experiment, and what related research still needs
to be undertaken.

Discovery experiments also require an open-ended
articulation of the issue under study. While all
experimentation teams should be alert to insights
or research results that go beyond the specific
issues under study, this is particularly important for
those conducting discovery experiments. The fact
that their purpose is exploratory makes it very
unlikely that every factor that will make a difference
will have been clearly articulated in advance.
Hence, issue definition must be broad in order to
ensure broad capture of what unfolds. This will also
help to ensure open mindedness while the results
are reviewed and interpreted.

Formulating Hypothesis Testing Experiments

For hypothesis testing experiments, the product of
formulation needs to be expressed as a specific
hypothesis or a set of related hypotheses. Unless
simple “if…then…condition” statements can be
articulated, the research issue cannot be converted
into falsifiable propositions and the experiment
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results will not be clear. This includes the null
hypotheses to be tested, the related-assumptions
made, and the identif ication of the baseline
condition for comparison. A good hypothesis
differentiates between two or more treatments or
sets of independent variables so that the results
will be interesting and will advance our knowledge,
regardless of the outcome. For example, the
proposition that “information sharing will improve
group situation awareness in combat” needs to be
restated into a primary hypothesis:

   IF information sharing occurs, THEN group
situation awareness will increase WHEN the
subjects are military professionals working in a
warfighting context.

It also needs to be understood to imply the falsifiable
null hypothesis:

   IF information sharing occurs, THEN no
increase in group situation awareness will be
observed WHEN the subjects are military
professionals working in a warfighting context.

Equally important, the research team will need to
know how these propositions are anchored in the
real world. That is, when the hypothesis is in fact
testable by the experiment, then the experiment
formulation will be complete. For example, the
experimentation team will want an application
context in which it makes sense that information
sharing would increase situation awareness. They
also want to ensure that the context selected for
experimentation is one where improved situation
awareness is believed to be valuable. They may
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also want to design the experiment so they can
also test hypotheses about the importance of that
shared awareness. The ideal experimentation
context would have no prior information sharing.
However, such conditions are very rare today.
Hence, the research team will need to know how
much occurs today and know how the experiment
conditions will ensure that more sharing occurs on
certain topics expected to increase situation
awareness. The team also needs to have an
understanding of what consti tutes situation
awareness and how more of it could be recognized
and measured.

Formulating Demonstration Experiments

 Demonstration experiments will normally have quite
specific issues – they are set up to show that specific
approaches and/or federations of systems provide
military utility (effectiveness, efficiency, speed of
process) in selected situations or operating
environments. These goals can normally be stated
as fairly rigorous hypotheses and sets of interrelated
hypotheses. However, even these “simple”
demonstration experiments should be set up to
identify novel insights. Any time we task military
professionals to operate in new ways or use new
technologies we stand a very real chance that they
will innovate or identify new challenges and
opportunities. Ignoring that likelihood means a very
real chance of missing the opportunity to gain
valuable knowledge.
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Articulating the Initial Experiment Model

One good test of whether the experiment has been
formulated well is to circulate the underlying
conceptual model. This representation should
show the dependent variables, independent
variables, the relationships between them, and the
limiting conditions (context, assumptions, and
factors to be controlled) perceived as relevant. This
initial model is subject to revision and is unlikely
to be stable, and will later form the basis for at
least part of the analysis to be performed. If it
cannot be articulated clearly, the experiment
formulation is probably immature.

Establishing the
Experimentation Team

As the research issue is  c lar i f ied and the
hypotheses are articulated, the research leader will
be in a position to establish the experimentation
team. Hopefully, this step is informed by early
efforts to involve people with a variety of expertise.
It may even be completed while the problem is
being formulated. Experiments are rarely small
efforts, so some help is going to be needed.
Expertise will, for example, be required in each of
the substantive areas identified in the issue and
hypothesis articulation. This may mean military
subject matter experts or operators familiar with
the functions involved (information sharing and
situation awareness in the example above),
expert ise in the academic topics involved
(experiment design, data analysis, modeling),
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knowledge of scenario development, and technical
expertise in generating and instrumenting a
realistic experiment environment. At this stage, the
core of the team needs to be brought on board,
though others (e.g., observers and the bulk of the
hands-on technicians needed to run the detailed
scenarios) can be added later.

Initial Experimentation Plan

Following the formulation of the experiment, attention
is focused on developing an initial experimentation
plan. The process is iterative because a balance
needs to be reached between what is desired and
what is possible. On occasion, the formulation needs
to be revised. Perhaps a variable that we wanted to
control cannot be realistically controlled. Perhaps
important new variables will emerge when the initial
model of the problem is specified.

Two major activities need to be completed in order to
develop the initial experimentation plan:

• Specify the initial research design including the
development of the rough experimentation plan;
and

• Simulate the experiment using the experimental
model.

Initial Research Design

With the experiment formulated, existing knowledge
explored, and a preliminary experiment model
articulated, the experimentation team is in a position
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to take its first cut at the research design itself. This
design contains several crucial ideas:

• What are the treatments of appropriate ranges of
the independent variables and how will they be
operationalized?

• How will each of the variables be measured?

• What factors are believed to influence the
relationships between the independent
variables, intervening variables, and the
dependent variables and the interrelationships
among the independent variables?

• How will control be established for those
variables where it is needed?

• What baseline is being used?  Is it pre-
established or must it be built into the
experiment?

• How much data (nature and number of
observations) will be needed to generate clear
findings and how will those data be generated?

• What analytic strategy is appropriate?

Each of these issues could be the subject of a major
text in itself. However, the discussion that follows
art iculates some principles that can guide
experimentation teams.

The Variables

This section discusses the nature of the variables
associated with transformation experiments. They
can be put into three groups: dependent ,
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independent, and intervening. First, the dependent
variables, which will form the objective function in
the analysis that accompanies the experiment, must
be chosen to ensure that they are valid and reliable
indicators or measures of the anticipated benefits
from the innovation being investigated. Valid means
that the measures represent all of the concepts under
study. This may well require multiple variables. For
example, an innovation designed to improve
decisionmaking may well mean that the decisions
are both faster and more likely to be correct.
Measuring only part of the concept, for example
decision speed alone, would make the results of the
experiment misleading. Reliable means that the
measures selected are objective so that the same
values will be recorded for the same observations.
This can be a meaningful challenge when human
behavior is to be recorded or human observers are
employed. Thinking at this stage needs to extend to
what will need to be observed and recorded and how
that will be done. A more thorough discussion of
dependent variables is included in the chapter
dealing with measures of merit and data collection.

Second, the independent variables of interest must
also be clearly articulated and the process by which
they will be introduced into the experiment must be
thought through.  Moving from the concepts of interest
in the initial model to the specific treatment to be
introduced often proves challenging. This is
particularly true when the richness of a true mission
capability package must be introduced. While
academic researchers will argue that experimenting
with smaller elements will produce clearer findings,
military innovation almost always involves a syndrome
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of factors. For example, analyzing a new technology
requires analysis of (1) the work process shifts away
from current practices to new doctrine crafted to exploit
the technology, (2) changes in the organizational
structures and information flows required to exploit
the technology fully, and (3) alteration in the roles of
those employing the technology. Hence, a mission
capability package concept will normally form the basis
of the treatments to be assessed. As with the
independent variables, the experimentation team
should try to avoid partial treatments that include only
some elements of the mission capability package. For
example changes that introduce a technology and
supporting work process, but do not allow
organizational changes believed necessary for them
to be fully productive, will only show part of the
potential impact from the innovation. They may even
generate results that lead us in the wrong direction.

The initial experiment design does not require
detailed articulation of the treatments. It does
require understanding of how many there will be
and what will be required to support them in the
experiment. However, the development of detailed
treatments can continue until it is time to integrate
them into the federation of systems supporting the
experiment and training those who will use them.
The Command Post of the Future experiment on
rapid visualization makes a good case in point. Their
goal was to compare new presentation technologies
with existing U.S. Army standard representations
of a land warfare battlespace. In this stage of the
process, the decision had been made to have two
teams of researchers independently develop novel
representations. Hence, the experimentation team
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could assume that the bundles of technologies and
approaches (different use of shapes, colors, ways
to represent movement and the passage of time,
selection of different map backgrounds, etc.) would
be organized into two treatments, each of which
would represent a set of new ideas. A third treatment
was the baseline representing the situation
according to existing doctrine and practice. This was
adequate for the initial experimentation plan.
Indeed, several months would pass and a great deal
of preliminary research would be done before the
precise contents of the two innovative treatments
were determined. However, knowing there were two
innovations and a baseline was enough information
to permit experiment planners to continue their work.

Identifying the intervening variables, those primarily
of interest because they impact the relationship
between the independent and dependent variables,
must also be done with care. This is an area where
prior research is particularly beneficial because it
will help the team identify important factors and how
they can be expected to influence the behaviors
observed in the experiment.  If these factors are not
understood and identified before the experiment, they
can be expected to have a major impact on the
experiment’s results and to confound the team’s
efforts to improve knowledge.

The most common intervening factor in DoD
experiments has been the level of training.  Again
and again, reports have shown that an experiment
failed to ensure that the subjects had adequate
training on the new technology being introduced and
therefore the experiment’s results were dominated
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by the learning curve of the subjects. This means, of
course, that the full benefits from the innovation were
not achieved and its full potential could not be
assessed in the experiment. In many cases, the weak
training occurred because of a failure to cut off
development of the new technology in time to create
high quality training programs. The lack of a “good
idea cut-off date” has been cited in numerous post-
experiment reports over the last decade as a source
of problems because the technologies were not ready
when needed and the subjects had inadequate time
to train on them. In other cases, the problem has
been too little time allocated to the training process.
All too often, training is shoehorned into a fixed
schedule rather than given the importance and time
it deserves. The exit criteria from training should be
some level of proficiency, not a fixed number of hours
of training. Thus, experimentation teams need to
conduct performance-based testing on the subjects
so that all the participants have at least a minimal
capabil ity before the experiment starts. The
experimentation team can then use statistical
controls to analyze the results in ways that factor
skill level out of the analysis.

A number of other factors can intervene in many
military experiments and will often need attention. A
partial list includes:

• Reliability of the systems being tested and the
infrastructure underlying the experiment;

• The intelligence quotients (IQ) of the subjects;

• The experience of the subjects;
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• Experience of the subjects working together;

• Physical limitations of the participants relevant to
the research (color blindness for presentation
technologies, distances from individuals to
screens they are responsible for monitoring,
etc.); and

• Learning by the subjects during the experiment.

Note that many of these deal with the natural variety
of the human beings involved. This implies that
testing of participants and research into their
backgrounds can be used to ensure that they are
assigned to treatments so that their individual
differences are not a confounding factor. In large
experiments, this is normally done by random
assignment of subjects. At a minimum, the potential
intervening variables need to be measured so that
their impact can be factored out in the analysis. In a
simple example, experimentation with a new
collaboration tool may involve communication
equipment or software that fails during part of the
experiment. The experimentation team needs to
anticipate the need to record downtime, to identify
the workstations impacted, and to isolate data that
may have been impacted so as not to skew the
analysis. Similarly, if, despite random assignment,
one team in a collaboration experiment was found to
be composed of individuals with significantly higher
IQs than the others, then the experimenters need to
be ready to use statistical analysis to control for that
difference and ensure that it does not skew the
results. At this stage, the key is to have identified
the relevant sources of potential bias and developed
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a plan to (1) avoid them if possible, (2) test for them
during the experiment, and (3) prevent them from
impacting the results.

Baseline and Treatments

The initial research design also needs to be very
clear about the manipulations and comparisons
being made. Experiments are inherent ly
comparative. DoD experiments are conducted in
order to see (1) whether some improvements can
be expected from some innovation or (2) which of
two or more alternatives will yield the greatest
benefit. Hence, it is often crucial to know how well
the current practice performs. In other words, some
baseline is needed for comparison. The baseline is
sometimes available from prior work. For example,
the rationale for the innovation may be lessons
learned or requirements analyses that have
documented current pract ice and found i t
insufficient. The process of time critical targeting,
for example, has been documented as inadequate
because it is too slow to strike many targets of
interest to the United States. In cases like this, the
baseline exists and change from it can become a
very useful objective function. However, the
experimentation team must also make sure that its
experiment is realistic enough that a fair comparison
can be made between the real world baseline and
the experiment results.

For many innovations, however, no good baseline
data exists at this stage. For example, the question
of how many errors occur in situation awareness
in Joint Task Force (JTF)  operations is important,
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but documented only sporadically and in very
different contexts.  Hence, a research team seeking
to experiment with tools and processes designed
to minimize those errors would need to build a
baseline condition (no innovation) into the design.
Building it into the experiment plan ensures that
data on situation awareness are collected in the
same way and under comparable conditions so that
valid and reliable  comparisons can be made
between treatments including innovations and the
baseline condition.

Sample Size

The initial research plan also needs to take a first cut
at the technical issues of how much data are needed
and what will be the analytic strategy. These are rich
topics and must ultimately be dealt with by having
experimentation and analysis expertise on the team.
However, a few rough guidelines can be offered.

First, experiments should be designed with the law
of large numbers in mind. Most of the parametric
statistics preferred for experimentation do not apply
to sets of observations less than 30, though
meaningful comparisons can be made between sets
of 15, and non-parametric statistics can deal
efficiently with as few as a handful of cases. Second,
it is necessary to know what is being observed and
to maximize the frequency with which it will occur
and can be observed. For example, early efforts to
experiment with alternative planning processes
were hampered by the low frequency of plan
production. However, by shifting the unit of analysis
from the plan to the elements of the plan (missions,
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assets, schedules, boundaries, and contingencies),
the research team multipl ied the number of
observations dramatically. At the same time, they
also allowed the analysis to penetrate the problem
more deeply by examining which parts of the plans
tended to work better or worse under different
scenarios and planning contexts.

The broad analytic strategy can usually be inferred
from the preliminary model and the finite definitions
of the variables to be observed and manipulated. If,
for example, a discovery experiment is looking at how
work processes and new technologies can be
manipulated to increase speed of decisionmaking, the
analytic strategy will be to compare the treatments
while capturing the specific processes used and the
way the technology is employed. This would imply
difference of means tests that compare both the
alternative treatments (combinations of work
processes and technologies consciously built into the
experiment) and those time periods during which novel
work processes, structures, or methods of employing
the technology were reported. The initial
experimentation design would need to ensure a
context in which dozens of decisions were made. If
only a handful of decisions occur, the experiment
results will not be rich enough to see patterns in the
subjects’ behavior.

If, by contrast, a hypothesis testing experiment were
focused on the use of alternative collaboration
technologies, holding work process and structure
constant, the analytic strategy might well be to build
an explanatory model that accounts for all the
variation in the objective function. In this case, the
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treatment (alternative technology) would ideally be
placed into a multivariate statistical package where
the influence of intervening variables believed to be
relevant could also be considered. This allows the
experimentation team to test propositions about
factors such as learning effects within the experiment
and differences between subjects and build a richer
model of the way collaboration can be employed in
different contexts. Here again, however, dozens of
relevant behaviors (collaboration sessions) will be
needed to ensure rich results.

Rough Experimentation Plan

As the initial research design emerges for the
experiment, the team will need to turn its attention
to the plan necessary to carry it out. Plans,
including experimentation plans, always involve
five key elements:

• Missions - what is to be done;

• Assets - which organizations are responsible
for each task; what resources do they have for
them, and which other organizations will
provide the support for each task;

• Schedules - when the tasks and subtasks are to
be completed and how those efforts will flow
over time;

• Boundaries - how the pieces of the effort are to
be kept independent enough for successful
implementation, but at the same time made into
a coherent whole; and
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• Contingencies - foreseeable circumstances
under which missions, assets, schedules or
boundaries will need to be changed.

As a practical matter, five specific items must be
included in the detailed experimentation plan: the
facilities to carry out the research design, the
subjects, the scenarios to drive the experiment, the
observation plan for data collection, and the
experimentation schedule.

Finding the right facilities and fixing the dates for the
experiment, including the rehearsal or pretest, are
core issues. The nature of the experiment largely
defines the facilities required. These include not only
rooms or hangars in which to conduct the experiment
trials, but also spaces for training and meeting with
the team, meeting rooms for observers, spaces for
equipment, spaces where visitors can be briefed
without disrupting the experiment, and facilities to
feed and house the participants. Facilities also
include the computers and peripherals required and
any specialized observation equipment necessary.
Security is often an issue, not only for conducting
the experiment, but also for the areas from which it
must be supported. Most useful research and
experimentation facilities are very busy at the time
of this writing. Planning ahead will almost certainly
require months of lead time and may well require a
year or more. Facilities are both crucial and complex.
A senior member of the experimentation team will
normally be assigned to manage this effort and
another person on the team wil l  be given
responsibility for detailed administrative support.
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Subjects

Human subjects will be part of the experiment, unless
it is a pure modeling experiment. They must be
identified and arrangements must be made for their
participation. This is a very difficult task, but a crucial
one because the results of the experiment can only
be applied with confidence to the population
represented by the subjects. Here, again, a few
guidelines can be offered.

Academic experiments typically rely on student
populations for their subjects. They do this because
they are normally trying to research fundamental
human issues – how some stimuli are perceived,
how individuals behave under di f ferent
circumstances, how small groups function or change
their work process under specific conditions, and
so forth. When they want to understand the
perceptions or behaviors of specialized populations
(for example, older individuals, professionals who
share some educational and work experiences, or
those who belong to a working culture such as
medical technicians) the academics must find pools
of subjects representative of those populations.

DoD experimenters face precisely the same
choices. In order to understand the behavior
expected from mil i tary professionals, either
individually or in groups and organizations, subjects
typical of those populations must be used. To take
a typical example, those concerned with the
transformation of the military are interested in how
novel tools and techniques will be employed 5 to
20 years into the future. Clearly, this cannot be done
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using college students unless the research focuses
on very basic human perceptual issues (which
colors and shapes are more easily perceived under
conditions of distraction and time stress) or
processes (how should work be allocated between
humans and computers with a given level of
information processing capability). If the problem
involves military expertise, then the subjects must
start with that expertise. At the same time, the use
of retired personnel as surrogates, or even active
duty senior personnel, will require that they be
willing and able to accept retraining in order to get
into the future mindset necessary for the experiment.
Some clever researchers have even employed
teams of junior personnel they believed would relate
differently to their technical innovations than their
senior counterparts. They are trading off a different
attitude about systems and innovation against
established expertise.

The introduction of different pools of subjects (as a
way of controll ing for some of the expected
intervening variables) will, of course, impact the
research design. Sufficient numbers of subjects of
each relevant type and observations on their
behaviors will be needed to test the hypothesis that
the subject type did make a difference and more
importantly, the null hypothesis that the subject type
did not make a difference. The same knowledge can
be gained by building different types of subjects into
an experimentation campaign design by first
conducting the experiment with one pool of subjects
during one experiment, then trying to replicate the
experiment using a different pool of subjects. This
may be a useful strategy over t ime, testing
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propositions with different groups to see how broadly
the innovation is useful. At this writing, DARPA’s
Future Combat System Command and Control
Program, undertaken in close cooperation with the
Army, has conducted an experiment with a flag officer
supported by field grade officers and is planning to
replicate it with company grade officers and cadets
from West Point. Their goal is to understand how
their innovations are employed by capable operators
with different mixes of training and exposure to
modern computing technologies.

Subjects also need to be unbiased in that they have
no stake in the outcome of the experiment. For
example, if the experiment is assessing the military
utility of an innovation, people responsible for the
success of that innovation are inappropriate
subjects. Even if they make every effort to be
unbiased, there is ample evidence that they will find
that almost impossible. Moreover, using such
“contaminated” personnel will raise questions about
the experiment results. In demonstrat ion
experiments, of course, such advocates will often
be at the core of those applying the innovation. In
this situation, where the utility of the innovation has
already been established, their extra motivation to
ensure that the innovat ion is successful ly
implemented becomes an asset to the effort.

Subjects and teams of subjects also need to be equal
in capability and substantive knowledge. In the event
that some of the subjects have richer knowledge of
the substance or processes involved in the
experiment, that difference should be fed back into
the experiment design. The design can sometimes
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be adjusted so that the bias does not impact the
treatments in an unbalanced way (for example, the
experienced subjects can be assigned so they are
equally involved in all treatments, so their impact will
“wash out” across applications). In any case, the fact
of a difference in expertise or experience can be
recorded and included in the data analysis plan to
ensure a statistical test is run to detect any impact,
measure its influence on the results, and provide a
correction that will prevent misunderstanding or
misinterpretation of the results.

Subjects need to be properly motivated. While
academic researchers are typically careful to carry
out double-blind experiments so that the subjects
are not aware of the true research issues until after
their participation, this is seldom possible with DoD
experiments. Academic experiments also use a
variety of incentives to ensure motivation such as
grades for participation and monetary rewards for
success are the most common incentives. These
are not possible in most DoD settings. For example,
the justification needed to capture the time of military
and DoD civilians to participate in experiments
requires a clear statement of the objectives.
Moreover, unless they are given reason to believe
that their efforts are contributing to significant
efforts, adult professionals of all types, including
military personnel, will not be motivated to put forth
the best possible effort. Hence, the general purpose
of the experiment should be made clear to the
subjects. Successful DoD transformation, while
avoiding change that does not have military utility,
is a widely shared goal and has been shown to
provide strong motivation to active duty military
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personnel, DoD civilians, reserves, national guard
personnel, and the contractors who support them.
However, these messages must be made clear to
the organizations that are asked to provide subjects
for experimentation.

In addition, if professional subjects believe they are
being evaluated, particularly in artificial contexts such
as those needed for experimenting with future
organizational and doctrinal concepts, they will be
hesitant to be creative and energetic when
participating in the effort. In essence, they will seek to
avoid risk. Hence, the experimentation team needs to
make it clear to subjects that they are not the subject
of the experiment and that it is the innovation or
mission capability package being assessed, not the
performance of individuals or teams. This message
must also be conveyed to organizations being asked
to provide subjects.  Otherwise they may be reluctant
to provide subjects or convey a wrong impression
about the purpose of the experiment.

Subjects must also be available for the entire time
required. Very often, the type of people needed as
subjects are very busy. The more skilled they are,
the more demand there will be for their time. Hence,
the experimentation team must make the minimum
necessary demands on their time. At the same time,
requesting insufficient preparation time for briefing,
training, learning doctrine and techniques, and
working in teams, as well as insufficient time to
debrief them and gather insights and knowledge
developed during their participation undermines the
experiment. Failure to employ the subjects for
adequate lengths of time will badly compromise the
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experiment and may make it impossible to achieve
its goals. This has been a very real problem in many
DoD experiments. This has been particularly true
when the experiments were designed for several
spirals in order to create cumulative knowledge and
train subjects over time in order to ensure the
success of major experimentation venues such as
JEFX and Millennium Challenge ‘02. Hence, the time
commitment required for success must be fulfilled
and the importance of personnel stability when
requesting support is very high.

Where are subjects likely to be found? Experience
suggests several answers.

• Some service organizations designate particular
units to support particular experiments, while
others identify particular organizations for
experimentation over time.

• Some (i.e., JFCOM) are creating specialized
surrogate organizations populated with retired
military personnel or some mix of active duty
and retired personnel.

• Some experiments are conducted as part of
regular training exercises, either CPX or FTX.
As discussed in Chapter 13, this “piggybacking”
can be difficult as there is often tension between
the training objectives and the experiment
objectives.

• Pools of casual officers awaiting assignment or
arriving early for military schools can sometimes
be employed.



91Chapter 5

Efforts to introduce new technologies, not only
JWIPs and ACTDs, but also CINC and Service
experimentation may provide opportunities to
experiment with mission capability packages.

Military schools can sometimes be persuaded to build
relevant experiments into their curriculum. The Naval
Postgraduate School has been particularly
successful at this and the War Colleges can provide
highly qualified pools of subjects. However, direct
linkage to educational goals and incorporation into
the curriculum are usually necessary for military
school participation. This typically means long lead
times for planning.

Reserve and National Guard units can provide
subjects for experiments that are relevant to their
missions. Again, some planning and lead time are
typically necessary.

For issues that deal with human perception, the
traditional sources such as college students
and people attracted by advertising may be
perfectly adequate.

Commands that have an interest in a particular
experiment often must take the lead in making sure
that enough subjects with appropriate backgrounds
can be made available to ensure successful
experimentation. Experimentation teams need to
include military personnel and/or retired military
personnel who can help them identify appropriate
sources of  subjects and communicate the
legitimate needs of the experimentation team to
those organizations.
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Scenarios

The choice of the scenarios or situations to be used
in an experiment needs to begin as the rough
experiment plan is developed. The NATO Code of
Best Practice for C2 Assessments contains a detailed
discussion of scenario selection and is recommended
reading for those who need background on the
subject. The key principles include:

• No single scenario will provide the breadth
needed for a successful experiment.

• The model of the problem, with emphasis on the
limiting conditions as well as the independent
and dependent variables, should be the driver in
scenario selection.

• Scenarios should be designed to exercise
particular levels of command (tactical,
operational, etc.) because the types of
information and level of detail needed change
with those levels. At the same time, at least
three echelons of command (one above the
experimentation focus and one below as well as
the primary echelon under study) will need to be
represented in the scenario to ensure adequate
richness for validity and credibility.

• The experimentation team should seek to define
the “interesting range” across which scenarios
can be spaced to generate a sampling of the
problem under study.

• Scenarios must be given enough depth to be
credible to the subjects and to allow meaningful
interpretation of the results.
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• Ideal scenarios permit creativity. While scripting
will be essential to establish the context for an
experiment, free play by both sides will be
necessary to achieve the levels of engagement
needed by the participants and meaningful tests
of propositions involving human perceptions,
behaviors, and decisionmaking.

• Scenarios, particularly in-depth scenarios
needed for testing rich concepts and
innovations, are expensive and time consuming
to create. Hence, reuse of scenarios will be
wise, provided that it does not compromise the
experimentation goals.

• While approved or accepted scenarios
developed on the basis of current military
guidance should be used when appropriate, they
may not provide an adequate basis for
assessing innovations designed for the longer
term future.

Observation/Data Collection

The observation plan – how data will be collected
during the experiment – should be initiated as part of
the experiment plan. This involves thinking through
all three classes of variables (independent,
dependent, and intervening). The observation plan
should emphasize automated collection mechanisms
that are as unobtrusive as possible. A few principles
should be emphasized:

• No single tool or technique is likely to generate
all the data required for a successful experiment.
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• Observation should be as unobtrusive as
possible.

• Automated collection should be used whenever
practical. For example, computer systems can
report how they are used and track automated
interactions.

• Human collectors will be needed when human
perceptions, decisionmaking, or collaboration
are used.

• If recording devises are used, the question of
how their results will be employed cost
effectively must be assessed.

• Survey instruments, whether applied to observer/
controllers, experiment subjects, senior mentors,
or other subject matter experts should be cross-
checked by real time observation and empirical
data.

• Observations should be shielded from the
participants and from visitors of others outside
the experimentation team until they have been
validated and analyzed.

The key issue in designing an observation plan is
access. The experimentation team must understand
the physical situation in which data must be
collected and ensure that they can be collected. This
means both physical access and also enough time
to ensure that survey forms can be completed,
interviews conducted, data recorded, and subjects
debriefed properly.
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Feasibility Review and Exploratory Modeling

With dates fixed for the actual conduct of the
experiment and a better idea of what is going to be
done, work can begin on the schedule and
deconflicting of the activities of the experimentation
team. Before committing itself to a detailed
experimentation plan, the team should (1) be
satisfied that the schedule is feasible, and (2)
attempt to develop an executable model or
simulation of the issue or problem under study. To
review the schedule, a PERT chart can provide a
sanity check with respect to the interdependencies
among activities and resources allocation. This is
both a check on the logic underlying the hypotheses
of interest and also an opportunity to explore the
research space and find the “interesting range”
where the experiment should focus.

The logic check performed by bui lding an
executable model is essentially one that ensures
that the abstract ideas expressed in the hypotheses
can be integrated and expressed in a somewhat
more concrete form. The tools for this kind of
modeling will be simple, employing systems
dynamics, influence networks, IDEF 0, colored petri
nets, or similar logics. (See the NATO Code of Best
Practice for C2 Assessment for a discussion of the
types of models and tools that might be considered.)
Even so, they wil l require translation of the
hypotheses of interest into sets of related values
and integration of the elements of the analysis into
a coherent theory.
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Once the basic concepts have been translated into
an executable model or simulation, it can be run
across the range of plausible values for each
variable of interest to determine those values and
combinations of values that are worth researching
in detail. Often the extreme values for many
variables are simply not interesting, or they make
no difference. In some cases, “knees” in the curves
will be found – regions where the rate of change in
some variable is altered. These are obviously worthy
of detailed exploration.

Detailed Experiment Plan

While the necessary modeling and simulation are
occurring, the experimentation team needs to be
developing the detailed plan for the experiment. This
builds on the earlier work done when the facility was
selected, but shifts from relatively abstract issues to
the very concrete problem of how the experiment will
actually be conducted. The activities, which include
identifying the necessary infrastructure, thinking
through the controls needed, and developing an
integrated set of data collection and data analysis
plans, are typically done in parallel because they
interact in important ways.

Planning for the
Experimentation
Infrastructure

Typical infrastructure issues that arise include the
number and variety of work stations for the subjects,
controllers, and observers; the architecture(s) linking
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them; the equipment needed to automatically collect
data (and other information required by the
Observation Plan); the specific simulation(s) needed
to drive the experiment and to capture what emerges
from the subjects’ actions; and the systems needed
to support analysis of the results. The level of
classification for the experiment must also be
considered when these decisions are made. These
infrastructure issues are treated as a bundle because
interoperability is a key issue. Failure to link the
elements of the experimentation infrastructure
together will result in a “kluge” of systems that is
inefficient, raising the cost of the experiment, and
increasing the likelihood that the experiment will not
be fully successful. A senior member of the
experimentation team normally takes responsibility
for this element of the plan and its execution.

Controlling the Controllables

Having recognized that significant intervening
variables exist, the experimentation team must
decide, as part of the detailed planning, how their
influences will be controlled.  Some factors can be
handled directly by the experiment design. This is
strongly preferable if the differences are at the
nominal or ordinal level of measurement because
these types of differences are often difficult to
control statistically. If, for example, teams of subjects
are drawn from several nat ions (nominal
differences) or groups with different levels of
expertise (typically ordinal differences), the
research design should provide control for these
factors by ensuring each type of group is
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proportionally represented in each treatment. Other
factors, particularly those for which interval or ratio
values are readily available, can be controlled
statistically. For example, differences in scores on
IQ tests are interval, while differences in years of
relevant experience are ratio. Both types can be
controlled statistically as long as the number of
subjects is adequate. This solution is also available
when the subjects have taken numerically scored
tests for performance on the systems supporting the
experiment or being evaluated. Some variation in
outcome can be expected based on individual
differences in aptitudes, skills, or performance, and
research designs and experiment plans seldom
allow perfectly equal distributions of subjects on
these factors. However, the superiority of the control
introduced through the design will minimize the
chances of a confounded experiment and reduce
difficulty in detecting and assessing interactive
effects.

Controlling Exogenous Influences

Visitors, particularly senior visitors, must be
understood as a potential source of bias in any
experiment. Their interactions with experimentation
subjects, or even their presence in the
experimentation situation can be expected to
distract the subjects and alter their work processes.
Hence, a well-designed experiment will include
provisions for hosting visitors and providing them
with an opportunity to understand the experiment,
but will prevent them from impacting the results. The
one-way mirrors built into almost all commercial
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experimentation and focus group facilities are a
recognition of the importance of non-interference.
DoD experimentation needs to recognize this reality
and make provision to avoid this type of bias. A good
technique used in some cases is to videotape all or
selected parts of an experimentation session and
use the tape as a way of giving senior visitors a
rich understanding of the experimentation process.
Another is to invite visitors to act as subjects in trials
like those being used. This is usually easy when
individual subjects, rather than teams, are being
used. However, it requires an experimentation
workstation, drivers, and other support to make it
realistic. Like all such uses of videotape, however,
the privacy rights of the participants will need to be
preserved and appropriate permissions obtained
before this technique can be used.

Data Collection and Analysis Plan

The final key element of the detailed plan is the
development of an integrated data collection and
data analysis plan. Teams that produce these
documents separately almost always find that they
have problems in analysis and interpretation. A data
collection plan includes all of the variables to be
collected, all of the places they are to be collected,
all of the means of collection, and all of the places
that the data will be stored for processing. The most
common errors here are failures to provide for
component failures (substitute data collectors, spare
equipment, etc.), failure to provide collectors with
adequate access (terminals, headsets, security
clearances), lack of communication equipment so
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they can gather data, consult regularly, and flag
problems from their workspaces without the subjects
overhearing them, and failures to provide adequate
storage (including classified storage). The data
collection plan is an excellent candidate for peer
review because it is crucial and because it needs
to be both complete and clear.

The data analysis plan includes whatever processing
or data reduction are required to convert what has
been collected into a form that can be analyzed in the
ways desired and the plan of action for that analysis,
as well as the interpretation of the results.

Indeed, while experimentation teams collect first and
analyze later, they must reverse that thinking in order
to ensure that collection fully and effectively supports
analysis. Common errors include failure to recognize
the time and effort necessary to organize raw data
(data reduction, structuring of analytic files, etc.),
failure to ensure that the qualitative and quantitative
elements of the analysis are integrated and used to
cross-check one another, and failure to ensure that
the analysis looks for insights from the full range of
participants (subjects, observers, senior mentors,
white cell participants, etc.). The data analysis plan
should also include preparations for the use of
modeling and simulation to examine excursions from
the original experiment, perform sensitivity analyses,
and update and improve the model used to understand
the problem. The data analysis plan is also an
excellent candidate for peer review.
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Conduct of the Experiment

The development of a detailed experiment plan is
essential because of the complexity inherent in
transformation experiments. However, just as no
military plan ever fully survives contact with the
enemy, so no plan for an experiment can ever be
implemented without adjustment, refinement, and
augmentation. In preparing for and conducting an
experiment, three steps are essential:

•  Experimentation environment set-up;

•  Rehearsal, or pretest; and

•  Execution of the experimentation plan.

Experimentation Environment
Setup

An experiment requires an artificial environment.
This includes all the elements of infrastructure
identified in the experimentation plan including
workstations for the subjects; simulations or other
drivers for the scenarios; communications linkages
among the subjects, controllers, observers, and
technicians supporting the experiment; databases;
and logistics. This is a major effort, particularly for
the technical support personnel. It takes time, often
far more than originally estimated, to set the
equipment up and check it out. Often the individual
systems work properly, but they have problems
working together, exchanging information, or
accessing the same data. Integration of even well-
tested and reliable system components is a
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formidable undertaking. Hence, appropriate lead
time is needed to ensure that all the systems
needed are up, interacting properly, and ready to
support the experiment. This cannot be done
effectively at the last moment. Problems that are
experienced with the functionality or the availability
of the systems impacts the subjects and the nature
of the data collected. Thus, given that the proper
functioning of the systems is critical to the success
of an experiment, adequate attention, time, and
resources need to be allocated to this activity.
Experience shows that, in the name of efficiency
and as a false effort at economy, this step is
sometimes left until the last minute. More than one
experiment has been undermined because the
team responsible for the facility tried to bring it
together at the last minute and found they had
glitches that prevented timely and sufficient
training or initiation of the experiment trials.

In some cases, only a part of the experimentation
setup has been made available for the pretest.
For example, only a small subset of subject
workstations has been used despite the fact that
the conduct of the experiment called for a much
larger number. The experimentation team must
make every effort to ensure that the initial setup
is  des igned and tes ted in  ways that  are
challenging enough to ensure that the test is an
adequate representation of the environment
required for the experiment. Moreover, plans will
be needed to complete and properly test the setup
between the rehearsal and the conduct of the
larger experiment.
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Pretest or Rehearsal

Conducting a pretest in which all the myriad elements
required for a successful experiment are brought
together and made to operate successfully is an
essential prerequisite for a quality experiment. In
experimentation, the numerous hidden pitfalls merely
prove that “the devil is in the details,” however, proper
planning and careful execution can overcome these
dangers and produce great successes, leaving
sponsors and stakeholders proclaiming that “God is
in the details!”3 Holding a rehearsal can be expected
to improve every aspect of the experiment, from the
supporting scenario through the data collection and
subsequent analysis. Failure to hold one will almost
inevitably mean that some aspects of the effort will
need to be corrected on the fly, greatly decreasing
the likelihood of success.

To be really useful, every aspect of the experiment
should be pretested. All the technical systems to
be used should be brought online – simulation
drivers; workstations for subjects, observers, and
controllers; the full package of instrumentation; the
experimentation treatments; communications
devices; as well as the computers where data will
be captured and stored.

The pretest should be scheduled at least a month
before the experiment itself in order to allow time to
diagnose the sources of problems, develop effective
solutions, implement them, and conduct limited tests
to make sure that the problems have been resolved.
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Training

Subjects, observers, control lers, and other
participants need to be trained for the pretest.
Training should precisely address the skills to be
used in the experiment. Moreover, the subjects
being trained should be comparable to those who
will participate in the experiment. Full trials should
be run (though they may well lack the rigor of those
to be made during the experiment) in order to
enable dialogue between the members of the
experimentation team, the subjects, and the
technical personnel supporting the rehearsal.
Observer training should also be rehearsed and
data taken in order to ensure the training is
successful and the observers have the tools and
access they need for a successful effort. Training
will also extend to the controllers of the white and
red cells to ensure they can play their roles
ef fect ively and wi l l  not  unduly impact  the
treatments under study.

Most of the results of the pretest will be obvious, but
others may require some reflection and study. Time
should be built into the schedule to provide an
opportunity to reflect on the results of the pretest
and to take corrective action. Because elements of
an experiment are heavily interconnected, changes
needed in one area will often impact or depend upon
changes in other aspects of the experiment. For
example, learning that the subjects need more
training on the systems they will use must have an
impact on the training schedule and may require
development of an improved human-computer
interface as well as new training material.
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Each opportunity to improve the experiment should
be fed back into the detailed experiment plan, both
to ensure that the new knowledge is exploited and
to ensure that its impact on other aspects of the plan
are recognized. The detailed experiment plan
remains an open document, changing in order to
meet new challenges, but also providing a stable
overall structure around which the aspects of the
experiment are organized.

Execution of the Experiment

At this point the reader should certainly recognize
that a lot of effort and thought will have to be put
into getting ready for successful execution and
may recognize the crucial role of those efforts in
successful experimentation. However, all that
hard work and careful thought can also be wasted
if the actual conduct of the experiment is not
carried out diligently.

Training of all participants is the last opportunity to
identify and fix problems. It should begin with training
the support team that operates the systems and who
will need to respond if there is a problem as well as
capture data about the problem. They will often train
some of the observers, controllers, or subjects on
the use of technical systems, so this “train the trainer”
activity is very important.

As with the pretest, observers and controllers also
need to be trained. While they have different roles,
the actions they take during an experiment are often
interdependent, so they should spend at least some
of their training time together. This should include
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discussions of the objectives of the experiment and
how they will need to work together to preserve its
integrity. Training also needs to include a clear
understanding of expected roles and behaviors so
they do not bias or impact the results of the
experiment, as well as ensuring that they can
operate those systems that they will depend upon
during the experiment.

Observer training cannot be accomplished
effectively in the abstract. Data collectors need to
collect data and be critiqued so their efforts will be
productive. Realistic practical exercises and
reliability testing are necessary. Often, part of the
observer training can be combined with the
familiarization training for subjects and should be a
hands-on opportunity to actually collect data under
supervision. This practice also allows the subjects
to become familiar with data collection processes
and to raise any questions or concerns they may
have before the experiment trials begin.

As noted earlier, subject training is particularly
important and has proven to be a major problem
area in a number of past DoD experiments.
Training must cover an understanding of the
purpose of the experiment, substantive issues
regarding the background or scenar io,  the
processes the subjects will use to perform their
roles, their roles in providing data, as well as the
technical skills necessary to perform their roles.
To preserve the integrity of the experiment,
subjects should be able to pass proficiency tests
before the trials begin. Given the relatively small
numbers of subjects, subjects that are not properly
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equipped to perform their assigned tasks create
significant problems later during the analysis
phase. When this type of subject screening is not
practical, scores on those tests can be used as a
basis for statistical controls that either mitigate or
hopefully prevent differences in proficiency from
biasing experimentation results. Training is also a
final opportunity to ensure that the subjects are
highly motivated. Obtaining subjects who are
properly motivated is achieved initially by subject
selection, but all adults are capable of “turning off”
if they believe the activity they are in is not serious
or does not serve a serious purpose. Hence,
sessions that  inc lude both mot ivat ion and
opportunit ies to ask quest ions and provide
feedback are very important during training.

The imminent prospect of an experiment tends to
concentrate the mind and bring all the actors,
including senior visitors, to the center of the stage.
The actual conduct of the experiment is almost an
anticlimax when it finally occurs. In theory, this
conduct of the experiment harvests all of the prior
work and thought and will, hopefully, proceed
smoothly. At this point, the major tasks of the
experimentation team are:

• Quality control – ensuring that the experiment
that takes place is the one that was planned and
designed, with no outside factors intruding in
ways that undercut the purposes of the effort;

• Data integrity – ensuring that the right data are
collected, that no biases are introduced by the



108 Code of Best Practice for Experimentation

collection, aggregation, storage or data
reduction efforts; and

• Debriefing of all the participants to ensure that
qualitative data are collected, issues that might
impact the data or its interpretation are fully
understood, and the insights available from
everyone (subjects, observers, controllers, and
the support team) are captured while they are
fresh.

In fact ,  however,  conduct ing a successful
experiment often requires practical and intellectual
agility. Things frequently go wrong. Systems break
down, whether they are computer systems,
reproduction systems, communication systems, or
anything else. People who appeared to have
mastered skills or sets of information during
training flounder when they are asked to apply
them. Participants become il l or unavailable
because of family concerns or mil i tary duty
imperatives. Schedules prove unrealistic. Senior
visitors appear unexpectedly and must be made
welcome and given quality information without
impacting the experiment. The list goes on and on.
In fact, if it were not for all of the effort and thought
applied in developing the detailed experiment plan
and conducting the pretest, problems would simply
overwhelm the experiment team and cripple the
experiment. Proper contingency planning makes
it possible to deal with problems as they arise.

Each and every one of the problems encountered
will need to be recorded clearly and thoroughly,
so that the impact upon the experiment can be
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tested, and dealt with effectively to achieve a
successful experiment.

Many of the common problems should have been dealt
with during the pre-experiment phase when the
experiment plan was developed. Robust and
redundant systems should have been selected.
Refresher training should have been built into the
schedule. Reserve talent should have been built into
the observer, controller, and support teams. Extra
subjects should also have been recruited and trained
along with the main group. Finding useful roles for
these individuals, if they are not needed in the main
design, is often a test of the creativity of the
experimentation team. Plans for handling senior
visitors should be in place. In summary, single points
of failure should be eliminated.

However, Murphy’s Law, that “whatever can go
wrong, wil l  go wrong,” applies frequently to
experiments of all types. Foreseeing and planning
for every problem that may occur is simply not
possible or practical. The last defense is the
determination, ingenuity, and hard work of the
experimentation team. Leadership must encourage
an attitude that identifies potential problems honestly
and privately (so their potential impact does not
unnecessarily impact other parts of the experiment).
Issues must be examined promptly when they arise.
Best available responses and solutions, which may
be simply tracking the time periods, subjects, or
treatments impacted for later analysis, must be
identif ied and understood by the entire
experimentation team.
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The raw data collected during an experiment are
seldom in exactly the form needed for analysis. In
a sense, the data need to be converted into useful
information by being placed in the proper contexts.
For example, observer journals may need to be
converted into specific data points about topics of
interest through a process of selecting relevant
events and coding them according to definitions and
coding rules developed before the experiment.
Similarly, raw data recorded automatically about the
use of systems will need to be aggregated by time
period, topic, type of user, or other significant control
variables. These data reduction processes should
be completed immediately after the experimentation
trials. Indeed, they can sometimes be initiated while
the experiment itself is still underway. However, their
quality often depends on having the team that
conducted the experiment available to ensure
resolution of ambiguities and understanding of the
circumstances surrounding the data. Failure to
complete data reduction on the spot using the full
experimentation team has, in the past, limited the
data and information available for analysis and
therefore reduced the quality of the experiments.

Inexperienced experimenters often assume that
archiving is only a last minute activity and can be
postponed until after analysis is complete. This is a
naive perspective. The raw material generated
during the experiment may be lost when the
support ing infrastructure is dismantled or
reconfigured to support other efforts. Experienced
researchers also know that the very process of
analyzing data can change it. Moreover, database
manipulation errors are common during analysis.
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Finally, other research teams, with different data
mining tools and analytic purposes may later find
the initial data useful. Hence, archiving both the raw
data and the information created in data reduction
should be seen as an essential part of the
experiment itself. This is consistent with the DoD
“post before using” policy to encourage information
sharing or reuse of experimentation data. This is
also an important way of ensuring the integrity of
the experimentation data. Note that it covers all of
the crucial artifacts of the experiment:

•  Raw and processed data of all sorts, including
background information collected on subjects
and survey forms completed during the
experiment;

•  Insights offered by experiment participants,
particularly during debriefs;

•  Lessons learned about the experiment and the
experimentation process; and

•  Experimentation materials (simulation drivers,
interjections by the control team, briefings or
other products developed by the subjects,
training materials, databases generated during
experiment play, etc.).

Post-Experiment Phase

Contrary to popular belief, the experiment is not over
when the subjects go home and the VIPs leave
armed with a “hot wash” briefing or later with the
issuance of a “Quick Look” report.  Several
meaningful steps remain to be taken after the
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conduct of the experiment in order to ensure its
success. These key tasks include:

• Data analysis;

• Integrating experimentation results from different
sources and perspectives;

• Interpretation of the data and information
gathered to generate knowledge;

• Circulation of draft results for comment and
constructive criticism;

• Modeling and simulation to validate and expand
findings;

• Revision of the products to incorporate the
responses to the draft and the new knowledge
generated by modeling and simulation;

• Archiving experimentation data and materials;
and

• Circulating the final products.

All too often, “defeat is snatched from the jaws of
victory” after an experiment because too little time
and too few resources have been allocated to
complete these tasks and exploit the empirical data
that has been generated by turning them into
contributions to the body of knowledge. One of the
most common problems is the desire for instant
results leading to a hot wash at the end of the conduct
phase of an experiment, a quick look at the results a
few weeks later, and a final report that is a shallow
discussion of the findings reported in these early
products. This excessive focus and attention given
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to early deliverables leads to an unhealthy
concentration on the immediately measurable and
anecdotal evidence. They are a legacy from training
exercises where the purpose is prompt feedback in
a well-understood problem set. This approval does
not reflect an understanding of the complexity of
experimentation. Hence, it undercuts the process of
experimentation and reduces the impact of
experimentation on research and development
programs. This does not relieve experimentation
teams of their obligations to plan experiments that
generate results as promptly as is practical, but it
does speak to the problem of post-experimentation
efforts and the need to exploit experiments as much
as possible.

Analysis

The most obvious effort of the post-experiment phase
is analysis. This should be guided by the Analysis
Plan developed as part of the detailed experiment
plan. The nature of the tools and processes involved
are discussed in detail inChapter 9. However, a few
guiding principles should be noted here.

First, the ideal analysis plan involves a set of
analyses, not a single analysis. This is a reflection
of the fact that a variety of different data (subject
background, skill proficiency, behavioral data, survey
information, insights from debriefings, etc.) must be
analyzed, but also a recognition that different
analytical tools may be appropriate in order to
understand the experiment results richly. The
experimentation team needs to think about the “so
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what?” of an analysis to make sure that it is necessary
and properly conceived. That is, they need to reflect
upon the results of the analysis and the explanation
of the results. Would it make sense? Would it be
credible? Would the analysis, as envisioned, support
the purpose of the experiment?

Second, the appropriate set of analyses will vary
with the purpose and focus of the experiment.
Discovery experiments will require open-ended
tools and techniques that allow the analysts to
explore weakly structured problems and unearth
patterns they might not have initially anticipated.
Hypothesis testing experiments will require rigorous
tools and techniques that permit specific inferences
and allow for statistical control of intervening
variables. These should also be supported by
approaches that allow for discovery of unanticipated
patterns and exploration of ideas emerging as
insights. Demonstration experiments, on the other
hand, should be primarily supported by analyses
that confirm their underlying postulates. However,
even these experiments should not be reduced to
mechanical calculations that fail to look for new
insights, new limiting conditions, or novel patterns.

Third, analyses, like experiments, should avoid
single points of failure. Each analyst or analytical
team should be required to show their results and
explain them at internal team meetings. Key findings
should be deliberately replicated, preferably by an
analyst who did not perform the first run. Tests for
statistical bias and technical errors should be used
(for example, the impact of outlying cases or other
distribution problems, the presence of multi-
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colinearity, or the absence of homoscedasticity) to
ensure that the results are not an artifact of the
analytical processes chosen.

Finally, items of interest from the experiment outside
the analysis plan, such as insights coming from
participants or anomalies arising from equipment
failures, should not be ignored. Senior analysts
should work to develop specific approaches, tools,
or techniques that allow unanticipated issues and
evidence to be understood and exploited to enrich
the results. The NATO Code of Best Practice for C2
Assessment includes a rich discussion of analytic
tools and models. It is recommended reading for
those interested in greater detail.

Integrating Experimentation
Results

The analysis plan will be composed of a variety of
threads or independent sets of analyses designed
to generate knowledge arising from different
elements of the experiment. Sometimes these will
be directly comparable or tightly coupled, as in the
statistical efforts to measure direct effects and those
designed to assess the impact of intervening or
exogenous variables. Others will be qualitatively
different, such as the results from surveys,
structured debriefings, and behavioral observations.
However, only a single experiment actual ly
occurred. Hence, these different perspectives need
to be integrated and used to cross-check one
another so that the experiment is richly understood.
Failure to integrate the data and information arising
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from the variety of analytic perspectives employed
will lead to a weak understanding of the experiment
and may wel l  leave unresolved issues or
inconsistencies in the analytic results.

Interpretation of the Results

Data and information, even after analyses, do not
speak for themselves. They must be placed in context
before they can be understood. The simplest example
is that analytic results fit into larger frameworks. At a
fundamental level, they are consistent with,
contradict, or help to clarify prior knowledge and
research. They may also clarify other experiments
in a campaign undertaken to understand issues
larger than those explicitly explored or assessed
during the individual experiment. They may also
address problems, issues, or decisions that are
important to their sponsors and customers.

Effective reporting of experiments should
discriminate between the f indings and the
interpretation of the findings. In a well-run, successful
experiment the findings should never be at issue.
However, interpretations of these findings will often
be an important issue on which knowledgeable
practitioners and researchers may differ. This is
particularly likely when the research results are linked
to important issues or support policy decisions that
may involve a very different calculus.

Circulation of Draft Results

Experimentation is a research activity. Its goal is a
rich and comprehensive understanding of the
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phenomenon under study. All too often, however,
experimentation teams and the organizations that
task them act as though these are closely held insider
activities that should not see the light of day until
after they have been fully analyzed and interpreted.
In the worst case, results that are inconsistent with
sponsor philosophy or inconsistent with perceived
organizational interests are not circulated at all.
These practices are antithetical to everything we
know about effective research and learning from
experimentation. Hence experimentation results
should always4 be circulated, as early as possible,
among those with related interests and knowledge.
This includes peer reviewers chosen for their insights
and knowledge, the participants in the experiment,
other knowledgeable researchers, and practitioners.

This practice should not be understood to mean that
experimentation teams should rush their work to
broad publication. The results circulated should be
mature and should include the original team’s initial
interpretations of the findings. They should also be
marked “Draft” and should be circulated for the
explicit purpose of soliciting constructive criticism
and feedback, both on substance and presentation.
This practice will help to create and maintain
communities of interest on important issues.

Modeling and Simulation to Validate and
Expand Findings

While the draft results are being circulated, the
experimentation team should return to its executable
model of the problem for two different purposes:
sensitivity analyses and revision of the experiment
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model. Sensitivity analyses are primarily used to
learn how robust and how stable the results of the
experiment are in the context of those intervening
or exogenous variables identified as important or
to examine interactive effects when complex
problems are being researched. Model revision
efforts ask how the initial model might be changed
or enriched in order to reflect the results of the
experiment better. In either case, these activities
are actually part of the overall analyses enabled by
the experiment. They will often impact both the final
products of the experiment and any related
experimentation campaigns.

Revision of the Products

Feedback on the draft results, modeling and
simulation efforts, as well as reflection and
discussion within the experimentation team will
come together to support revision of the products.
This will typically include some type of annotated
briefing intended for general audiences, a detailed
technical report with the data and analyses attached
intended for researchers, and an executive
summary intended for decisionmakers and policy
makers and those who expect to implement
recommendations arising from the experiment (with
references to the more detailed documentation).
Keeping these products consistent as the revisions
are made is an important, and sometimes
challenging, task.
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Archiving and Circulating Data
and Products

Final completion of the experiment includes both
selecting the best vehicles to circulate the results
and also archiving the experiment’s artifacts so
they can be reviewed or used again. Both are
important efforts.

Circulating the products can be done in a variety of
forms such as traditional paper distribution, e-mail
to selected individuals and organizations, posting on
Web sites, offering papers at workshops,
conferences, symposia, and publication in journals
or books. The more significant the experiment, the
more broadly the team should try to disseminate the
products. This is true even where the experiment fails
to confirm the hypotheses under study. Such findings
are extremely important in advancing knowledge,
even though they may be a disappointment to the
experimentation team or its clients.

Archiving is also crucial. Lost data, information, and
experiment support materials are very real
impediments to progress. They deny other
researchers most of the practical benefit from the
experiment. They also prevent, or make very
difficult, replication of results, one of the key
elements in science. Finally, they result in increased
costs for later related experiments. Hence, the
material archived at the end of the experiment
should be inventoried to ensure that it is all present,
saved, and available for recall. In addition, analyses
and model ing efforts undertaken to better
understand the results, or as a result of feedback



120 Code of Best Practice for Experimentation

from the draft products, should also be archived and
indexed for recall.

Modeling and Simulation in
Support of Experiments

Models and simulations play important roles in an
experiment. These usually computer-based tools are
used to support experimentation with military subjects.
Also, there are occasions when the empirical data
collection that is an inherent part of traditional
experiments can be replaced by models and
simulations. That is when models and simulations are
the generators of empirical data, or more accurately,
simulated data. These activities are called model and
simulation experiments.

The use of models or simulations to explore important
issues has been a long tradition in the military in
support of operational planning and other important
analysis efforts. However, these efforts have not
always been organized as experiments. In many
cases, they have simply been efforts to explore
interactions within a parameterized space. Most such
models and simulations are deterministic and amount
to an exploration of the consequences of selected
sets of assumptions. Indeed, the application of these
types of models is necessary to help identify the
interesting design space for more extensive
experimentation and for performing sensitivity
analyses over the results of an experiment.

To be an experiment, the effort needs to address the
issue of uncertainty with respect to the dependent
variables of interest. Hence, the systematic



121Chapter 5

application of very large, sometimes deterministic,
combat models can be thought of as experiments,
though they currently are seldom organized that way.
Indeed, since the basic purpose of the design of such
models is to build a credible representation of combat
interactions, the interactions built into them are
usually heavily constrained so that the outputs are
understandable to the communities they serve. In a
sense, therefore, these tools are used as a special
type of demonstration experiment to show that the
processes under study conform to the assumptions
and expectations of their users.

Increasingly, however, models are being created
that use simple rule sets to explore interesting
interactions. Such models often employ agents and
sets of simple rules to explore behaviors and
interactions among agents seeking to discover
emergent behaviors in complex, nonlinear systems.
They can be quite sophisticated (involving fuzzy
logic and other advanced tools) or relatively simple.
Most of these applications can be understood as
discovery experiments designed to learn about
important classes of interactions. These models and
simulations can be extended to hypothesis testing
experiments, though only with considerable care are
the nonlinear properties inherent in them will
chal lenge both hypothesis formulat ion and
interpretation of results. Nevertheless, they hold
great promise, particularly because most of them
are very fast running and can, therefore, be used
to rapidly explore interesting analytical spaces. As
computing power grows over time, this approach
may become more useful and more common.
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Figure 5-2 shows how modeling and simulation
activities relate to each other within the context of
transformational experimentation in the DoD:

• Pre-experiment research should explore existing
models and simulations (and their prior
applications), reports of experimentation results,
and other documentation. These are key
subjects of study during the knowledge review in
order to formulate the experiment;

• Development of an initial conceptual model to
support the experiment. This typically static
representation idealizing all the relevant
variables, the relationships between them, and
the context of the experiment is produced during
the experimentation formulation;

• During the conduct of the experiment, models
and simulations are used either as (1)
experimentation drivers and support tools (in
“human in the loop” experiments) or as (2) the
data generation engines (in model-based
experiments). There are two stages to the
process of applying models: one is to develop
the simulation environment, including the
population of data, necessary modeling, and
accomplishing the necessary engineering to
ensure a simulation environment functions as
intended; the second is to conduct the
experiment using the tools;

• After the experimentation data are generated,
modeling and simulation are used for sensitivity
analyses and other exploratory efforts; and
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Figure 5-2. Modeling and Simulations
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• A revised model is normally generated to capture
the knowledge/results from the experiment.

There are a few important points to remember
regarding the use of simulations, and other models,
in support of experimentation. The first is that the
application of these tools is not free, either in
dollars or t ime. But, i t is often a necessary
investment to support any significant, well-crafted
experiment. Significant investments in engineering
training simulat ions, l ike the Joint Training
Confederation, to represent new concepts should
be preceded by the development of executable
models. Reasonable investments in upfront
analysis focused on the experiment can assist in
focusing the larger-scale effort, ultimately making
the effort more efficient.

There is a special case in experimentation called
model-based experiments. In these types of
exper iment models,  executable computer
simulations substitute for human subjects for the
purpose of generating experimentation data. All of
the principles identified in this chapter hold for
these types of experiments. There are also
additional considerations, which are discussed in
Chapter 12.

1The new NATO COBP for C2 Assessment.
2Alberts, et al. “The Network Centric Warfare Value Chain.”
Understanding Information Age Warfare. CCRP, 2001. p77.
3Ludwig Mies van der Rohe. The New York Times. August 19,
1969.
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4Always is a strong word – but in this case the value of an
experimental activity is directly related into the contributions it
makes to the larger community – and even somewhat flawed
experiments need to be properly documented and circulate so
that others can learn from the experience.
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CHAPTER 6

Experiment
Formulation

Focus

This chapter and the ones that follow provide a
more detailed focus on the specific activities that

the experimentation team must execute. The keys
to formulating a successful experiment are explored
here from three different perspectives:

• Developing the propositions and hypotheses
that will guide the rest of the experimentation
design process;

• Creating and applying an initial model in order
to define and explore the problem space under
analysis; and

• Key experimentation design considerations,
including both the essence of design and how
designing DoD transformational experiments
differs from designing “ideal” experiments from
an academic perspective.

This chapter and the others that follow at this level of
detail are also qualitatively different from those that
have come before in that they use a single example,
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an experiment in self-synchronization, as a concrete
case of each of the topics under discussion.

Propositions and Hypotheses

The topic of formulating the experiment, including
making precise statements about the issues under
analysis, was discussed earlier. The key points are
(1) specifying the issues under study as precisely
as  i s  p rac t i ca l  regard less  o f  whether  the
experiment will focus on discovery, hypothesis
testing, or demonstration of existing knowledge,
(2) ensuring that the problem is formulated
comparat ive ly  ( inc lud ing a  base l ine when
possible), and (3) using background research of
what is already known so that the statement of
the problem includes all of the known factors.

Making Better Sets of
Propositions and Hypotheses

A formal statement of  the exper imentat ion
problem can be used to make the experiment
more productive (greater knowledge gain for
t h e  s a m e  l e v e l  o f  e f f o r t )  i f  i t  i s  d o n e
thoughtfully. This formal statement should be
termed the propositions when the experiment
has a discovery focus because the level of
knowledge is not yet mature enough to state
the problem as formal hypotheses. For both
h y p o t h e s i s  t e s t i n g  a n d  d e m o n s t r a t i o n
experiments, the proper term is hypotheses .
Note that both terms are plural.  While i t  is
possible to design an experiment that focuses
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on a s ingle re lat ionship between only two
variables,  it is almost impossible to identify a
nont r iv ia l  DoD t rans format ion  exper iment
problem that does not depend on controlling
for some other factors or intervening variables.
Hence, the statement of the problem should be
formulated so as to specify the whole issue
under study, not just the specific hypotheses
under detailed analysis. This practice improves
the experimentation team’s ability to identify
all the elements of the problem and ensure
proper controls are in place.

Another useful  approach to describing the
experiment problem is selecting the propositions or
hypotheses so that any possible outcome provides
increased knowledge.  This is the logic underlying
the pr inciple that useful  t ransformational
experiments are comparative. This means that there
are competing hypotheses. For example, the
argument that standing JTF headquarters will
enable “better” operational effectiveness implies
that there are al ternat ive bases for such
headquarters (ad hoc assembly of tailored JTF
headquarters, for example) that should also be
considered and compared with the new concept
under study. If such comparisons are made, then
experimentation findings would provide important
gains in knowledge if they established that:

• One or the other form is more effective, or

• Each is more effective under specific conditions
(for example, ad hoc assembly is better for well-
understood operating environments and
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missions that are primarily military; standing JTF
headquarters are better for more novel
environments and situations where a broad
range of instruments of national power
[economic, political, informational, and
humanitarian as well as military] must be
employed to achieve the desired effects), or

• Neither is more effective than the other in the
experiment.

In other words, the propositions or hypotheses
employed should be organized to create a win-win
situation in terms of maturing the knowledge of the
subject under study.

As noted earlier, all three basic types of experiment
should also be organized so that the participants
are alert to (and can provide) insights about factors
not understood to be important during the problem
formulation stage, but that emerge as significant
during the experiment planning, rehearsal,
modeling, conduct, or analysis.

Finally, the actual statements of the propositions
or hypotheses under study should take the form
of an integrated set that specify all of the variables
and relationships of interest and make it clear
what will vary and what will be controlled. This
expression of the problem will be modified as the
experimentation team works through the process,
but i t  needs to be formulated as crisply as
possible, early in the effort.
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Propositions for an Exploratory
Experiment in Self-
Synchronization

Assuming an experimentation team was formed to
examine the issue of how self-synchronization
could be employed ef fect ively in mi l i tary
operations, it would have to identify and organize
the relevant propositions. Given the relatively weak
knowledge today about self-synchronization, the
team would conclude early in its efforts that this
should be a discovery experiment. The team would
have to assemble what has been written on the
topic and would probably convene panels of
subject matter experts from the military and also
hold a workshop to bring together practitioners,
experts from industry, and relevant academic
specialists. That having been done, they might
develop the following propositions:

• Effective self-synchronization requires high
quality situation awareness.

• Effective self-synchronization requires a high
degree of shared awareness.

• Effective self-synchronization requires
congruent command intent across echelons,
functions, and organizations.

• Effective self-synchronization requires high
competence across all echelons, functions,
and organizations.
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• Effective self-synchronization requires a high
degree of trust across command echelons,
functions, and organizations.

• All five key factors (high-quality shared situation
awareness, congruent command intent,
competence, and trust) must be present for
effective self-synchronization.

A l l  o f  t hese  p ropos i t i ons  have  the  same
dependen t  va r i ab le :  e f f ec t i ve  se l f -
synchronization. Four major causal factors have
been specified, as has the need for all of them
to  be  present .  Hence,  each is  seen as  a
necessary yet insufficient condition. Note that
a number of potentially intervening factors such
as the leadership style of the commander, the
poss ib i l i t y  o f  cu l tu ra l  d i f f e rences  ac ross
coal i t ion organizat ions, doctr ine, and pr ior
training have not been identified as specific
independent variables of interest and may need
to be (a) subsumed into the variables of interest
(i.e., the team might try to include command
style as part of trust), (b) inserted into the
expe r imen t  ( i . e . ,  p rov id i ng  t r a i n i ng  and
alternative doctrine to the participants), or (c)
controlled during the experiment. Each of these
potential intervening factors should be clearly
articulated as an assumption.

Examining these propositions, the experimentation
team should recognize that  th is is  a huge
experimentation space. Hence, in our example
experiment, they decide to restrict the propositions
under study to the U.S. and its very close allies
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(UK, Canada, and Australia) and to crossing
echelons and three key functions: information
(including intelligence about the adversary and the
operating environment); operations; and logistics,
leaving self-synchronization across organizations
(inter-agency, broader coalition, etc.) for later
experimentation. In this way, the team has reduced
the impact of culture by excluding all except the
DoD and close coali t ion organizations. The
temptation to reduce the problem further by
excluding all coalition interactions was avoided
because the experimentation team realizes that
close coalition partners have been part of virtually
every operation during the past decade and that
self-synchronization is a crucial element in
coal i t ion ef for ts.  They have narrowed the
application range for the experiment to warfighting
missions s ince other types would require
interagency and broader coalition participation.
These types of simplifying and clarifying decisions
are crucial for success.

Initial Models and Their Use

First Descriptive Model

As the process of identifying and articulating the
proposi t ions or  hypotheses under ly ing the
experiment is being completed, the relevant
informat ion ( independent,  intervening,  and
dependent variables and the relationships between
them) should be converted into an initial model.
This model will draw from the existing knowledge
being reviewed and will at first take the form of a
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static paper model in which variables are identified
and the types of linkages between them specified.
Creation of this initial, heuristic model is an
excellent way to ensure that the experimentation
team has thought the problem through precisely.
Very often, ambiguities will be identified, new
variables incorporated, competing propositions
specified, and differences in emphasis will emerge
as this model is developed and perfected. This
initial model also becomes the mechanism for
noting where assumptions will be made, which
variables will be controlled, and which will be
manipulated to answer the key issues under
analysis. The result of this effort is a descriptive
model of the experiment problem.

Descriptive Model of Self-Synchronization
Example Experiment

The experimentation team building a simple
descriptive model of self-synchronization would
quickly realize that a number of factors would enter
into the problem. Figure 6-1 illustrates how they
might diagram these factors. Three factors were
ultimately seen as direct causes of effective self-
synchronization: high-quality shared situation
awareness, congruent command intent, and trust.
Two of the factors originally identified as direct
causes were moved back a layer. Competence was
perceived to be a causal factor of trust, but also to
increase the likelihood of two other second level
factors:  congruent command intent ,  and
empowering leadership. Common perceptual filters
arising from shared knowledge and experience
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Figure 6-1. Illustrative Initial Descriptive Model: Self-Synchronization Experiment
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were seen as key to both high-quality awareness
and shared awareness. High-quality situation
awareness was seen as a necessary ingredient for
high-quality shared situation awareness, which
also depends on collaborative command and
control processes, information availability, and
common perceptual filters. Empowering leadership
was also specified as essential to trust, but it
and collaborative command and control processes
were not even explicitly recognized in the initial
formulat ion. Final ly, shared knowledge and
experience were recognized as keys to trust,
competence, and creating common perceptual
filters.

Initial Executable Model

While the initial descriptive model is a very useful
exercise, creation of an executable version will also
help the experimentation team in important ways.
This model is typically done in some very simple
form using transparent tools. Systems dynamics
models, influence diagrams, IDEF 0 models,
ACCESS, and similar tools have proven useful
because they are easy to use and because the
relationships built into them are easy to understand.

Specifying an executable model will help the
experimentation team because it forces them to
think through the experimentation formulation in
greater detai l  than is required in either the
experiment formulation process (at the proposition
or hypothesis level) or in creating the initial heuristic
model. For example, specific input parameters must
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be given values and ranges. Assumptions need to
be translated into parameters. The form of
relationships between pairs or sets of variables must
be translated from words into mathematical
functions. In other words, greater precision and rigor
are required.

The executable model, once developed, can also
be used to focus the experiment. For example, by
exercising this model across the range of plausible
values for important independent variables, the
experimentation team can narrow the focus of the
experiment to the interesting range, the set of values
that appear to make a meaningful difference in the
dependent variables of interest.

Executable Model for the Self-
Synchronization Experiment

It is difficult to show an executable model in a paper
document. In this case the experimentation team
would use a flexible tool, such as influence
diagrams. This would have the advantage of
forcing the team to specify operational definitions
for each of the factors in the initial model, as well
as the set of relationships believed relevant for
the linkages in the model. Such an application,
supported by prior research on related topics,
would indicate several things important to the
experiment. For example:

• Any value for trust that is not extremely high
would prevent self-synchronization;
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• Any value for competence that is not extremely
high would prevent self-synchronization;

• Any value for quality of information that is not
high would prevent achieving high-quality
situation awareness, which would make high-
quality shared situation awareness almost
impossible; and

• Any value for system reliability that is not high
will reduce trust and may lead to commanders
being unwilling to empower their subordinates.

As a consequence of these model findings, the
focus of the experiment should be narrowed and
these factors should be controlled. This implies
that the underlying quality of the information
available during the experiment should be high,
though that can include a clear understanding
of  what  is  not  known and the uncer ta in ty
surrounding what is “known” or perceived. It also
imp l ies  tha t  the  sub jec t  poo l  needs  h igh
competence in their roles – novices (alone or
with experts) cannot be employed. Moreover, the
teams of subjects must either be drawn from
some existing organizations where trust already
exists or put through a training phase during
which trust is developed and validated before the
experiment trials begin. Finally, the reliability of
the supporting information systems will need to
be controlled as a causal factor.
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Ideal Versus Real
Transformational
Experimentation

Focus

The topic of experimentation design is complex and
has been the subject of numerous textbooks.
Moreover, the field changes constantly as progress
is made in inferential statistics, the mathematics of
nonlinear systems, and the computational power
available to researchers. Hence, the single most
important consideration for those responsible for
experimentation design, whether single experiments
or campaigns, is to ensure that current expertise is
available to support the plan. Almost without
exception, this will mean doctoral level (Ph.D.)
training and a decade or more of experience in
actually designing and conducting experiments.
Moreover, most transformational experimentation
will require experience and expertise in the social
sciences because the human element is so crucial.
This expertise is available from a few serving
officers with such training, from the DoD and Service
civilians in the research establishments, from
federally funded research and development centers,
from industry, and from academia.

This discussion, therefore, focuses on key concepts
and principles that should be understood by all the
members of experimentation teams, as well as by
those who sponsor experimentation and must act on
its results. The focus, then, is on understanding the
logic underlying successful experiments and
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recognizing when that logic is being violated or may
come into question. Bad experiments, which cloak
weak or false knowledge in an aura of science, will
make mischief, not music. At a minimum they will
slow the process of understanding the impact of
innovation on transformation (by forcing other
research and experimentat ion to learn and
demonstrate that they are wrong) and cost money
(by encouraging investments that will not pay off as
expected). At a maximum, bad experiments will lead
to flawed mission capability packages that fail in the
field. Hence, everyone involved has a serious quality
control function to accomplish. This section is
intended to help the experimentation team and their
sponsors to perform that role. After this discussion
of ideal experimentation, the Code looks at some
of the imperfect circumstances and conditions
faced by transformational experimentation efforts
and how they can be overcome in the practical
context of military analyses.

Ideal Experimentation

The hard sciences, like physics and chemistry, were
the first to rely on experimentation in order to
develop knowledge. The ideal experiment is one in
which all the possible sources of variation are
excluded except the one of interest. For example,
to genuinely determine how fast objects fall requires
creating a vacuum to exclude the effects of air
density and wind. An experiment that measured the
falling rates for ball bearings and bowling balls in
the open air would conclude that the ball bearings
fell more slowly because of the presence of air
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resistance and the differences in mass between the
two objects. This experiment also requires a clear
theory that identifies the causal factors (in this case
mass) and limiting conditions (the vacuum).
Moreover, a successful experiment also requires
precise, correct, and reliable measurement of the
active variables (mass, distance, and speed) as well
as the limiting condition (presence of a vacuum or
absence of air). Successful experimentation also
requires an apparatus that measures speed
precisely and allows the experimentation team to
know exactly when the object starts to fall and
exactly when it passes some other known point, as
well as the distance between the start and finish.
These two points also need to be far enough apart
that the measurement instruments see enough
difference to allow inferences about relative speed.

The goal of an experiment is always to advance
knowledge. Because Western, rational science
always allows for new insights and knowledge,
nothing can ever be perfectly or permanently
proven. Hence, null hypotheses are used to
disprove false knowledge. In the ball bearing/
bowling ball experiment, the null hypothesis is that
these objects will fall at different rates in a vacuum.
The two types of objects are called the treatments,
which means nothing more than that they are the
ways that the independent variable is changed. The
term treatment comes from medical experimentation
where patients are given alternative medicines or
procedures (including placebos, which serve as a
baseline and allow for meaningful comparison) in
order to determine the effectiveness of the different
medications. Moreover, Western science is inherently
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skeptical, so experiments must be conducted a
number of times and replicated using different
subjects, kinds of treatments, methods of
measurement, and apparatuses before their
conclusions become accepted.

Later experiments can be used to move from this
ideal knowledge to take into account factors that
were initially excluded. For example, the shape
of  the ob jec t  was cont ro l led in  the in i t ia l
experiment, but would be important for objects
falling through air. Those designing parachutes
need to understand how manipulating mass and
shape can alter the rate of descent. Similarly,
those designing bombs or shells would need to
understand the effects of wind. Therefore, the
purpose of the research will help to determine the
campaign of experimentation. Here again, a
number of different trials will be needed. This is
the functional equivalent of relaxing assumptions
in a model in order to extend our understanding
of the phenomenon under study.

Principles of Experimentation

This discussion should help to identify the basic
principles underlying experimentation. Ideal
experimentation manipulates only one independent
variable at a time. Differences of this variable (the
treatments) typically include some baseline (for
example, the placebo in medical research) against
which the effectiveness of other treatments can be
measured.
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Ideal experimentation observes change in only one
dependent variable. This does not mean that only
a single measure is used. If the dependent variable
has more than one important dimension (for
example,  both the speed and qual i ty  of
decis ionmaking),  a l l  should be measured.
Similarly, if the measures available are not totally
valid (do not measure exactly and completely the
concept of the dependent variable), multiple
measures that provide relevant information about
different aspects of the dependent variable (called
indicators) may be taken.

Ideal experimentation excludes, or controls for, all
relevant extraneous or intervening variables. If this
is not done, then the changes in the dependent
variable may be due to these factors and not to
the treatment under study. While challenging in
physical experiments, this becomes extremely
difficult when dealing with human subjects, whether
individuals or teams. When possible, every
extraneous cause must be excluded. When this is
not possible, the effects of extraneous variables
should be manipulated so that they are “equal”
across treatments and trials. For example, when
large numbers of people are being used as
individual subjects, they are typically assigned
randomly to the t r ia ls .  As a f inal  resort ,
measurement is made on the possible intervening
variables (for example, molecules of air per cubic
foot in the vacuum, intelligence quotients for
individual subjects, time spent working together for
teams) and statistical procedures are used to
estimate the relationship between the intervening
variables and the outcomes across treatments.
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This is possible for all kinds of measures, including
nominal measures such as male/female that have
no direction. However, it is time consuming,
complex, and difficult to explain to those without
scientific training (meaning it can have serious
credibility problems), so statistical control should
always be used as a last resort.

Ideal experimentation involves valid, reliable,
precise, and credible measurement of all variables.
If the experimentation team cannot perform proper
measurement,  the exper iment cannot be
successful. This cuts across all types of variables:
independent, dependent, and intervening. Valid
measurement means measuring exactly what you
intend to measure and not some surrogate chosen
because it is easier to measure. Some complex
issues, like quality of collaboration, may have to
be observed indirectly through indicators or by a
set of measures, each reflecting some part of the
concept. Reliable means that the same value will
be recorded every time from the same event or
activity. This requires particular attention when
human behavior is measured or humans are used
to perform the measurement. Precise means that
the instruments are calibrated to fine enough
tolerances to detect meaningful differences. It is
really an extension of reliability. If the measures
or measuring instruments being used are so
imprecise that they cannot differentiate between
substantively different values, the experiment
cannot succeed. Credible measurement means
that the system of measures is understood and
respected by both the research community and the
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operational community that will be asked to act on
the knowledge generated from the experiment.

Ideal experimentation includes enough data collection
opportunities to support the inferences needed to
translate findings into actionable knowledge.
Something that happens once may    be suggestive or
illustrative, but it is not credible in a scientific sense.
For an experiment to be successful, a number of
independent observations are needed. Independent
means that the observations are not causally related.
For example, in most medical experiments, the number
of individuals participating is the relevant number. Any
factor in common across the individuals threatens the
independence of the observations. The issue of how
many independent trials are needed is a complex
technical one that depends on (a) how many treatments
are under study, (b) the number of intervening variables
that are hypothesized to be relevant and must be
controlled statistically, (c) the level of confidence that
the experimentation team believes it needs to make
meaningful statements, and (d) the population that
the experimentation team intends to extend its
findings to cover. This is a technical issue where
statistical expertise is essential. However, identifying
possible threats to the independence of the trials is
a task for everyone involved in the experiment.

As a rule of thumb, the basic design for any experiment
should attempt to involve at least 30 independent
observations of any meaningful data category. For
example, a three-treatment experiment involving two
different types of subjects would ideally be designed
around a three-by-two matrix with 30 people in each
cell, or a total of 180 subjects (or observations), 90 of



146 Code of Best Practice for Experimentation

each type of subject. However, if each subject can be
used for a single trial in each of the three treatments
(thereby controlling for differences between individual
subjects within each of the individual groups), the
minimum number of subjects required declines to 60
(30 of each subject type). Prudent experimentation
designers do not, however, plan for the minimum
number of independent observations.  Subjects tend
to become ill or miss their appointments. Because
most inferential statistics allow stronger inferences
when the number of independent observations rises,
over-designing the numbers needed in an experiment
will both protect an experiment from potential shortfalls
and also increase the likelihood of unambiguous
findings. Of course, as the number of independent
trials increases, the greater resources will be needed
for a successful experiment.

A very different approach is often taken when
working with teams of subjects or organizations.
Employing large numbers of  teams or
organizations (such as command centers) for an
experiment is difficult and may be impossible. In
these cases, the groups of subjects should be
selected so that they are as typical a population
as possible. In these cases, the focus of the
experiment design becomes the collection of
enough independent observations of relevant
behaviors to achieve the exper imentat ion
objectives. For example, efforts to determine the
determinants of quality command and control early
in the 1980s focused on decision cycles during
military exercises. A 1-week Army division or Navy
fleet experiment was found to generate about 50
major decisions, adequate to support treating them
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as experiments for purposes of testing hypotheses
about the driving factors for effective command and
control. Note that this approach makes it much
easier to generate meaningful findings from a
single experiment, but requires establishing how
“typical” the exercise and the observed command
centers are of all military decisionmaking. Hence,
this work required an experimentation campaign
as well as data on the relevant training and
experience of the commanders and staffs involved
in each exercise.

Note also that this approach also assumes that
each event (decision, collaboration session, etc.)
being counted as an observation is independent
of the others (that is, not influenced by them). This
is not always true. For example, high-quality
decisions early in an experiment may mean that
the team has a better grasp of the situation than
others making weaker decisions and may also
mean they are under less pressure during later
decision cycles. Hence, the analysis plan for this
type of experiment will need to include tests for
the independence of observations over time and
make provision for statistical analyses that control
for this potential “contamination.” Fortunately,
these controls are available and used commonly
in the social sciences, biology, and other fields
where purely independent observations are hard
to obtain.

Ideal experimentat ion generates f indings ,
interpretations, and insights. Findings are the data
generated during the experiment and the direct
inferences available from those data. They take
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simple, descriptive form, such as “operational level
command centers working familiar problems
required an average of 3.5 hours (54 observations)
to recognize and react to major changes in the
battlespace, while working on unfamiliar problems
required an average of 9.3 hours (49 observations)
and this difference was statistically significant
(p=.0001).”

Interpretat ions,  on the other hand, involve
conjectures, which often arise from prior research
or experience. In this case, the experimentation
team might report that the additional decision cycle
time required in the unfamiliar situation appeared
to occur because the command center appeared to
take more time to gather information and to discuss
what it meant. However, unless data were taken on
the time and effort used to gather information and
discuss what it means, this is not a finding. Indeed,
humans have such a strong tendency to find an
explanation for what they observe that they often
draw wrong conclusions when not challenged to
actual ly measure what occurs. Competing
explanations are often offered for observed
behaviors and can only be resolved by further
experimentation or consulting research done by
others that focuses on the alternative explanations.
For example, another researcher might argue that
the additional time taken was actually a function of
the risk aversion of military command centers and
a fai lure to recognize the urgency of novel
developments in the unfamiliar contexts. Only a
thorough research effort  or a wel l-crafted
experiment will allow resolution of differences in
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interpretation because the true data or findings
typically support them equally.

Finally, insights are the new thoughts or patterns that
emerge when the experimentation team looks at the
findings or reviews them with outside experts,
including the sponsors of the experiment. These may
take the form of new hypotheses (cause and effect
relationships), new limiting conditions (intervening
variables), or even anomalies (data points or patterns
that are inconsistent with the bulk of the evidence
and our current theories and hypotheses). All of these
are valuable, but the anomalies are the most
important, because they may be clues to important
new knowledge. Of course, they may also simply be
anomalies – times when subjects behaved in unusual
ways or low probability events that will not occur often
enough to be worth attention. Because our level of
knowledge about transformational innovations
remains immature, every experiment is likely to
identify important new insights. Failure to capture
them will impede progress.

Peer review, debate, and discussion are the lifeblood
of successful experimentation. While some DoD
experiments involve classified information, many do
not. In all cases, experimentation results should be
circulated as widely as possible. Science and the
ability to build actionable knowledge are accelerated
by exposing ideas to review and holding healthy
debates about what is known and what has been
learned. This principle underlies the academic stress
on publication in refereed journals – the editors act
as a first line of defense against poor work, the
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reviewers who examine drafts are the second, and
the general readership are a third.

The DoD does not need refereed journals, but it does
need to tap the breadth and depth of available
expertise in order to examine transformational
innovations and the experiments performed to
assess them and mature the concepts underlying
them. Circulation of draft results among respected
colleagues, briefing across a variety of audiences,
presentations at professional meetings, and
workshops to review and build on experiments and
experimentation campaigns are all available to
ensure peer review, debate, discussions, and
alternative explanations. Each of these sources of
constructive criticism and new insights, however,
cost effort and time. These investments need to be
built into plans for experimentation.

Transformational experimentation must seek new
knowledge, not support for specific ideas. One of
the attractive features of experimentation is the fact
that not all the concepts or ideas put forward will
prove useful. The DoD has a tradition of making
everything a success wherein exercises cannot be
failures because that would be a negative indication
of organizational performance and readiness.
Assessments of new systems cannot be failures
because they represent major investments.
Moreover, failed programs imply that those who
developed them have not done their jobs well.
However, experimentation, particularly successful
experimentation, means finding out that some
concepts or ideas are better than others, or more
commonly, that two competing ideas or concepts
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are better than one another under different conditions
(in different settings or for dealing with different
problems). DoD experimentation needs to recognize
this essential principle and not get trapped in a search
for a single solution to all problems or a premature
“shoot off” between competing concepts.

Transformational
Experimentation Realities

Careful reading of the discussion of ideal
experimentation clearly shows that this process is
robust. Many of the processes and procedures that
have emerged are designed precisely to enable
knowledge gains under difficult circumstances.
Robustness comes from anchoring the experiment
in existing knowledge, using an open process that
involves peer review, developing robust models of
the phenomenon under study, and using tools and
techniques that allow for cross-checking and
questioning assumptions.

That having been said, every experiment should
seek to conform as closely as possible to
the ideal experimentation design. However, two
major real i t ies indicate that transformation
experimentation will differ in two important ways:

• Transformation will not be accomplished by
small, isolated changes. Transformational
initiatives will always be rich combinations of
mutually reinforcing changes, such as MCPs
that cut across the DOTMLPF spectrum and go
beyond it to include new ways of thinking about
warfare and national policy effectiveness.
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• The pace of change required for DoD
transformation will not allow for a large number
of sequential experiments designed to
authoritatively explore every nook and cranny of
possible alternatives.

Fortunately, these two realities and the pressures
they generate can be managed successfully by
thoughtful programs of experimentation and design
of individual experiments.

At the conceptual level,  t ransformational
innovations (in this case, MCPs) need to be seen
and organized as a single, coherent, holistic
phenomenon, not as a patchwork of individual,
separable initiatives. Indeed, many of the key
changes involved in transformation will fail or
have very little impact if undertaken in isolation.
Business has discovered that adopting advanced
information technologies without altering their
fundamental ways of doing business (organizations,
work processes, etc.) to take full advantage of the
new technology means that only a fraction of the
potential benefits actually occur. The same principle
applies to military innovation and transformation.
The elements of an MCP for transformational
experimentation need to be thought of as a
syndrome or an integrated, distinctive pattern of
changes. Removing any one element means that
the innovation is a different phenomenon, with
different implications.

Hence, experimentation teams concerned with
transformation need to develop full mission capability
packages and treat them as coherent wholes when
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designing experiments. This means that they will
logically form one change, innovation, or treatment.
However, the metrics chosen and tracked, as well as
the debriefings of subjects, observers, controllers, and
experiment support personnel will need to be sensitive
to the possibility that some components of the
package are working better or worse than others, or
even that some components are interfering with one
another. Hence, the research design and analysis plan
should call for analyses that help track performance
of the elements of the innovation.

Besides treating the MCP as a single innovation,
experimentation teams also need to rely heavily on
the research conducted by others, both to focus their
experiments and to help determine how much
confidence to place in their results. Because MCPs
will typically be composed of several different
initiatives (changes in process, structure, etc.),
several different research traditions will normally
be available to help understand the phenomenon
under study and to assist in the interpretation
of the experiment findings. Moreover, because
experimentation is conducted in a variety of different
DoD organizat ions (Services, CINCs, and
Agencies), work on analogous issues and problems
will often be available to help understand what is
being learned. Interaction and cross-talk between
these efforts will provide important knowledge and
accelerate the process of learning. Findings that
are consistent with existing knowledge and other
efforts at experimentation and research in analogous
topics will allow rapid progress. On the other hand,
inconsistent findings will be “red          flags” indicating
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more thought, research, and experimentation are
needed promptly on key issues.

Finally, the need to move ahead rapidly and to work
in the large leaps implied by MCPs increases the
crucial role of circulating findings widely and
subjecting them to vigorous review and rigorous
debate. The DoD has enormous analytical and
operational talent available, both in the active force
and in the organizations and institutions that support
that force. While transformational experiments will
challenge conventional wisdom and should not be
expected to quickly build consensus within the
naturally conservative military community, they can
be expected to spark lively debate and serious
discussion. Powerful ideas, the kind necessary for
successful transformation, will develop strong
empirical support from intelligent campaigns of
experimentation. Understanding that evidence and
its implications will require examination from a
variety of perspectives.
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CHAPTER 7

Measures and
Metrics

Focus

Experiments are inherently empirical. Whether
focused on d iscovery,  hypothes is ,  o r

demonstrat ion, experimenting must include
capturing data and organizing i t  to provide
the basis for analysis on the key issues under
study.  Hence,  exper iments a lways involve
measurement. Deciding what to measure and
how to measure i t  is a crucial  step in any
experiment. The old saying, “garbage in, garbage
out ”  sums up the exper imentat ion team
metrics challenge. Unless good decisions are
made in this arena, no amount of analysis or
in terpre ta t ion wi l l  generate  a  successfu l
experiment. This chapter begins with some simple
definitions of the key measures and metrics
concepts ,  then d iscusses the cr i te r ia  for
eva luat ing and se lect ing measures for  an
experiment, addresses the process of selection,
introduces some of the establ ished sets of
metrics, and concludes with how these principles

CCRP Publications
To view endnote references, click your mouse on the number marker to take you directly to correlating reference.
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would apply to the example experiment on
self-synchronization.

Definitions

Some standard definitions are less than useful. For
example, “measurement” is typically defined as
“the act of measuring.” However, as in other
aspects of science, some standard language is
necessary. In particular, the terms attribute,
measure, metric, and indicator are frequently
treated as synonymous, when in fact they have
different meanings.

Attribute

An attribute is some aspect of an event, situation,
person, or object considered important to
understanding the subject under study. Examples
of interest might include the range of a weapon
system, the time required to complete a decision
cycle, the number of nodes in a network, or any
other factor considered important in the hypotheses
and model of an experimentation problem or issue.

Measure

A measure is a standard by which some attribute of
interest (extent, dimensions, quantity, etc.) is
recorded. For example, weight (an attribute) can be
measured in terms of pounds or kilograms; speed
(an attribute) can be measured in miles per hour;
and time is measured in minutes and seconds.
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Measures are the specific form the team expects to
use when capturing attributes of interest.

Metric

A metric is the application of a measure to two
or more cases or situations. Because experiments
are inherently comparative as well as inherently
empirical, selection of the metrics is particularly
important. These are the ways things will be
compared. For example, an experiment about
time-critical targeting might include the likelihood
of detecting different types of targets, under
different conditions, by different types of sensors,
and using different fusion tools and techniques.
Therefore, one attribute of interest would be the
likelihood of detection. The measure would then
be the percentage of detections. The metric of
in terest  would be the re lat ive probabi l i ty
of detection across the syndromes of target
types, detect ion condit ions, sensor arrays,
and approaches to fus ion.  Expla in ing and
understanding these differences in the dependent
variable would be the primary focus of the analysis.

Indicators

Measures and metr ics apply direct ly to the
attributes of interest. However, direct measurement
is not possible in all situations. For example,
almost all experts agree that situation awareness
is an important element in the quality of military
decis ionmaking. However,  awareness is a
cognit ive phenomenon that implies not only
that some combat support system has access to a
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set of facts or that they are displayed at a work
station, but also that the decisionmakers are
aware of those facts. In simple terms, the situation
awareness that matters occurs “between the ears.”
Indicators are indirect measures and metrics. To
assess quality of situation awareness, for example,
an experimentation team might create a stimulus
(insert a new enemy force into a military situation)
and look for a behavioral response (discussion of
the new threat, planning to counter it, etc.). They
might also debrief the key people in a command
center to see whether they have perceived the
new threat and understand it. The experimenters
might want to use an indirect approach and call
for a situation briefing to see whether this new
factor is included. Regardless of the technique
used to generate empirical evidence, that evidence
will be indirect and in the form of indicators.

Levels of Measurement

Measurement should always be as precise as
is practical. However, understanding the level of
precision that can be achieved without distorting
what is being observed and measured is important.
Four different levels of measurement are possible:
nominal, ordinal, interval, and ratio. The level of
precision achieved is crucial both for developing
an appropriate data analysis plan and also for
understanding and interpreting findings.

Nominal measurement means that observations can
be assigned to categories, but the categories
themselves have no natural order. For example,
service training may differ in important ways and



159Chapter 7

may be a factor expected to influence behavior in a
command center experiment. However, there is no
natural order between Army, Navy, Air Force, and
Marine backgrounds. The same is true for gender
differences or differences between officers from
coalition countries.

Ordinal measurement means that there is a natural
order between the categories, but the distances
between them have no meaning. Operating
environments, for example, might be differentiated
in terms of the level of threat and classified as
low, medium, and high. The order between these
will not change. However, there is no meaningful
measure or metric that expresses the size of the
difference between these categories. Similarly, the
level of expertise typical in a command center might
be classified as novice, journeyman, or expert
depending on the level of training and experience
of its personnel. The rank order is clear, but there
is no meaningful way to characterize how much
more expert one group is than another.

Interval measurement occurs when the distances
between points on a scale are meaningful (can be
added and subtracted), but they are anchored
arbitrarily (zero has no empirical meaning) and
therefore cannot be multiplied. The most common
example of an interval measurement scale is the
Fahrenheit thermometer. The intervals on this scale
are identical and meaningful. Fifty degrees is 10
degrees warmer than 40 degrees, which is precisely
the same as the 10-degree difference between 100
degrees and 90 degrees.  However, 100 degrees is
not twice as hot as 50 degrees. This occurs
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because zero degrees is not the absence of heat.
Similarly, intelligence quotients, which are often used
to differentiate between subjects in experiments, are
interval scales. Someone with an IQ of 150 is not
twice as intelligent as someone with an IQ of 75.

Ratio measurement has both equal level intervals
and also a meaningful anchor point (zero is a
meaningful value). Numbers of platforms, time
required to complete a task, months or years of
experience, weapons ranges, and a host of other
attributes in the battlespace are legitimate ratio
values. As a result, measures and metrics for such
attributes can be treated with the most powerful
analytic tools available. Whenever possible,
therefore, experimentation teams will seek ratio
level measures and metrics.

The level of measurement sought and achieved
in designing an experiment is important in two
significant ways. First, efforts to be overly precise
will lead to bad data. If judgements about the
qual i ty  o f  mi l i ta ry  dec is ions can be ra ted
consistently as successful, marginally successful,
and failed, ordinal measurement can be achieved.
To assign numeric values that imply interval or
ratio measurement to those ordered categories
implies information content that does not exist.
This will distort any analysis performed on the
data and will also undercut the credibility of the
research effort. Second, statistical analyses
employ tools that assume specif ic levels of
measurement. Applying techniques that make
assumptions inconsistent with the information
content of the data (for example, ratio techniques
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to ordinal data) is fraught with peril and very likely
to generate misleading results.

Criteria for Measures and
Metrics

Select ing speci f ic  measures,  metr ics,  and
indicators for an experiment requires explicit
criteria. While long lists are sometimes offered,
selection of the empirical evidence to be collected
should always be based on three fundamental
criteria: validity, reliability, and credibility. If any of
these is compromised, the experiment will not
succeed in contributing to the development of
knowledge and understanding, and may contribute
to unnecessary confusion.

Validity

Simply stated, validity means that the measures,
metrics, and indicators employed actually measure
what the experimentation team is trying to measure.
For example, the likelihood of target detection
under specif ic circumstances can be validly
measured by observing the percentage of targets
actually detected. Hence, this is a valid measure.
On the other hand, many important concepts are
much more difficult to measure validly. For example,
NATO has been using “normalcy indicators” in
Bosnia and Kosovo to recognize when the peace
operations have achieved the goal of stabilizing
societies and allowing people to go about their
business safely. This implies a decision as to what
attributes of those societies represent “normalcy”
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and how empirical evidence (marketplace prices,
movement of commerce, attendance at school, etc.)
can be collected which reflects a return to normal
l i fe. Similarly, the measurement of situation
awareness raises serious validity issues since
the experimentation team must have a rich and
correct understanding of what constitutes high
quality situation awareness in order to identify valid
ways to measure it. They must develop indicators
that reflect what people actually know.

Errors in validity are all too common in DoD
experimentation. For example, many efforts have
tried to deal with the “timeliness” of the information
available by measuring its latency (how old it is
before it is available). Age or latency of information
is certainly an interesting and potentially important
attribute, but it is not timeliness. Timeliness can only
be meaningful in terms of some situation or window
of opportunity. Age of information is not a valid
measure of its timeliness except in the presence of
some standard. For example, in a time-critical
targeting issue, a standard of reporting information
no older than 30 minutes might be seen as
important. In that case, latency of information could
be converted into the percentage of reports with
data of 30 minutes or less and would be a more
valid measure in the analysis.

Note also, that more than one measure is often
required to achieve validity. If the concept is a
complex one, it may have more than one dimension.
The example of improved command and control
involving both faster and better decisionmaking has
already been mentioned. A similar example occurs
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when flexibility of planning is assessed. A more
flexible plan includes more than one way to achieve
the military mission, but it also must include the
ability to recognize which of these options is
available and can be executed successfully. Merely
proliferating options is not, by itself, a valid metric
for flexibility.

Reliability

Reliability implies that the same value would be
reported on an attribute of interest regardless of
the observer or the observation method. A metal
ruler is more reliable that a rubber one, but not
perfectly reliable if major temperature changes
can be expected between observations. Reliability
is often an issue when the phenomenon under
study must be inferred indirectly from indicators or
when human perceptions are involved – whether
perceptions of subjects, observers, or controllers.
Reliability is crucial in science. The design of the
observation and data collection systems are largely
driven by efforts to ensure reliability.

When possible, direct reliable measures should be
selected. However, reliable measures that lack
validity are not useful. Modeling and experimenting
are commonly criticized for focusing on data that
can be easily and reliably measured rather than
data that is important – implying that reliability has
been chosen over validity. The answer, when
reliability problems are likely, lies in the training of
observers and collectors and in planning for inter-
coder reliability testing. This testing, which needs
to occur during training as well as during the conduct
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of the experiment and related data reduction efforts,
is an explicit method for establishing the reliability
of the collection and measurement schemes.

The experimentation team also needs to think
through the essent ial  elements for rel iable
measurement. As a simple example, a team that
plans to use time-based measures, such as how
long after a scenario injection a command center
recognizes the event, must be certain to calibrate
the clocks and watches being used to record
the event and its recognition. Similarly, a team
interested in the percentage of situation awareness
elements that are reported correctly by members of
a watch team must have a simple, reliable standard
for which elements of situation awareness need to
be covered and how the information presented is to
be coded if it is only “partly correct.”

Credibility

Beyond the essential issues of validity and reliability,
experimentation also requires measures and metrics
that are credible to their audiences. Credibility
means that the measures are believable to those
who must understand and act on the results,
specifically the research and experimentation
community, the decisionmakers who must translate
experiment results into policies, programs, and
plans of action, as well as the military subject
matter experts and “operators” who must learn and
act on the knowledge generated. In the social
science literature, credibility with expert audiences
is termed “face validity.” Novel, subtle, or esoteric
measures must be developed and presented in
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ways that are transparent to all these audiences.
Similarly, careless labeling of measures and metrics
that expose them to surface misunderstandings
or criticisms can lose credibility.

The systems and communications communities’ use
of the term situation awareness provides a good
example of measurement that lacks credibility. In
many cases, they have chosen to use that term to
refer to the quality of the information present in
displays and data files. Hence, good situation
awareness meant that all the entities of interest
were present in the information system, available
for presentation, and could be displayed in ways
that distinguished them from one another (armor
would be distinguished from supply convoys, fast
movers from other types of aircraft, warships from
commercial vessels, etc.). However, the research
community, which understands situation awareness
to be what people know (not what is available to
them from machines), did not find this approach to
measuring situation awareness credible. Similarly,
many military personnel, who understand situation
awareness to extend beyond the “who is where”
picture to include obvious military developments in
the future (the turning of a flank, an imminent
breakthrough, an urgent need for water, etc.) also
found this approach lacking.

Need for All Three Criteria

Transformational experimentation teams need to
pay attention to all three criteria. Lack of validity
means that the experiment cannot yield meaningful
results. Lack of reliability means that the data
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cannot be trusted, so the results should not be
believed. Lack of credibility means that the results
will not be believed. Hence, selecting measures and
metrics is a process where the highest possible
standards must be used.

Process of Measure and Metric
Selection

While every experiment will present different
challenges and opportunities and every team of
experimenters will need to exercise both creativity
and judgement, there are some processes that
have proven useful in the past. These processes
should be a starting point for selecting measures
and metrics.

Anchoring in the Initial Model

The experimentation team will want to anchor
its efforts in the initial model, which was developed
as a result of their studies of previous research
and their efforts to build meaningful sets of
propositions and hypotheses. In many cases, the
same variables represented in that model will
have been present  in  pr ior  research and
experimentation. Hence, the measures and metrics
employed in prior efforts can be considered as
candidates. Note that prior work may contains
both good and bad precedents. While the process
of accumulating knowledge will benefit if the same
or similar measures can be employed, precedents
should not be employed at the expense of validity,
rel iabi l i ty, or credibil ity. If the measurement
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approach in prior work appears flawed, then
the team should take that as an important lesson
learned, not an example to be followed.

The initial model and its first executable form are
also simple sources for the list of concepts that
need measuring. It should include definitions,
though they may be too abstract to employ
without further work to make them operationally
meaningful. This will sometimes be the first
time that measures are translated into specific
metrics or that the need for more than one metric
in order to capture the full concept under analysis
is recognized.

Dependent Variables First

Since the dependent variables are the objective
functions for the experiment and its analysis,
speci fy ing their  def ini t ions, measures, and
metrics is the first task. Note that this discussion
presumes that  more than one dependent
var iable wi l l  be re levant  in  a lmost  a l l
transformational experimentation. This premise
is based on three assumptions. First, most
important  concepts under ly ing dependent
variables are mult idimensional. The classic
“better command and control” composed of more
correct decisions made more quickly is an
excellent example. Second, layered systems of
dependent variables are often valuable aids to
understanding and analysis. A classic example is
the MORS approach of layers of measures of
performance (MOP) for systems (human and
machine) supporting layers of measures of C2



168 Code of Best Practice for Experimentation

effectiveness (MOCE), supporting layers of force
effectiveness (MOFE), which support layers of
po l icy ef fect iveness (MOPE).  Third,  most
dependent variables should be collected across
at least three echelons of command for diagnostic
purposes. Hence, an analysis intended to test
propositions at the joint task force level should
at least be informed by data at the component
and CINC levels of command. For example, an
effort to measure “clear and consistent command
intent” in joint task force performance needs to look
up and down at least one echelon and examine
communications and collaboration across levels in
order to gauge clarity and consistency.

The definitions of each variable of interest need
to be reviewed carefully. If the concept is simple,
it may have a single, direct measure. For example,
decision cycle time can be measured validly,
reliably, and credibly by a team that is properly
trained and has access to reliable, calibrated
c locks and the re levant  command center
act iv i t ies.  S imi lar ly,  the number of  people
participating in a collaboration session can be
recorded d i rec t ly,  p rov ided that  the  term
part icipat ion is clearly defined, perhaps as
workstations linked to the session.

In many cases, however, the dependent variable
will be multidimensional. No single attribute will
validly cover the entire concept. For example, future
command and control systems will need to be
adaptable. However, that adaptability may involve
changes in structure, part icipation, or work
processes. Hence, an experimentation team
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interested in that phenomenon would need a set of
measures, not just a single one.

The purposes of specifying the entire measurement
system for the dependent variable(s) of interest
before trying to complete the entire set are to
ensure (a) that the full set is specified when the
independent and intervening variables’ measures
are chosen and (b) the dependent variables are
fully independent of them. If the dependent
variables of interest are somehow defined or
measured in ways that cause them to overlap with
the independent or intervening variables, the
experiment will be confounded and its results will
be confusing at best, and meaningless at worst.

As each measure and metric is considered, the
experimentation team needs to review the simple
mantra of “validity, reliability, and credibility.” The
question on validity is whether the measure or set
of measures selected real ly represents the
concept, the whole concept, and nothing but the
concept under study. The question on reliability
is whether the same events, situations, attributes,
or behaviors will always be recorded and scored
the same way, regardless of when, where, or by
whom (or by which machine) the data are captured.
The issue on credibility is whether the measure
will be accepted by, or can be explained clearly to,
the three key audiences: the research and
experimentation community, the decisonmaking
community, and the operational community.
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Dependent and Intervening Variables

Once the proper set of dependent variables is
articulated and any requisite changes made to the
hypotheses or propositions under study, the
remaining variables should be subjected to the
same process, with one exception. Beyond validity,
reliability, and credibility, the other variables need
to be examined for independence, both from one
another and from the set of dependent variables
already chosen. Where independence is in
question, the data analysis plan will need to include
empirical tests of the strength of association
between the variables of interest. Moreover,
provision should be made for analytic techniques
that can provide statistical processes that can
compensate if independence cannot be achieved.

Feasibility Testing: Data Analysis and Data
Collection Planning

As the full set of variables is identif ied and
measures, metrics, and indicators are selected, they
need to be organized into a system that will inform
the data analysis and data collection plans. This
process raises a number of important practical
considerations, including:

• Whether the measures and metrics will yield
data sets ready for analysis on all the issues
under study;

• Whether the experimentation team has access
to all the data and information necessary
to support the analyses;
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• Whether the data and information needed can
be captured cost effectively;

• Whether adequate numbers of collectors,
recorders (human and machine), and controllers
are available;

• Whether the schedule and resources for training,
collection, data reduction, inter-coder reliability
testing, and archiving are adequate.

In essence, this practical review enables the team
to complete the data analysis and data collection
plans while also forcing the experimenters to think
through their resource requirements.

Established Measures and
Metric Systems

While each experiment is different and each
experimentation team will need to be both creative
and thoughtful about the specific measures and
metrics they choose to employ, there are some
established frameworks that may be useful,
particularly when command and control issues
are central to the research effort. Both the MORS
categories of measures and the NATO Code of Best
Practice for C2 Assessment have been mentioned
earlier and can be used to understand the classic
approaches. However, those classic sources can
be brought up to date and better focused by looking
at some of the more recent applications and
approaches. Those are briefly discussed below,
including an assessment of their strengths and
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weaknesses, as well as references to where more
information can be located.

Network Centric Warfare Value Chain

The elements of one established system, the
Network Centric Warfare value chain, are illustrated
in Figure 2-1.1 This approach employs several
layered concepts:

• The beginning point is the quality of the
information and knowledge available within the
command and control system.

• Information quality follows the metrics
developed more than 20 years ago in the
Headquarters Effectiveness Assessment Tool
(HEAT) to track the completeness,
correctness, currency, consistency, and
precision of the data items and information
statements available.

• Knowledge quality here refers to the prior
knowledge embedded in the command and
control system such as templates for
adversary forces, assumptions about entities
(ranges, weapons, etc.), and doctrinal
assumptions used to infer future adversary
actions (intentions).

• Awareness refers to information and
knowledge as they are known by the
individuals using the command and control
system. Awareness is always in the cognitive
domain and must be measured using
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indicators such as survey instruments and
debriefings, or inferred from behavior.

Taken together, information, knowledge, and individual
awareness constitute the richness of the content
available in the command and control system. Reach,
on the other hand, depends on the ability to share
information, knowledge, and awareness.

• Shared information and knowledge can be
measured in almost exactly the same way
as individual information and knowledge
(completeness, correctness, currency,
consistency, and precision). However, new
dimensions must be considered: what fractions
of the relevant command and control system
users have access, what delays may occur in
that access, how well the total system is
informed (what is known to the members), and
how well the typical (average or median) user
is informed.

• Similarly, shared awareness must be
understood in terms of these four new
dimensions, but the indicators will focus on
what individuals perceive, not what is
available to them from their systems.

• Shared understanding, which builds in the
information, knowledge, and awareness to
define relevant cause and effect relationships
as well as temporal dynamics and puts them
into an operational context that defines the
threats and opportunities relevant to each
actor and their opportunities to influence the
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military situation, is also an important element
of reach.

The command and control processes supported by
reach and richness form a hierarchical ladder that
moves from decisionmaking in the military context
through synchronization and mission or task
effectiveness to the overarching level of policy
effectiveness.

• Decisionmaking effectiveness has two
fundamental components: quality of the
decision process and quality of the decision.

       -  Quality of the decision process can be
measured in several ways. These include
issues such as the number and variety of
participants, the variety of alternatives
considered, and the explicitness of the
criteria applied.

       -  Quality of decision measures often
includes the speed with which the decision
is made, but should also include some way
of assessing the decision itself – fast
decisionmaking should not be confused with
good decisionmaking. The quality of military
decisions is only known in the real world
after the fact. In experiments, it is common
to use panels of subject matter experts to
judge decision quality, both before and after
the fact. The key here is to ensure
objectivity – bias due to interpersonal
relationships, service doctrine, or other
factors should be screened out whenever
possible. Blind judging can be helpful.
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• Synchronization is a factor that has long been
appreciated in judging command and control
performance, but is only now coming to be
understood well enough to measure in a
reliable and valid way. Synchronization refers
to “purposeful arrangement in time and
space.”2 The fundamental scale that has
emerged is the percentage of the elements or
assets of a force that are (a) conflicted
(interfering with one another or limiting one
another’s actions), (b) deconflicted, or (c)
synergistic (multiplying the effects of one
another).

• Measures of mission or task effectiveness,
which include classic force effectiveness
measures (casualty ratios, territorial control,
etc.) when classic force or attrition missions
are assigned, form a still higher or more
comprehensive layer of measures. When
strategy-to-task structures are used, they
provide the framework for this class of
measure.

• Policy Effectiveness forms the topmost layer in
this framework. As mission complexity has
grown and purely military activities have
become subordinate to political, humanitarian,
counter-drug, counter-terrorism, counter-
insurgency, and peace operations; the need to
assess overall success (rather than military
success) has become increasingly important.

The Network Centric Warfare value chain provides
a rich source for thinking through the set of metrics
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relevant to a particular experiment. However, it is
only one such source. Most data collection and data
analysis plans should consider more than one
approach and ultimately select a set of measures
and metrics that make unique sense for their
problem or hypotheses.

Effects-Oriented Measures and Metrics

An Australian team (Seymour et. al.)3 has recently
introduced an alternative hierarchical arrangement
of measures (Figure 7-1) predicated on the
assumption that effects-based operations (EBO) is
the concept that best underlies future military
operations. This approach asserts that there are five
crucial layers:

•  Data Superiority (data collected);

•  Information Superiority (information quality);

•  Knowledge Superiority (situation awareness);

•  Decision Superiority (decision quality); and

•  Effects Superiority (achieving intent).

Unfortunately, this approach introduces some
language that is inconsistent with the NCW usage
in the United States and mixes ideas from the
NCW work with that of Professor Endsley (2000),
but i t  is reported intel l igently and provides
comparative results as the basis for suggesting a
new approach.
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Figure 7-1. Hierarchy of Outcomes

Headquarters Effectiveness Assessment Tool
(HEAT)

The longest surviving approach to measurement
of command and control, HEAT, originated 20
years  ago  and  has  been  app l ied  to  rea l
warfighting cases, exercises, and experiments,
and still underlies work at U.S. Joint Forces
Command and in the NATO Code of Best practice
for  C2 Assessments . 4 HEAT organizes the
command and control  process into several
elements and posits a variety of indicators for
each element. The elements considered include:

• Monitoring the battlespace – facts known to
the information system, scored for
completeness, correctness, currency,
consistency, and precision;



178 Code of Best Practice for Experimentation

• Understanding the battlespace – perceptions
and understandings of the battlespace, scored
for completeness, correctness, time horizon,
and consistency;

• Alternatives considered – scored for variety
and number of perspectives;

• Predictions made – scored for variety and
number, completeness of alternative futures
considered;

• Decisions made – not scored, recorded for
later comparison with outcomes for
mission accomplishment;

• Directives generated – scored for clarity and
consistency with decisions made;

• Reports issued – scored for correctness and
consistency; and

• Queries for information – scored for response
rate, response time, and correctness of
response.

All HEAT categories are also supported by speed
metrics designed to learn how long the command
and control process steps have taken. More
recently (in the past 2 years) they have also been
supported by measures focused on the degree
and quality of collaboration in the command and
control processes.

Because it has been widely applied, HEAT has also
demonstrated a couple of principles that all
experimentation teams should bear in mind. First,



179Chapter 7

HEAT experience underscores the importance of
collecting data at echelons above and below those
under detailed study. For example, learning
whether directives or reports were clear can only
be done by comparing what the authors meant to
convey with what the recipients understood.
Second, HEAT applications have made it clear
that data on automated command and control
processes can be taken automatically, but that
human-centric command and control processes
can only be captured properly by teams of well-
trained human observers. In addition, HEAT
experience has made it clear that the perceptions
of observers, controllers, participants, and support
personnel will differ (often widely) and may differ
from the empirical evidence. Hence, rich data
analysis and data collection plans that include
all these perspectives are essential.

Example Application:
Self-Synchronization
Experiment

The discovery experiment in self-synchronization
introduced in the last chapter makes an excellent
practical example for developing measures, metrics,
and indicators. The first task is to make a list of
the variables of interest, which are really the
attributes for which measurement is needed. As
Figure 6-1 shows, there were 12 attributes identified
in the initial descriptive model:

• Effective self-synchronization (the dependent
variable of interest);



180 Code of Best Practice for Experimentation

• High quality shared situation awareness
(intervening variable);

• Congruent command intent (intervening
variable);

• Trust (intervening variable);

• Common perceptual filters (intervening
variable);

• High quality situation awareness (intervening
variable);

• Collaborative command and control processes
(intervening variable);

• Competence (intervening variable);

• Empowering leadership (intervening variable);

• High quality information (independent
variable);

• Information availability (independent variable);
and

• Shared knowledge and experience
(independent variable).

All of these variables will need to be understood at
the measure and metric level, whether they are to
be manipulated or controlled in the experiment.
Even factors that will be controlled in the experiment
design wi l l  need scales and values so the
experimenters know that these variables have
achieved and maintained those values, and so that
later experiments (where they may be manipulated)
can be informed properly by these results.
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Dependent Variable:
Effective Self-Synchronization

Identification of measures and metrics should
always begin with the dependent variable, both to
ensure that the other variables are defined in ways
that are not confounded with the dependent, and
also to ensure that the focus of the experiment has
been properly captured. The project team found
that little experimentation had been done on this
topic and most of the work on defining the term
remained immature. Hence, the experimentation
team focused its first efforts at clear, precise
definition. The term has at least three elements:
“effective,” “synchronization,” and “self.”

Work began with the concept of synchronization.
This has been defined as “purposeful arrangement
in and across time and space.”5 While helpful, this
definition is not operational. It does not tell a
research team what to look for in order to determine
whether one case is at all “more synchronized”
than another.

The most fundamental dimension underlying the
concept emerges from conflicted situations (units
and activities that interfere with one another, down
to and including fratricide) through de-conflicted
situations (boundaries, schedules, and other control
measures are used to prevent interference, but units
and activities therefore function independently and
also constrain one another) to synergistic situations
where activities and units interact to generate
effects or  mission accomplishments greater than
the linear sum of their parts. This approach has the
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advantage of including the concept of effective
within the meaning of synchronization. Moreover,
the experimentation team stressed that synergistic
activities and units are supporting one another,
not just working within the same space and
time period. Adopting this approach, the
experimentation team selected two fundamental
measures for “effective synchronization:”

• For a given period of time, the percentage of
activities (missions or tasks) that are
conflicted, de-conflicted, and synergistic; and

• For a given period of time, the percentage of
units whose actions are conflicted, de-conflicted,
and synergistic.

These two measures cross-check one another.
They also recognize that synchronization occurs
over time and must be integrated over time to be
meaningful. They will require the ability to identify
tasks (as in the concept of strategy to task, but
including non-military tasks such as informational,
political, economic, and social activities that are
significant in accomplishing the mission) as well
as a consistent definition of unit that applies to
the forces and other organizations involved. The
basic mathematical formulation of these two
metrics is shown below.6
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S =    n-1
         Σ Vι
         ι  = 1
         Cn

2
where,

S = degree of synchronization [-1≤S≤+1]
Cn

2
 = combination of n things taken 2 at a time

Vι = 1 if the ith pair is in a state of synergy
        0 if the ith pair is in a state of neutrality
        -1 if the ith pair is in a state of interference
n = case number

Knowing what synchronization means helps to
define self-synchronization because it is an
essential element of the concept, a necessary yet
insufficient condition. Clearly, synchronization can
be achieved by centralized control. For example,
U.S. Air  Force Air  Tasking Orders (ATO)
synchronize a variety of different types of aircraft
engaged in a variety of missions and tasks by
providing a centralized mechanism that blends the
efforts of all the forces. These “order” types of
mechanisms, as well as directives that focus on
specif ic mil i tary objectives under integrated
schedules, discourage many kinds of initiative.7

Classic self-synchronization occurs when leaders
and commanders throughout the battlespace are
able to generate synergy based on their shared (a)
training and experience, (b) understanding of the
commander’s intent, and (c) awareness and
understanding of the situation.

For example, dur ing the Civi l  War and the
Napoleonic Wars, commanders often followed the
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rule that their forces should “march to the sound
of the guns,” largely because they seldom had
good intelligence on where the enemy force was
located or even where the other friendly forces
were at a given point in time. Hence, this rule of
thumb made it possible for forces to concentrate
in the presence of  an enemy wi thout  f i rs t
establishing communications or developing a plan
to integrate their actions.

The experimentation team in this case decided
that self-synchronization would be recognized
when the commander’s mission type orders and
the forces involved could be scored as synergistic
in terms of units and activit ies. Hence, the
experimenters incurred an obligation to be able
to capture all directives (from written plans
through verbal commands and consultations
between commanders) in their data collection
p lan,  and a lso to  create the capabi l i ty  to
distinguish mission type orders from others.
Therefore,  part  of  the ef for t  to make sel f -
synchronization operational will need to include
developing, testing, and revising coding rules that
can identify mission type orders and count the
missions and tasks assigned, as well as the units
assigned to them.

Independent Variables

The working model of the problem (Figure 6-1)
identified only three true independent variables
(factors expected to impact the dependent
variable, but not driven by other factors in the
model): information quality, information availability,
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and shared knowledge and experience. The first
two of them, however, were seen as interacting with
one another and being mutually reinforcing. That
is, the quality of the available information was
expected to be higher if that information could be
made avai lable widely,  and the breadth of
availability was seen as increasing the quality
of the information as the participants shared and
discussed it. These three factors were seen as so
important to effective self-synchronization that
they would need to be assured by the experiment
design in order to activate the processes that the
experiment would focus on, namely the interactions
between the participants.

High quality information is well-defined in the HEAT
tradition. High quality information is drawn from
the monitoring function, which is located in the
information domain and consists of facts and basic
inferences about what is and what is becoming,
rather than the richer inferences needed to convert
those sets of facts into situation awareness and
understandings. This perspective was seen as
appropriate to the problem under analysis since
the initial model distinguishes between the quality
of  in format ion and the qual i ty  of  s i tuat ion
awareness. The key measures suggested in this
part of the HEAT model are:

•  Completeness – information is available about
all the entities and situations of interest to the
decisionmakers (metrics focus on percentage
complete);
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• Correctness – there is no false information
and the uncertainty surrounding that
information is explicitly known (metrics focus
on percentage correct);

• Currency – the information has no time lag and
the time lags that do exist are known (metrics
focus on latency of information items and
percentage within command standards
established for types of information);

• Consistency – there is no difference between
the information sets known to different parts of
the information system (metrics focus on
percentage of items consistent); and

• Precision – whether the information item has
adequate precision for some specific
application (metrics focus on percentage of
items within the command standard such
as targeting quality versus adversary posture
in the battlespace).

Each of these groups of measures already has
detailed working definitions in the HEAT system.
Moreover, training materials exist from prior
applications. However, every experiment has
unique needs and features, so even these “tried
and true” sets of measures were scrubbed in
detail to ensure their relevance and focus. For
example, establishing the command standards for
latency on information of different types requires
assessment. Prior applications had established
acceptable time-critical targeting latency at 60
minutes based on the time required to process
the information, assign assets, and strike the
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target. However, only a fraction of the relevant
targets were being struck successfully with this
standard, so the subject matter experts working
with the experimentation team recommended this
threshold be reduced to 30 minutes.

Because high quality information was seen as a
necessary yet insufficient condition for effective
self-synchronization, the experimentation team
decided that its values should be directly controlled
in the experiment. They did not, however, want to
lose the very real features of uncertainty and a
lack of precision as factors that the subjects should
consider. Hence, they instructed those developing
the experimentation environments (supporting
scenario information – see the next chapter) that
completeness should be at 80 percent, correctness
at 90 percent, currency within command standards
at 80 percent, consistency at 100 percent for
what was available (no differences in the underlying
data sets) for U.S. forces and at 80 percent for
coalition forces, while precision would reflect the
capabilities of the reporting sensors. This last
assumption reflected concerns that  the participants
would have prior knowledge of the reliability and
capabilities of the sensor suites in use. Therefore,
using artificial values for precision would lead to
confusion and might reduce the credibility of the
experiment in the eyes of some subjects.

Because information quality would vary across
time within the boundaries established by the
experimenters, it also had to be recorded so it
could be included in the data analysis plan and its
hypothesized impact on other factors assessed
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statistically. In this case, this meant monitoring the
databases and injections into them and taking
measures of central tendency (means, since the
metr ics adopted are rat io measures) and
dispersion (standard deviations). Ideally, these
would be tracked continuously, minute by minute.
However, given the indirect impact of the quality
of information, the decision was made to record
data hourly throughout the experiment.

Information availability, also seen as a necessary
yet insuff ic ient condit ion for effect ive self-
synchronization, was another factor that the
experimentation team wanted to control, but not at
perfect levels. The measure that matters is
workstation access, meaning who can interact
with which parts of the database at any given time
and collaborate with others about the available
information. Connectivity was established for this
experiment at 95 percent, with randomly assigned
breaks ranging from 1 minute to 40 minutes across
linkages. Participants were to be given the capability
to check on outages and ground truth about their
existence and correct them to within plus or minus
30 percent of their length, but only if they inquired.

The experimentat ion team also noted that
information availability was a potentially crucial
factor that they were deliberately controlling in this
experiment, but which was worthy of further
research. Hence, they noted that it should be
explored further, both in their own sensitivity
analyses after the experiment and in later
experimentation on similar issues.
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As noted earlier, shared knowledge and experience
was the final truly independent variable seen as a
fundamentally necessary yet insufficient condition
for self-synchronization. This is a very difficult factor
to control, but it is also seen as a powerful
determinant of other factors in the model, such
as creating common perceptual filters, perceptions
of competence, and willingness of leaders to
empower subordinate commanders.

The first inclination of the experimentation team
was to look for existing military organizations in
order to ensure that their teams of subjects had a
high level of shared knowledge and experience.
However, they soon recognized that (a) such teams
would be difficult to obtain as subjects, (b) existing
military teams are impacted by rotation and may
or may not have rich shared knowledge and
experience, and (c) the settings and military
missions for this experiment may reduce the
relevance of the shared knowledge and experience
of existing teams.

The second approach considered was informed
by one o f  the soc ia l  sc ient is ts  on the
experimentation team. She pointed out that small
groups create shared knowledge and experience
as they work on problems and that this process
generates a set of artifacts that capture their
efforts. This set of artifacts includes specialized
language, heuristic approaches to the problem
that increase team productivity, knowledge of one
another’s expertise and perspectives, as well as
roles within the team. Taking this perspective, the
experimenters decided that they would seek to
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create the shared knowledge and experience
within their teams of subjects during training. This
solution to the problem illustrates the value of
having a multidisciplinary team. While they still
felt a strong need to have military professionals
as subjects, they felt they could, by having the
groups work a series of problems together during
the training phase of the experiment, create a
meaningful level of relevant shared knowledge
and experience. This decision obviously implied
a link to subject training, demanding that subject
teams be created as early as possible and training
would need to ensure a number and variety of
relevant problems where those teams would work
together. The training impact of this decision about
controlling shared knowledge and experience is
an excellent example of the close linkage between
the elements of an experimentation plan.

However, deciding on an approach to establishing
shared knowledge and experience within the teams
of subjects is not the same as creating the
appropriate measures and metrics. Regardless of
how well the training creates opportunities for
creating these factors, the subject teams are likely
to vary in shared knowledge and experience.
Moreover, these may change during the experiment
as the subjects gain more experience working
together. Hence, good definitions and measures
will be needed.

The team noted that knowledge and experience
are partly determined before the teams come
together for the experiment. Hence, data will be
needed about the individual’s background and
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t raining. Fortunately, they had access to a
questionnaire developed by the Information
Superiority Working Group for an experiment
conducted at  U.S. JFCOM in 2001. 8 Th is
instrument includes the length of professional
military experience, Service, branch, military,
and civilian educational background, computer
l i teracy, assignments, command experience,
command center experience, combat experience,
and other factors that might impact performance.
However, the new thinking implied by the self-
synchronization experiment is focused on how
these background factors can be compared to
identify teams with more or less shared knowledge
and experience. In this case, the team decided
the questionnaire was adequate for data collection,
but noted that the data analysis plan would
need to use some clustering techniques to
measure closeness of prior education, training, and
experience. Multidimensional scaling was the
recommended approach, though the number of
teams and indiv iduals involved was also
recognized as a under-developed factor in the
analysis plan that might lead to different choices
later in the process.

Another other key issue remained – how to
measure shared knowledge and experience at the
end of training and during the experiment itself.
The decision was made to rely on two cross-
checking techniques: self-reporting and behavioral
observation. These two very different techniques
were chosen because th is is  a d i f f icu l t
measurement problem and because neither
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technique can be assumed to be fully valid or
reliable by itself.

The self-reporting instrument focused on each
team member’s perceptions of what they have in
common with others on the team as well as
relevant differences from them. It also asked
about how close the individual’s perceptions
of the experiment’s situations and approaches
to mi l i tary problems are to those of  other
members of the team. This latter section of the
questionnaire was designed to reflect changes in
shared knowledge and experience as the group
worked together through training problems and
experiment trials. Provision was also made in the
schedule  o f  the exper iment  for  fo l low-up
interviews with individual members of the subject
teams to clarify their answers where necessary.

Behavioral observation was planned around the
groups’ creating artifacts such as specialized
language, heuristic approaches to problem solving,
common ground among team members, etc. This
entailed training the observers in recognizing the
emergence, use, and growth of those artifacts that
indicated increasing shared knowledge and
experience, as well as those behaviors (challenges,
miscommunication, etc.) indicating a lack of shared
knowledge and experience. This required another
adjustment to the training schedule and an
instrument on which to record relevant behaviors.
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Intervening Variables

The eight other variables being explicitly considered
are intervening variables believed to impact the
dependent variable, but also influenced by one of
more other factors in the conceptual model.

Common Perceptual Filters are a product of shared
knowledge and experience. Hence, the decision was
made to handle them as part of the questionnaire
on that topic. The specific technique selected was
to offer key terms and images from each of the
operational vignettes used to drive the experiment
and have the subjects provide their interpretations
of what each means and the relative importance of
each term or object in the situation. Responses were
scored on commonality, not on correctness.

Competence, in the context of this experiment, is
really perception of competence. The assumption
is that superior commanders will be reluctant to
empower junior commanders with mission type
orders and responsibility for self-synchronized
act ions unless they perceive those junior
commanders as competent. Hence, this issue will
need to be addressed with a survey instrument.
Again, the decision was made to include issues of
the competence of other actors on the same
questionnaire used to assess shared knowledge
and experience and common perceptual filters.

Trust is also a perceptual issue and was also added
to the questionnaire. Trust, however, is often
situational. Hence, several questions were needed
to establish levels of trust on different topics such
as (a) willingness and ability to provide complete
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and correct information, (b) capability to develop
an independent plan of action, (c) willingness to ask
for assistance when needed, and (d) willingness to
seize the initiative when appropriate.

Empowering Leadership is difficult to control as it
results not only from the perceptions that
commanders have of their subordinates, but also
personal leadership style. As a consequence, the
decision was made to capture this factor through
behavioral observation. A rich literature exists on
leadership and it was researched to find both
operational definitions of empowering leadership and
also indicators of that behavior. The key definition
focuses on the distinction between consultative and
directive approaches. The key indicators focus on
the extent to which the leader seeks prior knowledge
about and explicit control over decisions that are fully
within the responsibility of the subordinate, and
the extent to which collaboration and problem solving
between subordinate commanders is encouraged
and accepted. This subject also needed to be
included in the training plan for the experiment.

Collaborative Command and Control Processes
were available to the subjects throughout the
experiment, except when their connectivity was
interrupted (see the discussion of information
availability), which was recorded for analysis.
Hence, the major dif ference is how much
col laboration each team used. This can be
measured directly by instrumenting and recording
the collaboration tool.
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High Quality Situation Awareness is a difficult
concept in the abstract. Fortunately, an operational
approach to this issue was developed in the
DARPA Command Post of the Future Program,
vetted by the Information Superiority Working
Group, and applied again within the JFCOM series
of Limited Objective Experiments. This approach
recognizes that awareness is what people know.
I t  decomposes the knowledge needed to
understand a military problem into factors:

• Capability and intentions of own, adversary,
and uncommitted forces;

• Missions assigned to those forces as well as
constraints on them;

• Knowledge of the environment (physical,
weather, political, economic, social, and
other relevant factors such as International
Organizations, NGOs, etc);

• Time and space relationships;

• Uncertainties about the data and information
available; and

• Threats and Opportunities for all the actors
involved.

In the approach adopted, each of these factors is
pre-solved into an ideal solution by subject matter
experts. The subjects complete a questionnaire
about their perceptions of the situation during
selected breaks in the experiments. These answers
are then compared with the “school solution”
generated earlier. Scores are reported as a
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percentage of the correct solution, with counts made
of both erroneous perceptions and correct relevant
perceptions not in the school solution.

High Quality Shared Situational Awareness can
be inferred by comparing the situation awareness
questionnaires from the subjects assigned to the
same team. Shared items are those that are
correct across members of the team. Different
scores can be expected across different pairs so
that scoring should be available in case one
member of a team turns out to have a very different
awareness from the larger team. Incorrect shared
perceptions should also be scored separately as
they are likely to influence the overall performance
of the team.

Congruent Command Intent, the last intervening
variable, can be scored by comparison of the
statements of intent, plans, directives, and orders
given at different echelons and across different
units or functions. The standard for comparison is
the senior commander. However, pair-wise
comparison is the driving metric. In a self-
synchronized world, the lower level commanders
may well be making decisions that are consistent
with one another, but are not identical to the original
command intent generated at senior levels when
different information was available.

Conclusion

The length and complexity of this example illustrates
the difficulty and importance of serious, upfront
work on measures and metrics. Experiments that
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fail to invest in these crucial topics are very likely
to fall far short of their goals and purposes. Clarity
of definition; validity, reliability, and credibility of
measures and metrics; preparation and planning for
data collection and analysis; and training for
subjects, observers, and others supporting the
experiment are all heavily impacted by the quality
of thinking in this crucial arena.

1Alberts, David S., John J. Gartska, Richard E. Hayes, and David
A. Signori. Understanding Information Age Warfare. Washington,
DC: CCRP. 2001. p76.
2Understanding Information Age Warfare. p206.
3Seymour, Robert, Yi Yue, Anne-Marie Grisogono, and Michael
Bonner. “Example of Use of a ‘Knowledge Superiority’ Based
Framework for C4ISR Metrics.” Land Operations Division
Defence Science and Technology Organisation. 2002.
4Headquarters Effectiveness Assessment Tool “HEAT” User’s
Manual. McLean, VA: Defense Systems, Inc. 1984.
5Understanding Information Age Warfare. p206. Note this has
been adapted by the ISWG to emphasize “across.”
6Understanding Information Age Warfare. p231.
7Alberts, David S. and Richard E. Hayes. Command
Arrangements for Peace Operations. Washington, DC: NDU
Press. 1995.
8See Appendix D.
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CHAPTER 8

Scenarios

What is a Scenario?

T he NATO Code of Best Pract ice for C2
Assessment (Revised Edition, 2002) defines the

term scenario as “a description of the area, the
environment, means, objectives, and events related
to a conflict or a crisis during a specific timeframe
suited for satisfactory study objectives and problem
analysis directives.” That volume also discusses the
topic in considerable detail and is recommended
as a source for those who are new to dealing with
the subject. However, its focus is both broader (all
types of analysis) and narrower (primarily command
and control, though much of its guidance can be
applied to a range of military analyses) than the
focus here on transformational experimentation.

The same source goes on to argue that scenarios
consist of four primary elements – “a context (e.g.,
characterization of a geopolitical situation), the
participants (e.g., intentions, capabilities, of blue,
red, and others), the environment (e.g., natural –
weather and manmade – mines), and the evolution
of events in time.” It also notes that “the purpose of
scenarios is to ensure that the analysis is informed
by the appropriate range of opportunities to observe

CCRP Publications
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the relevant variables and their interrelationships.”
This drives home the point that scenarios are tools,
not ends in themselves. As such they need to be
crafted, selected, or adapted to ensure that they
support the goals of the experiment.

Scenarios in Transformation
Experimentation

Scenarios provide the substantive focus and
boundaries for experimentation. This makes them
a crucial element in planning for success. Herein
also reside the core dangers for scenarios in
experimentation. On the one hand, if they are overly
specific, the experiment may not examine all the
important propositions or generate data on all the
relevant factors and relationships. On the other
hand, if they are too general, the experiment may
fail to generate adequate data and information to
support genuine analysis and learning.

No Single Scenario

Note that the term scenarios is always used here in
the plural. This reflects a fundamental fact: no single
scenario is likely to be sufficient to support a
meaningful experiment.  The use of a single
scenario, even one that has been carefully crafted
to focus on the key issues in an experiment, invites
suboptimization and narrows the range of
applicability for the findings. Academic research,
which is intended to develop knowledge over long
time periods and therefore focuses primarily on
incremental additions to knowledge, can afford
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this luxury. However, transformational military
experimentation cannot. Reliance on a single
scenario means that the resulting knowledge and
models of what has been observed will be optimized
for that scenario at the expense of the range of other
situations and missions where the military will be
employed. During the Cold War, when the U.S. was
primarily focused on the Soviet and Warsaw Pact
threats and had decades to study their orders of
battle, training, doctrine, and materiel, single
scenario experiments and analyses made some
sense. However, their limits became obvious when
American forces had to contend with very different
threats and missions in Vietnam. Weapons systems,
force structure, doctrine, training, and other items
that had been optimized for heavy force-on-force
combat in Europe and Korea were less than ideal
and had to be altered in fundamental ways.

Defining the Scenario Space

The range of threats and missions relevant to
transformational experimentat ion today are
displayed in Figure 8-1, Scenario Threat Space.1

The vertical axis identifies the sources of threats
facing the U.S., from classic nation states with
military organizations down through non-state
actors (e.g., Palestinians) through organizations
(e.g., terrorists, drug cartels, illegal corporate
actors) to loosely l inked groups (e.g., anti-
globalization demonstrators, ethnic groups in
turmoil)  to threats that ar ise from natural
phenomenon (e.g., AIDS, hurricanes, earthquakes).
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The horizontal axis defines the types of control
mechanisms the U.S., and particularly the U.S.
military, may have to employ to be effective against
these very different threats. Military operations are
clearly relevant to fighting nation states, but
decl ine in relevance as the threat shif ts to
sources that do not have organized military forces.
In current terms, defeating Taliban and organized
formations of al-Qaeda forces was a relatively
straightforward military task, but those operations
have ushered in a much more diff icult, and
potentially much longer and more complex, set of
operations. Other missions today place the military
in ro les where their  pr imary funct ions are
monitoring and providing policing services. Many
peace operat ions, some intervent ions, and
humanitarian assistance missions outside U.S.
borders often require this orientation, at least
during their initial phases. Finally, and perhaps
most important, many missions today require major
efforts in cooperation, not only with nation states
(allies, host governments, etc.), but also with
international organizations, private volunteer
organizations, general populations, and even
media organizations.

While some individuals in the military (both U.S.
and foreign) would prefer a simpler world in which
the only task of the armed forces is to “fight and win
the nation’s wars,” this yearning for a “golden age”
is illusory. Even at the height of the Cold War, the
first mission of the U.S. Armed Forces was to deter
major conflicts. Today that tradition continues, but
has been expanded into “shaping” the operating
environment in ways that seek to prevent or limit
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overt conflicts and minimize the risks to U.S. lives
(including military lives) and property.

As the understanding of effects-based operations
grows and as it is incorporated into military
planning and operations, the capability of military
organizations to employ effective communications
and persuasion to shape the environment and
gain cooperation will come into sharper focus.
Examination of recent history certainly supports
the idea that U.S. forces must be able to carry out
a wide range of missions and employ a variety of
means in order to be effective.

The matrix of threats and control mechanisms
makes is appear that the variety of threat sources
and ways of carrying out military missions can be
segregated neatly. However, the reality is that they
have become inextricably mixed and connected. The
U.S. Marine Corps concept of a “three block war” in
which they expect to be engaged in combat
operations in one part of a city, enforcing curfews
and disarming the population close by, while
providing humanitarian assistance in a third area
of the same metropoli tan area is a graphic
portrayal of this reality. The luxury of having
specialized equipment and different forces for
each type of mission will only occur in sterile
position papers. Realistic thinking about the
elements of mission capability packages and
DOTMLPF initiatives will have to face this complex
reality. Hence, transformational experiments must
not be based on a single scenario that only
encourages us to put our heads in the sand and
ignore crucial threats or critical capabilities.
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The need for a variety of scenarios has already
been recognized in some parts of  the
DoD community. For example, the scenarios
underlying the JFCOM series of experiments
leading up to Millennium Challenge ‘02 (Unified
Vision ‘01 and Limited Objective Experiments) were
crafted as a series of vignettes that move from a
serious international situation where the U.S. has
clear interests and a range of tools can be used to
shape the environment, through a crisis phase
requiring working with other governments in
military planning and preparations, to a military
actions phase, followed by a conflict termination
and regional restoration problem. Similarly, the
visualization tool experiments performed within
DARPA’s CPOF Program used both tactical military
force-on-force scenarios and an insurgency
situation where the U.S. role was limited to
protecting U.S. forces, personnel, and facilities as
well as assisting a host government in dealing with
the insurgency. Not surprisingly, these experiments
showed that new tools and different mindsets were
needed across the different types of missions
examined.

Selecting the “Interesting Range”

Each transformation experiment or experimentation
campaign should be aimed at some interesting
“range” in the available scenario space. Since the
relevant scenarios will have to both focus attention
on the set of variables of interest and also provide a
rich enough environment to allow variations and
behaviors that have not been foreseen (or fully



206 Code of Best Practice for Experimentation

foreseen), considerable effort is often required to
select the appropriate set of scenarios and vignettes.
For example, the threat and mission space defined
in Figure 8-1 is probably a good starting point for
selecting the strategic and operational context(s) that
a given experiment will cover. Once that broad
parameter space has been chosen, however; the
specific actors (red, blue, and neutral), operating
environment (terrain, weather, and relevant political,
social, and cultural contexts), and the driving events
that will ensure that the experiment is properly
focused must also be articulated.

The initial CPOF visualization experiments provide
a good example. The Program decided that it would
focus efforts on two important parts of the mission
space (U.S. operations in support of a weaker
coalition partner that had been invaded by a
more powerful neighbor, and support to a host
government faced with an active insurgency), and
the experimentation team had to put the other
elements of the scenario in place.

For the high-intensity military operation, the
geopolitical context was organized around a situation
that the U.S. plans for routinely: the invasion of a
small country that cannot defeat the aggressor and
requests U.S. assistance. Environment and terrain
were borrowed from the real world, training centers
for which good map data and real weather data were
available. However, because situation awareness
was one of the experiment variables, the terrain
was expanded to include nearby areas and the map
was rotated to reduce its familiarity. The friendly and
hostile forces were created to represent forces like
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those the U.S. expects to see. Two very different
tactical situations were selected, located on different
terrain and involving different missions, force
structures, and driving events. These tactical
situations had quite different likely futures, threats,
and opportunities. The two insurgency scenarios
were located in a real world country with a relatively
weak government and tradition of democracy.
Sanctuary was assumed in a neighboring country.
The same force structures were used in both
insurgency cases. Two different patterns of driving
events were developed, one pointing to a major
insurgent offensive and the other to “business as
usual” rather than any radical initiative by the
rebels. Since the purpose of the experiment was to
find out which types of visualizations give better
situation awareness (more correct, more complete,
more focused on specific threats/opportunities and
actions), this variety in missions, contexts, actors,
and driving contexts yielded a rich and useful set of
scenarios focused on the subjects’ ability to
rapidly and correctly comprehend a variety of
military situations.

Note that this individual experiment did not (and did
not attempt to) cover the entire range of interesting
situations. Rather, i t  selected a range with
considerable variety in context and mission type,
leaving some other important types of operation
(e.g., peace operations) for later experimentation.
Given the resources available, taking on more
scenarios and treating them in adequate depth
would have been very difficult.
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How Much Detail?

The depth of detail needed for a transformation
exper iment depends on the focus of  the
experiment. Two examples should suffice to make
this clear – scenarios for the major JFCOM
experimentation venues such as Unified Vision ‘01
or the Air Force’s JEFX) and the scenarios needed
for  a s imple interpersonal  exper iment in
information sharing and shared awareness.

Major experimentation venues involve a variety of
echelons (typically a CINC slice to help drive
the events, a Joint Task Force headquarters,
component commands and operating units), a
var iety of  funct ions ( intel l igence, logist ics,
operations, etc.), consideration of host government
and coalition factors, and development over time
from pre-crisis to crisis, to military engagement
and war termination. These major efforts require a
complex reality and the capacity for the participants
to use the rich set of sources available in the real
world to support their situation awareness and
decisionmaking. Today, these involve organic
intelligence, national assets, reach back, outreach,
and Internet sources. These experimentation
venues also demand specific scenario materials
to dr ive the var iety of  speci f ic  d iscovery,
hypothesis testing, and demonstration experiments
contained within them. The scenario materials
needed for these experimentation venues will
typically require a year or more of development
time, and a number of person-years of effort. In
many cases, they will draw from existing (often
approved) scenarios in order to minimize the costs
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and ensure credibility, though ensuring adequate
uncertainty and free play to challenge participants
and test  key proposi t ions about  s i tuat ion
awareness, decisionmaking processes, and
synchronization should limit reliance on “canned”
scenarios and pre-scripted adversary behaviors.

By contrast, when Thoughtlink sought  to research
how groups exchange information and collaborate
to solve problems, they set up a simple set of
scenarios. Every group was given the same problem
within a game they call “SCUDHUNT.” The problem
is to locate Scud missiles in a grid space, very much
like the old game of Battleship. However, rather than
blind trial and error, each team is given a set of
sensors with different properties (ranges, probability
of correct detection, probability of false alarms, etc.).
Primary decisionmaking is about how to employ the
sensors. The behaviors of interest have to do with
how the group shares information and reaches
conclusions about the locations of the missiles.
Dependent variables include the degree to which
each group (a) is correct about Scud locations
(situation awareness) and (b) agrees on those
locations (shared situation awareness). The primary
scenario manipulation is simply the locations of the
Scuds, which can be handled by a random number
generator. The experimentation team can obviously
also manipulate the characteristics of the sensors,
the size of the grid to be searched, the number of
missiles present, the types of subjects, and the
communications systems available to them, but
these are controls in the experiment, not scenarios.
Note that this set of experiments is designed to learn
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about human behavior, so the lack of richness in
the scenarios does not impact the experiment itself.

Hence, the level of detail needed for an experiment
clearly depends on the purpose of the experiment.
Scenarios can be very rich and therefore very
difficult and expensive to develop and support.
However, since they are not ends in themselves,
scenarios should be limited investments designed
only to faci l i tate the larger experimentation
process. Indeed, scenarios will almost always be
incomplete, and some detail of interest and value
to the subjects will not have been considered when
the scenarios were built. In these cases the value
of agile, resourceful experimentation teams,
including those in the “white” or control cell and
the experiment support team will be demonstrated.
Smart teams rely on these resources rather than
attempting to foresee any and all possible issues
and questions.

Driving Data Collection and Analysis

Scenarios must drive the data collection process
and ensure that enough data are taken on key
issues to support the data analysis plan. Empirical
data require appropriate stimuli. For example, if a
research issue is the speed with which information
can be transmitted throughout a force, the scenario
needs to have events in it that should be sent
immediately to all force elements. These are
relatively rare events in the real world. They include
notification that a war has started, reporting the
presence of chemical, biological, or radiological
weapons in the battlespace, virus alerts and
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notifications of other types of electronic attacks, and
notification of termination of hostilities. Hence,
scenarios where this is an issue would need to have
appropriate stimuli built in at intervals that permit
testing of the speed of information distribution.

Analyses of exercises have shown that standard
training exercises involve about 50 important force-
wide decisions per week, based on several
hundred “understandings” or integrated situation
assessment conclusions, and tens of thousands
of  reports  about  f r iendly,  adversary,  or
environmental developments. Scenarios designed
to focus on decisionmaking will need to force the
pace of decisions to generate a large enough
number to support analysis. Scenarios intended
to illuminate issues about situation awareness will
need to make enough changes in the situation to
permit capture of enough meaningfully different
observations and the time delay involved in
noticing and processing such changes.

Adequate variety is also needed in the location where
scenarios deliver stimuli. For example, functional
distribution is essential if situation awareness and
decisionmaking are to be assessed across
operations, intelligence, and logistics. Similarly, all
elements of the experimentation command will need
to be stimulated to report situation changes and make
decisions if their activities are to be used in the
analysis. A simple, common mistake is to have one
element of a force remain in reserve, therefore
reducing its role and making it difficult to capture data
about its decisionmaking.
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Scenario Selection,
Adaptation, and Creation

Experimentation teams have their choice of
selecting, adapting, or creating scenarios. Which
approach they select should depend on the most
efficient and effective way to get the job done.
The criteria for scenarios include two of those
underlying measures of merit – validity and
credibility. Validity here refers to the ability of
the scenario to correctly represent all the factors
and relat ionships in the conceptual model
underlying the experiment. This is often an issue
of adequate richness. Credibility (face validity in
social science literature) refers to acceptance by
the professional communities involved in the
experiment – subjects, researchers, and the
supported decisionmakers. Richness is a factor
here, also, but sensitivity to existing professional
knowledge is also important. If these two central
criteria can be met with an existing set of scenarios,
then they should be used. If existing scenarios
can be modified to meet these criteria cost
effect ively, that is adequate. However, the
experimentation team must be ready to create some
or all the needed scenarios in order to achieve
validity and credibility.

Approved scenarios are often suggested as the
solution because they (a) represent major
investments and benefit from established expertise,
and (b) support modeling and analyses of a variety
of issues based on a common set of assumptions
and background data. These features make them
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attractive. However, most approved scenarios are
developed by individual Services and lack genuine
joint perspectives. They are also vulnerable to the
problem of familiarity, meaning subjects’ situation
awareness and course of action analyses are
informed by prior knowledge. Most importantly,
however, approved scenarios build on existing
organizational structures, communications systems,
sensors, and doctrine. Since transformational
experimentation is about new systems and new
ways of doing business, approved scenarios may
be too constrained to adequately support these
experiments or experimentation campaigns.

Scenario Selection

Fortunate experimentation teams will be able to
select a scenario and use it without change. Formal,
approved scenarios do exist, particularly those
developed by the Services to support cost effective
evaluation of systems. These should be chosen
when they offer adequate richness and variety to
support the experiment’s goals. However,
meaningful transformation experimentation cannot
be performed on single scenarios, nor on scenarios
where adversary behavior is scripted and therefore
cannot be impacted by friendly actions. The
concepts underlying transformation, such as
network-centric operations and effects-based
operations, have, as their fundamental rationale,
impacting and altering adversary behavior. Hence,
scenarios that assume adversary actions and
behaviors do not provide an adequate basis for
experimenting with them.
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Given that uncertainty and the ability to develop
shared situation awareness are often crucial
elements in military operations, foreknowledge of
scenarios will be a threat to the validity of many
experiments. Hence, off-the-shelf scenarios may not
be appropriate in some situations where their
substance is a good fit to the experimentation goals.
In such cases, serious consideration should be given
to scenario adaptation, which builds on the richness
of existing scenarios, but alters key events and actors
in ways that create more uncertainty.

One novel development has been the increasing
use of commercial games for military experimentation.
The logic is that commercial gamers have invested
in a variety of simulations at levels ranging from
single shooters to battles and campaigns. They have
already made a variety of decisions about how to
trade off reality with ease of use and have framed a
range of open ended decision situations. Use of these
games, perhaps with additional instrumentation of
the subjects so their behaviors and decisions can be
readily recorded and analyzed, saves the costs of
scenario adaptation and development. Game costs
and equipment costs are also well below those
needed for developing and supporting major military
simulations.

Scenario Adaptation

Adaptation is sometimes a cost effective way to build
on what exists. The goal here is to reuse much of
what has already been developed (and hopefully
pretested) in another context, but to introduce variety
and uncertainty appropriate to the conceptual model.
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Adaptation may be needed when existing scenarios
are already familiar to the subjects, when the existing
scenarios do not include all the factors in the
conceptual models, or when the existing scenarios
do not allow enough free play.

The simplest adaptations alter the geopolitical
context. This can often force the subjects to behave
as though they have novel constraints and
uncertainties. Altering the relevant actors (new
military forces or forces from other countries) can
also profoundly impact the situation and subject
behavior with a relatively modest investment in
scenario adaptation. Simple changes in sensors,
fusion processes, and communications structures
(often needed to move the experiment from today’s
context into the future context needed for
transformational experimentation) can also alter
a scenario significantly. However, care needs to be
taken to ensure that the subjects, particularly
military subjects, understand what is different from
today’s capabilities and are given reasons to find
those changes reasonable, or at least plausible
enough to be worthy of experimentation. Changes
in mission type are perhaps the most important
because they allow the experiment to explore the
interesting space more thoroughly. However, they
often involve the greatest level of effort and may
save little over developing new sets of scenarios.

Adaptation should, whenever possible, be done
collaboratively with those who developed the original
scenarios. It should also be reviewed with experts
who do not participate in the adaptation process. This
is hard, “pick and shovel” work in which every
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assumption and every detail needs to be made
explicit. The most common error is to have the
adapted elements of a scenario at a different level
of detail (either more shallow or more detailed) than
the scenarios being altered. More shallow elements
result from being in a hurry or inadequately staffed.
More detailed elements result from losing sight of
the instrumental role of scenarios.

A final, increasingly important form of adaptation
is the development of federations of models
that can be used to drive experiments. These
federations allow specialized sub-models of key
processes, such as command and control or
logistics, to run in greater detail than the main
model driving the scenario. This allows both
distributed processing (greater efficiency) and
more valid scenario support (greater detail and
variety in key processes). While this remains a
challenging technical task (synchronizing the
different models is not a trivial problem), it has
proven useful for some experiments.

Scenario Creation

When the problem is fundamental ly human
behaviors and interactions (as in SCUDHUNT), a
very simple set of scenarios may be adequate and
the costs of developing them can be quite modest.
This is the primary context where scenario creation
will be the most desirable option. Peer review to
ensure that the limited scenarios are adequate to
examine the conceptual model of interest is a wise
practice, even in these simple cases.
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Where complex, realistic military settings are needed
most researchers look for tools, such as DARPA’s
Synthetic Theater of War (STOW), that can integrate
large amounts of data about terrain, weather, military
forces, and contextual variables such as refugees.
However, even these tools require major efforts
(multiple person-years) to support new scenarios.
These tools also typically build in a variety of
interaction and communication patterns that may
require considerable effort to identify and change if
required. Hence, they are best used when experience
and expertise in the particular tool is readily available
to the experimentation team.

However, given that transformation is about new and
innovative ways of accomplishing military objectives
and often involve an asymmetric adversary, they will,
at times, require the creation of genuinely new,
militarily rich scenarios. These are really simulations
that are designed to allow exploration of the
conceptual models under study. The expertise and
effort required here should not be underestimated.
Even with the computational power and bandwidth
available today, this process can be expected to
take a couple of years on calendar time and several
person-years of effort. Expertise in all the relevant
domains (command and control, maneuver, fires,
logistics, information operations, intelligence, etc,)
as well as technical engineering fields (modeling,
simulation, databases, information processing,
experiment design) and the sciences that underlie
that engineering (physics, weather, behavioral
sciences, etc.) will all be required. Moreover, the
team will need to use a collaborative work process
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that keeps all of these types of expertise and
experience engaged.

As with past efforts at developing new simulations
and models, this process can be expected to be so
expensive that its products will need to be reusable.
That criterion, coupled with the need for adequate
uncertainty and free play to allow exploration of new
concepts and behaviors, means that such a
simulation would ideally be built as a shell that
can rapidly and easily be fed new material (C2
structures, doctrines, terrain, missions, etc.). The key
here is rapidity. The tool for scenario generation and
support will need to be modular and flexible. At the
same time, that simulation will need, in its first
instantiation, to fully represent the experiment it is
designed to support, both in terms of containing all
the elements of its conceptual model and in terms of
the depth need to support questions from and actions
by experimentation subjects. At this writing, agent-
based models appear to be an attractive alternative,
but their ultimate value has not been established.

Example Application:
Self-Synchronization
Experiment

Some decisions made in earlier phases constrained
the self-synchronization experiment. For example,
the team had decided that this experiment would
focus on warfighting and include only close allies.
In addition, because self-synchronization implies
both cross-echelon and cross-functional activities,
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the scenarios needed involve multiple levels of
command and more than one function.

Examination of existing scenarios showed that they
all assume current doctrine and organizational
factors, which ruled them out as a basis for a self-
synchronization experiment. Even adapting one of
them was seen as requiring a massive effort,
perhaps more than beginning from scratch.

Fortunately, a commercial game had just come on
the market that used the typography and forces of
the NATO Kosovo campaign, but did not have the
political restrictions that limited the early NATO
actions. The commercial game also allowed
customized changes in organizations, sensors, and
communications systems and was designed for
multiple players on the Internet. A limited license
was purchased for government use and the gamers
who had developed the commercial system were
retained as consultants to help install the game on a
network that could be used for classified applications.

The geopolitical context was changed so that
NATO’s objective was to first deter war crimes and,
if necessary, to defeat hostile forces and occupy
the territory of Kosovo. Russia, whose presence and
actions contributed uncertainty in the real Kosovo
situation, was left in its original role and played by
members of the control cell. Because of the flexibility
of the game, red forces (which included regular
forces and militias) could undertake different
missions and respond differently to NATO initiatives.
All game runs were started with identical situations,
as were the pretests and training sessions.
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However, the subjects were warned that the game
might take different patterns depending on red’s
objectives and opportunities. Red was given a set
of five alternative objectives:

• Offer conventional battle;

• Retreat to difficult terrain and operate as
guerrillas;

• Retreat to urban areas and use the civilian
populations as shields and barriers;

• Seek to divide Kosovo into two regions so the
northern region would become a part of Bosnia,
the southern could become independent, but
would be impoverished; and

• Conduct scorched earth operations while
retreating across the province.

These alternative objectives were randomly assigned
to the experiment trials with the rule that no team of
subjects would encounter the same set of red
objectives twice.

Blue capabilities were advanced to the year 2010,
particularly in terms of sensors and communications
systems. Blue commanders were encouraged, but
not forced, to develop joint mission forces rather
than rely on traditional component led force
elements. Logistics and logistic constraints used
real terrain, but lift power from the 2010 timeframe.

Forces on both sides were fixed, as were NATO
objectives. This, plus the reuse of terrain in all
scenarios, led the experimentation team to expect
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learning over time by the subjects, so a statistical
test for improved performance across trials was
required in the data analysis plan.

Conclusion

No single scenario is likely to support meaningful
transformational experimentation. However,
scenarios are not ends in themselves. Rather, they
are part of the effort necessary for successful
experiments. They should be chosen or developed
to represent an interesting and important part of
the problem space under study. The criteria for good
scenarios are that they are valid (cover all the
elements of the conceptual model underlying the
experiment richly enough to support the necessary
analysis) and credible to all those participating and
using the results of the experiment. The scenarios
needed will also have to be coordinated with the data
collection and data analysis plans to ensure that they
stimulate an adequate number and variety of
activities for a successful experiment.

Scenarios can be adopted, adapted, or created. The
approach chosen should be based on cost
effectiveness. Selecting an existing scenario
because it is inexpensive is wrong if it does not
support all the important elements of the problem
under study. Adapting existing scenarios will often
be attractive. However, the true costs of adaptation
can be very high if the mechanisms in which they
are built are inflexible. Development of new
scenarios is most attractive in simple experiments
and least attractive when a realistic military “world”
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must be built from scratch. Despite the best efforts of
the modeling and simulation communities,       many
of the existing tools lack the flexibility needed for
genuinely transformational experimentation.
Commercial games may provide attractive, cost
effective scenarios for some experiments.

Peer reviewers and consultants familiar with the
scenarios and tools being used are important cross-
checks on the quality of the work. No scenario
should ever be used without a thorough pretest. The
ultimate tests for scenarios are validity and
credibility. Valid scenarios reflect all of the factors
seen as important in the conceptual model. Credible
scenarios are acceptable by the research
community, the subjects, and the decisionmakers
who will be informed by the experiment.

1This matrix was initially developed by Randy Pherson, a former
National Intelligence Officer, and has since been refined by a
team from Evidence Based Research working with the Joint
Staff and the Decision Support Center in the Office of the
Secretary of Defense.
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CHAPTER 9

Data Analysis
and Collection

Plans

Purpose and Focus

B eyond (but interacting with) metrics and
scenarios, the experimentation team must

complete explicit plans for the collection and
analysis of data. These two efforts are always tightly
linked because analysis is always limited to that
data which has been collected. Moreover, training
for collectors must ensure that the data from the
experiment are those that the analysts expect and
that unplanned differences (anomalies) are clearly
identified and recorded so that either (a) the
analysis process can be used to compensate for
them or (b) the contaminated data can be removed
from the analyses. These two plans are vital
because they are at the heart of experimentation –
ensuring that valid and reliable data are captured
and that the analyses undertaken address the key
issues in the experiment, as well as that the
available data and information are fully understood
and exploited, but not misused.
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Relationship between the Data
Analysis Plan and the Data
Collection Plan

Because data collection must be accomplished
before data analysis, there is a tendency to think of
the data collection plan as being developed first.
However, the only purpose of a data collection plan
is to feed a data analysis plan. Hence, the work
process must begin with positing a data analysis
plan – how the research issues will be addressed
with the data generated from the experiment. In
economic terms, the data analysis plan acts as the
source of demand. The data collection plan acts as
the source of supply.

Having noted the need to consider the requirements
for analysis first, the reality is that practical factors
(access, minimizing interference, classification, etc.)
may limit what can actually be collected in any
given experiment. Hence, while the data analysis
plan should be posited first, the process of
developing the two plans will be iterative. The initial
data requirements from the posited data analysis
plan will have to be put into the context of the
experiment setting, the collection means available
(pre-experiment, automatic, observer based, SME-
based, etc.), and the scenarios being used. That
process will identify challenges, such as data that
are needed or desired but are not available as
originally conceptualized. That will typically lead to
changes in the analysis plan. In addition, the data
collection planning process may identify needs for
analyses (for example needs for inter-coder
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reliability tests) not foreseen in the initial data
analysis plan. This iterative process may continue
right through the pretest and even be necessary
in order to overcome anomalies and obstacles
arising during the experiment. However, the
fundamental principle driving the process should
be clear: the purpose of the data collection plan
should be to provide what is needed for the
analysis plan. Losing sight of this principle always
leads to the same problem of collecting what is
easy to collect rather than what is needed for a
successful experiment that contributes to the
growing body of knowledge.

Final ly, the experimentat ion team needs to
remember that neither of these plans is an end in
i tsel f .  Both are instrumental to the overal l
experiment goals. As such, they are constrained by,
and must fit into, the rest of the experimentation
plan. The data collection plan must be coordinated
with the scenarios, the pretest, the training plan
for collectors, and the systems used to archive data
and information. The data analysis plan must be
organized for end-to-end application from a
thorough debugging in the pretest through post-
experiment modeling and analysis.

Data Analysis Plans

Analysis is the processing of learning what you want
to know from what you already know or can know.
As such, it is a crucial part of any experiment.
Experiments are about generating empirical data
and information. Organizing experimentation results
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and integrating them with existing knowledge to
generate new and valid knowledge and insights is
the analytic challenge.

The data analysis plan takes its shape from the
conceptual model underlying the experiment and/
or experimentation campaign. The first step is to
ident i fy the dependent var iables and their
measures, then the active independent variables
and their measures, and finally the intervening
variables (including those that are to be controlled
in the experiment) and their measures. The specific
measures are important because they provide
information about the level of measurement
(nominal, ordinal, interval, or ratio) available on
each variable of interest.  Those levels of
measurement, in turn, help to determine the
appropriate analytic techniques to be applied.

The other key factors needed to select the
appropriate analytic techniques are the numbers
of observations or independent data points
expected for each variable. The use of parametric
techniques, for example, assumes that enough
independent observations will be available in each
experiment trial to make their use appropriate.
Where fewer observat ions are l ikely to be
available, or the assumption of independence
cannot be made properly, non-parametric analyses
may be more appropriate.

Analysis is typically organized into three phases:

• Descriptive analyses of individual variables;

• Bivariate analysis of relationships; and
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• Multivariate analyses of larger patterns.

These three phases build on one another to provide
a comprehensive understanding of what has (and
has not) been learned in the experiment.

Descriptive Analysis of Individual Variables

Assuming that the data collection effort has ended
with the tasks of data reduction (converting raw data
and information into the form required for analysis)
and data assembly (creation of an integrated data
set, including meta-data that data pedigrees are
intact), the first real analytic effort is descriptive
analysis of each variable of interest (univariate
analyses). These descriptive analyses are performed
to (a) identify and correct data anomalies, (b)
understand the distribution of each variable, and (c)
identify any transformations of those variables with
distributions that may make analysis misleading.

Identification (and correction) of data anomalies is
simply a search for those data that appear to be
incorrect on the surface. For example, if data from a
nominal category (such as the military service of a
subject) with valid codes of 1 through 4 is found to
contain a value of 7, the value is clearly incorrect.
Similarly, if the years of service (ratio variable) is
found to contain an entry of 77 (which is logically
possible, but highly unlikely to be correct), some form
of error is the likely cause. Having found these
anomalous values, the analysis plan will provide the
time and effort necessary to research them in the
original records and find the correct values. Since
all data will have been processed by humans,
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including such common problem sources as
keystroke errors (about 2 percent for unchecked
entries), anomalies are likely to be found in any large
data set.

Those data items that are clearly anomalous and
cannot be corrected will need to be excluded from
subsequent analyses. In any case, the descriptive
statistics will need to be rerun after all the anomalies
have been identified and corrected or removed.

The distributions of each variable will be examined
once the anomalies have been removed. These
reviews are a search for variables that may be
distributed in ways that can cause errors in analysis.
In a common example, one or more variables may
be “invariant” (have only a single value) or nearly
so (have only a small number of cases that differ
from a single value). Those variables should be
removed from the analysis since they cannot
contribute to differences in the dependent variables
of interest. (Of course, an invariant or nearly
invariant dependent variable indicates that the
experiment did not manipulate that variable and
cannot generate insight or knowledge about its
causes.) Invariant or nearly invariant factors are
essentially assumptions of the cases studied and
should be noted as such in the analysis and write-
up of the experiment. If they are potentially important
in the underlying conceptual model, they will need
to be included in subsequent experiments.

The most common such problem is the discovery of
a small number of outliers (cases that are very distant
from the bulk of the data). These cases will make
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the application of simple linear statistics, such as
Pearson correlations or l inear regression,
misleading. They can often be handled by
transforming the variable (for example, using a log
conversion that preserves the order of the cases but
reduces the effect of the distance between
observations) or by creating a new variable that
excludes the outlying cases (this loses information
by excluding some cases that are clearly different
from the main set, but preserves the information from
the bulk of the cases) or creating a new (dummy)
variable that subdivides the cases into the
outliers and the main cases. Obviously, this last
transformation would also involve examining the
outlying cases in an effort to identify what
differentiates this subset from the rest of the data.

This last technique is really a recognition by the
analytic team that the descriptive analysis
suggests a bimodal distribution. Examination of
the distributions is a crucial step since many analytic
techniques assume an underlying distribution in
the data. For example, linear regression assumes
that the data are drawn from a single population
that forms a “normal” distribution characterized by
homoscedasticity (the variance is constant across
the range), which may not be true of the data on
some variables in a particular experiment. Finding
that the distributions of some variables do not
meet the assumptions of some particular analytic
techniques may cause the analysis team to select
new techniques or to run more cross-checks (add
analyses or techniques to the original set). That
level of detail is beyond this Code of Best Practice,
except to note that statistical expertise is one of the
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discipl ines that should be available to any
experimentation team.

When the univariate analyses are complete, the data
should be ready to support more sophisticated
analyses and the experimentation team should
understand its basic properties (ranges, central
tendency, dispersion, distribution) richly. This
knowledge is a crucial element in performing
intelligent analyses later and interpreting the
analyses well.

Bivariate Analyses of Relationships

While the conceptual model for almost any interesting
transformational experiment will be multivariate,
jumping directly to multivariate techniques will
often lead to missing interesting and important
dynamics within the data. Since experimentation is
a process of learning, skipping over the bivariate
relationship is inconsistent with the goals of the effort.
Moreover, most of the hypotheses that are offered
will be stated in bivariate terms within the model (IF
A, THEN B, under CONDITION C). These bivariate
relationships form the bulk of the testable
propositions under analysis.

There is one exception to this best practice. On
rare occasions, most l ikely during discovery
experimentation, a team will be dealing with a very
large number of variables in a knowledge domain
that has not been well-researched or explored. In
these cases, the best practice is to apply inductive
techniques such as factor analysis or multi-
dimensional scaling in order to establish the data
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structure. This topic is discussed in somewhat
more detail in the section discussing multivariate
techniques. However, in no case should the analytic
team rush into this type of exploratory analysis
before the univariate, descriptive analyses have
been completed.

The task of examining bivariate relationships will
typically proceed from the simplest techniques
(scatter plots to look for visual patterns) to
algorithmic-based analyses (Chi Square and
Peterson correlations, for example). Moreover, the
properties of the data (nominal, ordinal, etc.), number
of observations available, and variable distributions
will combine to indicate the appropriate techniques.
These choices should be made by the statistically
knowledgeable members of the experimentation
team and subject to change or adjustment when
the descriptive, univariate analyses are performed.

There is a natural order to the bivariate analyses.
With current analytic tools, there is no practical
barrier to running “all against all” bivariate analyses.
However, generating massive amounts of computer
output is very likely to overwhelm the analytic team
and make the process of digesting and interpreting
the analysis (learning what you want to know) much
slower and more difficult than is necessary.
Moreover, the seductive approach to “knowing
everything all at once” will also lead to the temptation
to select a single set of tools (for example, Pearson
correlations) as though all the variables have the
same properties and distributions. The purpose of
the bivariate analyses is to simplify the problem –
reducing the number of variables that must be
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included and focusing on the data regions where
useful results are most likely to be found. Hence,
the best practice is to decompose the bivariate search
for relationships into manageable subsets and
perform them in a structured order.

In order to identify the relationships between the
various factors and variables, the order for
conducting bivariate analyses is:

1. Dependent variables;

2. Control factors;

3. Control factors and dependent variables;

4. Independent variables;

5. Control factors and independent variables; and

6. Independent variables and dependent
 variables.

The logic behind this order is simple. First, dependent
variables are supposed to be independent of one
another. If they are confounded (tend to move
together across the cases), then they will be
associated with the same causal factors (sets of
independent and control variables). Strongly
correlated dependent variables (sharing half or
more of their variance) are essential ly the
same phenomenon and need not be analyzed
independently. They will turn out to have the same
or very similar causes. Two actions are implied
when strong correlations are found between two
dependent variables: (a) select one of them for full
analysis (thus saving considerable effort) and (b)
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revisit the underlying conceptual model because
it incorrectly distinguishes between two factors that
are closely associated.

Those dependent variables with modest (but
significant) levels of bivariate correlation should be
kept in the analysis, but they should be analyzed
separately. As the analytic process proceeds, these
relationships are likely to emerge as important in
building a comprehensive model, suggesting
redefinition of the variables, merging them because
they are different ways of describing the same
phenomenon, or splitting them because they reveal
the importance of some third causal factor or
underlying condition.

Bivariate relationships between the control factors
should be determined early in the process because
discovering strong associations will save time and
energy later. If control factors are confounded, one
or more of them can be removed from the analysis.
If they have significant association with one
another, they may later be found to merge, split, or
need redefinition.

Examining the relationships between control
factors and the dependent variables is a simple,
early cross-check on the effectiveness of the
research design. The research design is intended
to exclude causal patterns driven by the control
factors. For example, in an experiment involving
many subjects, subject experience would typically
be designed out of the experiment by random
assignment of subjects. If, however, analysis
showed that subject experience was related to
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performance on one or more dependent variables,
the analytic team would know that the design had
been unsuccessful and the experience factor would
need to be included in the later multivariate
analyses and considered in the process of refining
the conceptual model. More typically, the bivariate
analysis of relationships between the control
factors and the dependent variables simply
validates the fact that the experiment design
worked and that the control factors have no direct
causal impact on the data from the experiment.

One major exception that can be expected in many
human subject experiments is learning over time  and
across trials. Despite the range of tools and
techniques used to ensure that subjects have
mastered the experimental technologies, that they
have established teams and work processes, and
that the tasks assigned to subjects are equally
challenging, human subjects may still learn and
improve performance over time and trials. Hence,
the propositions that time and trial are related to
performance must be examined in every human
experiment (as well as machine experiments
where efforts have been made to create learning
systems). If significant bivariate patterns are found,
their shape and parameters will be needed in
order to apply statistical controls in the later,
multivariate analyses.

Examination of bivariate relationships among
independent variables is important because they
are assumed, in most analyt ic tools, to be
unrelated. If they are associated with one another,
then analyses involving that pair of variables will
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be confounded – the same variation in a dependent
variable will be “explained” by more than one
independent variable. This will yield a statistical
explanation that is false; it will look artificially strong.

The same approaches already articulated must
be used when meaningful bivariate association is
found between independent variables – merging,
splitting, or removal from the analysis. In addition,
when the pattern of association suggests that
several independent variables are linked, one of
them can be selected as a “marker” variable for
the cluster. However, this marker variable should
be understood to represent the entire cluster,
not just the specific phenomenon it measures.
Decisions on merging, splitting, removing, or
selecting representative variables will depend on
examining the bivariate scatter plots and
considering the strength of the association present.
They should also be examined for implications for
the conceptual model underlying the experiment.
Patterns of association between independent
variables imply that some distinctions made in that
model have not been strong enough to show up in
the experiment data.

Bivariate associations between independent and
control factors are also signs that the conceptual
model or the research design may be flawed. For
example, if a control factor was intended to ensure
that two subsets of scores on independent
variables were examined in the experiment, but an
associat ion was found between them, the
multivariate analysis would need to be informed
by that fact. If, for example, “hasty decisionmaking”
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is distinguished from “deliberate decisionmaking”
as an intervening variable expected to separate
two different types of decision processes, but
del iberate decisionmaking was found to be
associated wi th ear ly  t r ia ls  and hasty
decisionmaking with later trials, the research
design would have failed to keep the control
variable “trial” from being confounded with the
variables about decision type. This does not
destroy the validity or utility of the experiment
data, but it does mean that these factors will all
need to be considered together in the multivariate
analyses and that it may not be possible to
distinguish the effect of “trial” (which is likely to
reflect learning within the experiment) from the
type of decisionmaking process followed.

Finally, with all this prior knowledge in mind, the
analytic team will examine the direct, bivariate
hypotheses between the independent and
dependent variables. These are true tests of the
strength of association for the direct propositions
of hypotheses posited in the conceptual model.
However, they go beyond those propositions in two
important ways. First, all possible bivariate pairs
are tested in order to allow the analysis team to
consider the possibility that the conceptual model
is not perfect – there may be significant empirical
relationships that were not originally considered
likely. This is most likely to be true in early
experimentation in a domain. Second, some of the
bivariate relationships being explored will already
be understood to be confounded in that other
strong patterns of association have been identified
earlier in the analysis. In these cases, the analytic
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team already has insight into some of the
multivariate relationships that will be found when
the data have been fully examined.

Multivariate Analyses

Multivariate analyses are the effort to examine the
experimentation data as a system. The tools and
techniques applied will vary with the number of
variables being examined, the properties of those
variables, the number of independent observations
available for the analysis, and the state of the art
knowledge in the arena under study.

Classic techniques for experimentation are the
ones that look for simple explanations of the
dependent variables. Analysis of variance, multiple
regression, and discriminant function analysis
(where an ordinal dependent variable is being
explained) are the most common tools. They have
emerged as common practice because they
permit the user to select different subsets of data
and compare their explanatory power, provide
information about the degree to which variance in
the dependent variable is explained, and also
indicate the contribution of each independent or
control variable to that explanation.

As noted earlier, some experiments will generate a
large number of variables in knowledge domains
where little prior work has been done and the
underlying structure of the problem is not well-
understood. In these cases, the data analysis plan
may well include tools that are inherently deductive
such as factor analysis or multidimensional scaling.
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This type of analysis is tricky because the tools
search for clusters of variables on a purely statistical
basis. Hence, the analytic team will need to examine
the clusters carefully and label them in ways that
reflect their rich contents, but do not oversimplify
the patterns observed. For example, the dependent
variables can “load” anywhere in the data structure.
If they cluster together, they may be confounded. If,
however, they each load on a different cluster, then
the other variables in those clusters will tend to
indicate the set of causes relevant to each dependent
variable. If, however, one or more of the dependent
variables remain distant from any of the identified
clusters, the data is unlikely to provide a statistically
sound explanation for them.

Another type of inductive analysis that might be
considered is the development of a learning model
using techniques like neural networks. These tools
build an explanation by finding efficient paths through
sets of cases. They can be helpful in creating new
insights into poorly understood domains. However,
they do not generally provide the statistical insight
necessary to weight factors or the knowledge
structure needed to sort out the roles of intervening
variables from independent variables. As with the
clustering techniques, neural nets also require very
careful interpretation because they are not based on
a theoretical structure (other than the selection of
the set of variables to be included) and therefore
can generate explanations with little or no validity.

The results of applying inductive techniques should
not, generally, be the last step in the multivariate
analysis of any experiment. These results tend to be
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suggestive rather than definitive. Consequently, they
are most properly used as a way to find underlying
patterns or structures in the knowledge domain.
Armed with this information, the analytic team will
then be able to use more traditional techniques to
generate an efficient explanation that can be used
to assess the propositions or hypotheses under
examination. In some cases, the inductive tools will
suggest very different sets of hypotheses and
require major revision of the underlying conceptual
model. Where the experiment is in a knowledge
domain with little prior work, this may indicate a
genuine breakthrough. However, where substantial
prior work exists, a careful examination of the
emergent (new) model is best practice. In such cases,
the experiment is more likely to have explored a
unique subset of the phenomenon under study,
rather than to have found a genuinely revolutionary
causal pattern. In any case, the more traditional
analysis should demonstrate the relative strength of
the evidence for the new pattern versus the existing
relevant literature.

Linkages from the Data Analysis Plan

The data analysis plan should be consciously linked
to three other elements of the experiment. First and
foremost, it needs to be linked to the data collection
plan. That mechanism is used to ensure that the
data required for analysis are generated, captured,
and organized for analysis. It is the filter through
which the scenarios, subjects, and experimentation
environment are organized to ensure that the
analytic plan can be supported. Changes in the
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experiment that alter the availability of data will
appear as changes in the data collection plan and
its outputs. They will need to be fed back into the
data analysis plan iteratively to ensure the integrity
of the experiment.

The data analysis plan will also be linked to any  plan
for post-experiment modeling, whether designed as
sensitivity analyses or as ways to extrapolate from
the experiment to larger areas of application. The
results of the analyses become drivers for such
models, providing both the relevant scope of those
efforts (identifying variables for inclusion and
specifying the ranges across which they should be
explored) and also providing empirical parameters
for those models. Post-experiment modeling may
also generate new data streams that can be
productively fed back into the overall analysis to
broaden its reach or strengthen its findings.

Finally, the data analysis plan will result in the
material necessary to revisit, revise, and perhaps
extend the conceptual model underlying the
experiment. This is the crucial, final step in the
analytic process. The statistical results are not an
end in themselves. The goal of the experiment is
always better knowledge in the domain under
analysis. The explicit revision of that model and
art iculat ion of the strength of the evidence
underlying it  is the f inal analytic step. This
translation of the analysis into findings that are
clearly articulated, including statements about the
degree of uncertainty remaining and other research
that should be undertaken, is the final step in
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analysis. Time and effort for this task must be built
into the data analysis plan.

Data Collection Plans

As noted earlier, the data collection plan includes all
the variables to be collected, all the places where
they are to be collected, all the means of collection,
and all the places the data will be stored for
processing. This needs to be a major document,
incorporating both the broad philosophy being used
and also the details necessary for implementation.
High quality data collection plans also specify the
support required, the training needed, the proficiency
standards to be met, the approach to quality control,
how the data will be archived to ensure its integrity,
and the processes by which data sets will be reduced
from their raw form to create the variable sets
envisioned by the data analysis plan and assembled
for efficient analysis. While it is a major document,
this plan is not an end in itself, but rather a means to
ensure the data collection process is organized for
success and understood by all those who need to
support the effort.

Creation of a data collection plan can be thought of
as a sequential task, although it will prove to be an
iterative one because it is closely linked to the goals
of the experiment, the data collection plan, the
scenario, the physical spaces available for the
experiment, the systems being employed to support
the experiment, the subjects, and a host of other
factors that are likely to change from the initial
concept stage through the pretest phase.
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The key “steps” include:

• Specifying the variables to be collected;

• Identifying the collection mechanism for each
variable;

• Ensuring access for collecting each variable;

• Specifying the number of observations needed
for each variable and checking to ensure they
are expected to be generated;

• Identifying the training required to ensure quality
data collection;

• Specifying the mechanisms to ensure data
capture and archiving; and

• Defining the processes needed for data
reduction and assembly.

However, this work sequence is only one key
perspective. Looking at data collection plans through
the lens of the different types of collection mechanisms
that can be employed may yield a more practical
and useful set of insights. The types of collection
mechanisms used in typical experiments include:

• Automated collection;

• Recording for later reduction;

• Surveys;

• Subject testing; and

• Human observation.
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Each of these approaches has particular uses,
strengths, weaknesses, and factors that need to be
considered when they are employed.

Automated Collection

Automated collection has become more and more
important as the information systems have become
more and more fundamental to military functions.
C4ISR (command, control, communications,
computers, intelligence, surveillance, and
reconnaissance) functions in particular are
increasingly automated and supported by automated
systems. As military functions become automated,
they are increasingly easy to monitor, but only if plans
and preparations are made to capture all of the
needed data.

Planning for automated collection requires expertise
in the systems being used as well as the variables to
be collected. Typical collection foci include system
load, workstation load, availabil i ty (system,
application, and workstation), and usage (system,
application, and workstation), as well as capture and
comparison of “ground truth” with what is available
within the systems and from the individuals (their
perceptions and situational awareness).

The tasks that need planning include when and
where these items will be captured, how that can
be done without impacting the functionality of the
systems (either the operator’s systems or those
being used to drive the experiment), how the clocks
on all these different data capture efforts will be
synchronized to faci l i tate comparisons and
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analyses, how the meta-data tags will be attached
to facilitate data reduction and analysis, and where
the data will be archived. Because data capture is
best done within the systems and federations of
systems being used, the earlier these requirements
are identified, the better.

Finally, someone on the experimentation team
needs to be assigned as the leader to work with the
systems analysts and programmers to ensure that
they understand the plan and that they have the time
and resources needed to support the experiment. A
milestone plan, built into the engineering plan needed
to bring together all the necessary systems to support
the experiment, is best practice and will help ensure
that the automated data capture process is a
successful effort.

Recording for Later Data Reduction

Experimentation teams worry about their collection
processes intruding and causing different behaviors
or results. Moreover, human observers are not
always available in enough numbers (or are not
physically able) to be everywhere. Finally, human
observers are able to abstract only a certain level
of meaning or amount of data – they must choose
what to pay attention to and what to record. As a
result, experimenters often prefer to capture
verbatim recordings (audio or visual). At this writing
(2002), collaborations are becoming an important
element in military work processes and have proven
difficult to monitor effectively, so they are often
recorded for later analysis.
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This approach is not a panacea – even the best
recording setups do not capture all of the nuances
of communications in a command center or military
operation. Moreover, recordings often require
massive amounts of time and effort to review and
reduce to data that can be analyzed. Finally, some
past efforts have been plagued by the difficulty of
capturing everything, resulting in capturing only one
side of some conversations, people stepping out of
range of cameras and microphones when they are
making decisions, and technical problems with the
recording equipment itself.

Experimentation teams engaged in recording need
to plan very carefully and ensure that the systems
are both fully pretested and also backed up robustly.
Key decisions include:

• Whether audio recordings will suffice or video is
needed;

• Whether to record everything or only selected
materials (including decisions about sampling);

• Creating meta-data to tag the recordings,
including how individuals will be identified,
including their roles;

• Introducing the topic of recording to the subjects,
obtaining appropriate permissions and ensuring
privacy protection;

• Positioning and testing the recording equipment;

• Provisioning for equipment failures (backup,
anomaly recording, etc.);
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• Training those operating the system and
archiving the products;

• Ttraining and testing those responsible for data
reduction and coding (discussed in more detail
in the section below on human observers); and

• Ensuring adequate facilities and time for data
reduction and archiving.

Unless these efforts are properly planned,
experimenters will find themselves with incomplete
or incomprehensible materials or mounds of
material they cannot process. This area is one where
appropriate expertise on the team and thorough
pretesting (both of collection and data reduction) are
essential for success.

Surveys

Survey instruments are popular tools because they
allow the experimentation team to collect data in a
form that is easy to review. They are used in several
different ways in transformational experiments. First,
they can be used to gather data about the subjects’
backgrounds and experience. This is typically done
before the experiment (perhaps as part of subject
selection) or as an early part of the process used to
introduce the subjects to the experiment. The earlier
this is accomplished, the easier it will be for the
experimentation team to use the data to assign
subjects to teams and treatments and to create a
data file so that the attributes of the subjects can be
used as part of the analysis effort. Subjects are
also often surveyed during the experiment to gather
their perceptions of the systems and processes they
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are employing, their knowledge of and attitudes
toward other subjects or teams of subjects, their
perceptions and insights about the substance of the
experiment (for example, their situation awareness),
and their ideas about how the systems and work
processes might be improved.

Others on the experimentation team are also
surveyed in many transformation efforts. Subject
matter experts and controllers, for example, often
record their perceptions and insights about how
the subjects are performing and how the systems
and processes they are employing (a) are working
and (b) can be improved. Those supporting the
experiment (systems analysts, researcher leaders,
etc.) are also surveyed to take advantage of their
perspectives. Finally, observers may be asked to use
survey formats to report what they are seeing.

Surveys can be a “tender trap” in several ways, so
they require careful development, pre-test, and
monitoring. First, any survey tends to skew the
agenda to focus attention on the items included.
Hence, it is best practice to include some open-ended
items at the end that ask for reflection (for example,
“Are there important topics we have failed to ask
you about?”). Second, surveys demand time.
Planning for the experiment needs to make certain
that all respondents are given adequate time to
complete the surveys properly. The time required can
only be estimated realistically by using pretests in
which the respondents are as similar to those being
used in the experiment as possible. (The classic
error here is to have members of the experimentation
team, who are familiar with the issues and understand
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what is meant by each of the questions “stand-in” for
the subjects.)

Surveys must also be pretested because the wording
of each item is important and will be subject to
interpretation or misunderstanding. Poorly worded
or ambiguous questions will not result in quality
data. At the same time, in order to accumulate
knowledge across experiments, every effort should
be made to identify and use common questions.
Expertise in questionnaire design is one element
needed on teams that plan to use surveys.

Surveys also impact respondent behaviors. For
example, a survey that asks respondents to describe
the military situation and provides them with a
template (What is the key terrain? What are
adversary intentions? and so forth) will lead subjects
to focus on items that they may have been
overlooking in the scenario and to look for those
items in later trials. Hence, such structured questions
should (a) be chosen to represent “common sense”
or training items for the experiment and (b) be
introduced to the subjects during their training. Past
experience has shown that the “learning behavior”
resulting from these structured items can be
minimized by ensuring that the subjects are familiar
with them before the experiment begins.

Planners should remember that surveys also create
work for those doing data reduction and assembly.
The more structured the survey data is, the less effort
is necessary. For example, simple Lickert scales on
which respondents merely check a space or point
on a line to indicate their answers provide precise
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data that can be machine read. Of course, the
assumption behind these instruments is that they
are not ambiguous and that enough scale points are
related to precise statements that different
respondents will be able to answer consistently. This
can be a subject for the pretest phase. Lickert scales
usually need to be labeled at their end points and
centers in order to generate consistent responses.
For example, an eleven point scale to respond to
the question “How much do you believe your team
mates trust your judgment?” might have its zero point
labeled, “Not At All,” its high end point labeled
“Completely” and its mid-point labeled, “Somewhat.”
When surveys are designed and pretested, the data
collection plan must include adequate time to
complete them as well as adequate time for data
reduction and archiving.

Not everyone will need to complete every survey.
For small experiments, however, everyone who is
involved in relevant activities should be surveyed –
the data analysis plan will have to deal with the entire
population. For larger efforts, some sampling may
be wise, both to reduce the effort needed to process
the data and also to ensure that all of the key
perspectives are richly represented.

Subject Testing

Subjects may be tested for proficiency or other
characteristics. Proficiency tests are used when the
results of the experiment are expected to depend, at
least in part, on the particular skills of the individuals
or teams participating. In other words, if proficiency
is a control or is being used to assign subjects in
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order to control it out of the experiment, testing will
be needed. Proficiency tests require pretesting
unless they are already established and normalized.
Subjects should generally not be told their scores
until after the experiment. This prevents a variety of
anomalous behaviors (bragging, becoming
discouraged, etc.) that can damage the experiment.

Tests for characteristics (IQ, leadership style, etc.)
should, if at all possible, be selected from those that
have been developed, validated, and normalized on
large populations. This is much less work than
creating new instruments and procedures, and
provides credibility to the work. Planning for these
types of tests needs to include having professionals
administer them as well as a clear statement to
the subjects about what is being assessed, why it is
needed, and also how their privacy is being
protected. Human subject data needs careful
management and should be divorced from the
individuals’ names throughout its processing. Subject
testing also needs to be included in the pretest
so that possible problems with introducing the
assessments, administering them, and managing
the resulting data are all worked out in detail.

Human Observation

Despite progress in automation, many military
activities remain human. Hence, whether by
reviewing recordings or direct observation, humans
will be needed to capture behaviors and interactions
at the heart of many experiments. Some of the
principles for human observers were discussed in
Chapter 5. The discussion here focuses on planning
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strategies so that those observers will be effective
and successful.

Observer selection is a key. They should have both
an appropriate substantive background and skills or
training as observers. If they are to go on location,
they need to “fit in,” so they are not a distraction.
Observer positioning is a second key issue. The
observers must be located where they can gather
the material they have been assigned. At the same
time, they should be as unobtrusive as possible.
Observer training is also crucial. They must have
enough training and proficiency testing to ensure
that they know what to capture and will be able to
capture it reliably. As noted earlier, they should
participate in both pretest efforts and the training
efforts for the subjects, but all of that should come
after they have already mastered their tasks and
passed basic proficiency tests. Planners also need
to build in redundancy. Extra time must be available
for extended training if some of the observers find
their tasks difficult. Extra observers also need to be
available. They can be assigned quality control roles
for the periods when they are not needed. The
procedures for establishing and checking inter-coder
reliability are also very important. Coders will tend
to “drift” as they gain experience and encounter
some types of situations more than others will.
Cross-checking and (when needed) review training
can be used to counter this tendency and maintain
the consistency of coding across individuals.

Scheduling is most likely to be problematic for the
observers. Early selection is very helpful. Read-
ahead material can be used for familiarization and
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allow better use of face-to-face times. Observers
should be organized into teams as early as is
practical so that they have an opportunity to work
with one another. Time for training and proficiency
testing must be generous. Inter-coder reliability
tests should be built into the schedule. Shift routines
during the experiment should be designed with the
fact that observers must be alert. Ideal shifts are 8
hours long, since most observers will have to
spend some time organizing, taking transition
briefings when they first come on, and debriefing
after their shifts. If longer shifts are necessary,
physically fit observers must be recruited and strict
schedules used to ensure that they get adequate
rest. Finally, time for observers to review their notes
and create coded data must be generously provided.
Failure to do this will mean that the investment in
human observers generates results that fall short
of the experimentation goals.
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CHAPTER 10

Conduct of the
Experiment

Purpose

Shakespeare tells us, “There’s many a slip twixt
cup and lip.” Having planned and prepared

for the experiment does not guarantee success.
The team still needs to pay close attention when
the time comes to execute the plan. Just as no
military plan survives first contact with the enemy,
no experiment plan survives real-world environment
and conditions despite the most rigorous planning.
One should expect to encounter problems that
can adversely impact the quality of the data being
collected. This chapter reviews the steps necessary
to reap the benefits of the hard work that has gone
into conceptualizing and planning transformational
experiments.

Pretest

Scope

The pretest should be viewed as a dress rehearsal
for all the elements of the experiment. While it will

CCRP Publications
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be on a smaller scale and will not involve the
same quanti t ies of equipment, subjects,
observers, and instrumentation as will be used
for the experiment itself, it must be sufficiently
robust to exercise all of the relevant procedures
and processes. The size, type (discovery,
hypothesis test ing, or demonstrat ion),  and
complexity of the experiment will determine the
support infrastructure required. This infrastructure
will generally include workstations, a simulated
environment, communications networks, controllers,
observers, technical support personnel, databases,
and logistical support. Sufficient time must be
provided to fully inspect the systems to ensure
that they are operating satisfactorily, not only in
a stand-alone mode, but also as a “system of
systems.” That is,  to ensure that they are
appropriately interoperable. Additionally, the
systems must be tested with the experimental
tools running on them. While the number of subjects
and the number of test runs will normally be
considerably less than for the actual experiment,
system tests must stress the system to (or even
beyond1) the level anticipated for the experiment.
There are numerous instances where collaboration
experiments failed because the system was
satisfactorily tested with n nodes during the pretest,
but failed during the experiment where xn nodes
were required to operate simultaneously.

In addition to the experimentation infrastructure,
elements of the experiment itself need to be
tested. This is accomplished by conducting a mini-
experiment that mimics the actual experiment. The
data collection plan for the pretest should be
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designed to provide all the same data as that
desired for the experiment. The scenario(s) should
be the same as those that are to be used during the
experiment. This allows the experiment designer
to determine whether the required stimuli are
provided to the subjects in the manner intended
and that they contain those elements necessary to
produce the required range of responses from
the subjects. The subjects chosen for the pretest
should exhibit characteristics similar to the those
of the subjects chosen for the experiment. They
should have the same levels of expertise and
experience. If the experiment subjects are to
operate as teams, the subjects for pretest should
be similarly organized. The closer the pretest
subjects match the experiment subjects, the more
the pretest data will be representative of data to be
collected during the experiment.

Due to the need for observers/controllers to mimic
those for the experiment, their ability to collect the
required data and exercise the proper degree of
control must be ascertained. Finally, the collected
pretest data must be reduced and analyzed as
it would be for the experiment. Conducting the
pretest in this manner ensures that:

• The subjects are capable of performing their
assigned tasks and that they have sufficient
time to complete their tasks;

• The observers/controllers can collect and
reduce the required data;

• The necessary analyses can be performed on
the data; and



256 Code of Best Practice for Experimentation

• The experiment can be conducted in the
allotted time.

Schedule

The pretest should be scheduled sufficiently in
advance of the experiment to permit remedial action
to be taken. The timing will depend on the size and
complexity of the experiment. However, one month
would appear to be the minimum time required.
Allowing more time than this minimum reduces
risk further. This needs to include sufficient time
to allow analysis of both the data and the conduct
of the pretest. The analysis of the pretest needs
to investigate not only what went right and wrong,
but also possible remedial actions and their impact
on the conduct of the experiment. Finally, there
must be time allotted to conduct focused retesting
of the areas where remedial action was required.

Training

The pretest also includes a test of the training
program. The training program for the pretest (1)
provides actual training for the pretest participants
and (2) is a trial of the actual training program. The
training program, which is discussed in more detail
below, should provide answers to three basic
questions regarding the experiment:

• Does the training provide the subjects
sufficient familiarity with the equipment and
exercise procedures that this does not become
an issue for analysis (e.g., subjects spent an
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inordinate amount of time figuring out how to
use the equipment)?

• Does the training provide the observers
sufficient familiarity with the data collection
methodology to allow them to competently
collect the required data (observation,
recorded data, survey results, etc.)?

• Do the processes specified in the data
collection and data analysis plans work so the
right data can be captured and the right
analyses executed?

Revisions to Detailed Experimentation Plan

Unless this is an experiment like no other, it will
be necessary to make revisions to the experiment
plan based on what is learned in the pretest. In
the majority of cases these will be minor procedure
changes that can be accomplished without the
need for further testing. However, if the degree
of change required is major or if the changes
are complex, it may be necessary to conduct a
follow-on pilot test that focuses on the revised
elements. This is a far better use of resources than
attempting the main experiment without a firm idea
of how it will unfold or confidence that it will
focus on the issues under study.
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Pre-Experiment Data
Collection

Process

While the main data collection effort occurs during
the actual conduct of the experiment, substantial
data can be collected before the experiment
commences. For those experiments that employ
subjects, useful data includes background
information such as level of expertise, schools
attended, relevant military experience, etc. These
data will be used to determine the effect, if any,
on the results caused by differences between
the subjects’ backgrounds. If the experiment
analysis plan includes comparisons with past
events, baseline data should be assembled and
placed in the analytical database prior to the
conduct of the experiment. Other data that can be
collected includes screen captures for prescripted
events, input stimuli, and databases that will
not change during the experiment (e.g., friendly and
adversary OOB).

Archiving

Unfortunately, as with data collected during the
experiment execution, some of the pre-experiment
data may be disposed of within a short time after
the completion of the experiment. The experiment
and its immediate aftermath will be an extremely
busy period for the data collection team. It is likely
that if pre-experiment data is not archived prior
to the experiment, they may become lost in the
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process. These data should be archived in both
their raw and processed forms. The copies placed
in the analysis database will be manipulated and
are much more likely to be corrupted or destroyed
during analysis. Hence, having the original data
archived ensures its availability to other research
teams and also permits the analytic team for this
experiment to go back and verify initial values or
initiate novel analyses to explore interesting or
important insights.

Data Integrity and Privacy Protection

Data integrity means that not only the reduced data,
but also the raw data, should be archived. This
allows a link to be made from the raw data to the
eventual conclusions and recommendations.
Privacy protection is an important element that
cannot be overlooked. It is imperative that the
subjects understand that they are not being
evaluated (the systems, doctrines, organizational
innovations, under study are being assessed, not
the subjects) and that no links will be made from
individual participants to scores and/or results. Not
only must they understand this, but they must
also be confident that this is true. Failure to instill
this confidence can result in distorted results.

Training

Training plays a significant role in the success of
an experiment. A well-conceived and executed
training program will provide the support team, the
observers/controllers, and the subjects with a
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strong foundation that will enhance their participation
in the experiment.

Observers/Controllers

Most data collection/observation goes well beyond
simple instrumented collection of data. Command
and control experiments generally rely on intelligent
data observers/col lectors that must apply
judgements in collecting and coding the data. It is
therefore imperative that they understand why the
experiment is being conducted, the underlying
theory that explains the hypotheses and metrics,
and the context in which the experiment is
being conducted. I t  is therefore absolutely
necessary that the observers/controllers have a
fundamental understanding of the theory underlying
the methodology for confirming or not confirming
the hypotheses. This foundation will enable the
observers and controllers to make the correct
judgements, such as where an observed
phenomenon fits into the data collection plan,
what data elements are satisfied by this observation,
and how the data should be coded. Effective
instruction in this area will improve measurement
reliability and enhance the construct validity.

The training program should focus on techniques
for observation in accordance with the experiment
plan regarding how the data is to be collected
(observation, survey, questionnaire, instrumentation)
and where it is to be collected. The observers/
controllers are presented with an overview of the
scenario and major events so they know when to
expect certain data elements. The program of
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instruction then focuses on practicing the skills
learned during the training program. This is best
accomplished by providing vignettes in which the
observers/controllers (with guidance) observe
situations similar to what they will be exposed to
during the experiment and record and code the
data. Discussion should follow each vignette with
the “school solution” provided. In addition to
independent practice, observers/controllers should
be present and playing their assigned roles during
subject training. This gives them further practical
experience and also helps to familiarize the
subjects with the experimentation process.

Proficiency tests are used to determine if the
observers/controllers have been sufficiently trained
to collect the required data. After the lesson portion
of the training program, the observers/controllers
should be given a proficiency test. The test should
include (1) a written exam to test their knowledge
of the fundamentals and (2) a practical exam to
test their ability to capture and code data correctly.
The results of the written exam should be evaluated
prior to proceeding with the practical exam. This
will ensure that the observers/controllers have
mastered the fundamentals of the program. If
necessary, a review session should be conducted.
For the practical exam, once again the observers/
controllers should be placed in vignette situations.
This time, however, they will not be receiving
guidance, but will be on their own. They will be
required to make observations and code the data
as if they were observing the actual experiment.
Their observations will be evaluated and, again, if
necessary, a review session will be conducted.
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Peer feedback and teaching one another should
be encouraged as these practices help build strong
observation teams.

Note that the schedule for the training program
needs to have these review sessions built in. Best
practice assumes that these sessions will be
needed. The price of not reserving time for them
can be high, impacting the morale of the
participants, the demands placed on the trainers,
and the quality of the data collected.

Inter-coder reliability tests are necessary because
the evaluation of command and control frequently
requires judgements on the part of the observers/
control lers. To preserve the integrity of the
experiment, it is essential that the observations
by different observers result in the same data
coded the same way by all data collectors, or, if
there are differences that can be controlled for,
that statistical controls be employed to mitigate
those differences.

Subjects

Many C2 exper iments wi l l  l ike ly involve
comparisons with a current or baseline system
using military or ex-military subjects. Unless the
subjects are wel l - t ra ined in the t reatment
system being evaluated, the baseline system will
have the distinct advantage over a system that is
not familiar to the subject. Without proper training,
subjects are liable to expend an inordinate amount
of energy just mastering the workings of the new
system. Subjects who find themselves frustrated
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by the new systems and processes they are trying
to employ will not focus creatively and productively
on the substantive tasks they have been assigned.

The subjects will require training on operating the
systems, both the underlying infrastructure and the
system(s) under consideration. They need to
understand how they interface with the system,
what tasks it performs, and how it performs them.
The subjects also need to understand how the
system uses underlying data, what operations
it performs on the data to get what results, how
it displays the data, and the sources of those
data. Training is best accomplished by providing
an overview followed by hands-on training. The
training should culminate (as with the observers/
controllers) with a proficiency test that demonstrates
familiarity with the system. Depending on the
complexity of the system(s), hands-on training
alone has proven in the past to take a week or
more. Not all subjects proceed at the same pace
and some may require more time. As noted earlier,
perhaps more DoD experiments have failed to
achieve their goals because of inadequately trained
subjects than for any other single cause.

Whether as part of a team or as a single player,
each of the subjects will be playing a role. As such,
the subjects need to understand the duties and
functions associated with their roles. They also
need to understand the processes they are to
follow in performing their tasks. Training for roles
and processes should also incorporate dry runs
using the systems and infrastructure employed in
the experiment.
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If the training described above were to be carried
out sequentially, the training program would be
unacceptably lengthy, not to mention disjointed.
An integrated, synchronized training program is
required to ensure that the parts fit together. The
experiment director must ensure that the
infrastructure and systems are operating for the
training to proceed. Initial training of observers
and the training of the subjects should proceed
simultaneously and separately. Once the experiment
director is satisf ied that the observers and
subjects are ready, the final segment of the training
can proceed. In this segment, the subjects run
through a vignette with the observers/collectors
taking data. This will give the observers/collectors a
feel for how events will unfold during the experiment
and uncover any areas of the training requiring
further emphasis.

Working with Observers and
Controllers

Observers/controllers can make or break an
experiment. Adequate training does not ensure
success. Attention needs to be paid to how
observers/controllers are employed and managed.

Non-interference

Observers generally perform one of two roles. They
are either silent observers recording what is
happening or they administer questionnaires and/or
surveys. In either case, they should not engage
participants in conversation, offer opinions, or in
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any way interfere with the conduct of the experiment.
If asked questions, they should answer only to
the extent of explaining what it is they are doing,
explaining why they are there, or clarifying
questions for the subjects. Only if they are dual-
acting in the role of controllers may they answer
substantive questions or offer items of substance
concerning experiment conduct.

Shift Planning

Unlike machines, observers become fatigued. An
8-hour shift with suitable breaks is close to the limit
that an observer can remain on station while
producing acceptable data. If the experiment is
to run longer (e.g., 24 hours per day), shifts will
have to be planned. This will require building in
time for shift hand-off which needs to be planned
so that data is not lost during the hand-off.
Observer shift planning should be on a different
schedule from the shift changes of the experiment’s
subjects. This enables observers to observe the
shift change processes and information exchanges
among the subjects.

Coverage Philosophy

Deciding what data to collect and analyze generally
involves tradeoffs between cost and resources,
and how comprehensive one needs the effort to be.
If the experiment involves observation of single
subjects conducting multiple runs at a small
number of stations, the data collection can be very
comprehensive with one observer at each station
being able to observe all that goes on. Observing
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groups interacting with other groups, or a large-
scale event involving large numbers of participants,
however, is much more demanding. In these
cases, the resources necessary to cover every
subject and every interaction are prohibitively
expensive. Even if the data could be captured
through instrumentation, the resources required for
data reduct ion and analysis could prove
unrealistically demanding.

Therefore, decisions on how observers are
allocated to subjects/tasks need to be based on
what data are necessary to collect in order to
achieve the experiment objectives. This may
include decisions to sample some kinds of data or
to favor collection of some types over others.
This will all be part of the data collection plan.
However, the observers will need to know what
their observations should comprise in great detail.
If this is not clear, they may drown in data and
miss crucial data because they are focused on
relatively unimportant, but easily collected items.
Sampling should be considered when too much
data is likely to be generated. Building properly
instrumented sampling strategies requires expertise
and experience.

Supervision

Data collectors require constant supervision. For
single subject experiments it will only be necessary
to check that all the equipment is being operated
(audio and video recorders), that the time schedule
is being followed, and the requisite questions are
asked and the answers recorded. For larger
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experiments where the subjects are interacting
with each other and with the scenario, checks need
to be made to establish that the observations are
producing the required data. Refresher training
may be required on the fly or during off-hours for
observers/collectors who have forgotten the
definit ions of some of the measures or the
importance of collecting certain data. Data sheets
must be checked for completeness and for
confidence that the correct data are being
captured. Data collectors also need to be
apprised (in a way that does not alert the subjects)
when events are likely to affect their stations.
Quite likely, daily or shift meetings will be necessary
to keep all the observers/controllers in the loop
and the data quality high. This can be difficult to
accomplish during 24 hour per day operations, but
the price of ignoring the need for team building and
timely interaction can be very high.

Data Collection

Automated Collection

With the increasing use of automated systems,
much of the data can be collected directly from the
system via screen captures, e-mail archiving,
requests for information, snapshots of databases,
etc. This data must be checked at regular intervals
to ensure that the agreed upon data is provided
in the proper format. The intervals will be based on
the volume of data expected with shorter intervals
for higher volumes of data so as not to overwhelm
the checking process. Also, care must be taken
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when creating such a system so that the volume
of data does not overload the analysts. Data
collected in this manner needs to be carefully
selected and archived so that the analysts can
readily manipulate it without having to first sort
through a mass of raw data. Surveys can also be
self-administered in this manner. The subjects can
input their own answers into a database for
later analysis.

Quality Control

This is perhaps the most important and most
overlooked part of data collection. It is tempting to
feel that once the data collectors have been trained
and briefed, the data collection will be automatic
and the next event will be analysis. This couldn’t
be further from the truth. Automated collection
systems and instrumentation can fail, humans
bring their own backgrounds and foibles to the
program and, regardless of training, some will try
to collect what they feel is interesting rather than
what they are assigned to collect. To ensure the
success of the experiment, it is imperative that
data collectors be supervised and a quality control
mechanism is in place to ensure that the necessary
data is being collected. Those responsible for
quality control must ensure that all members of
the team, including observers/controllers, are
neutral observers and do not influence subjects’
answers and/or comments. For example, they
must not provide hints to subjects who appear
puzzled by a question, or suggest that they consider
something that has obviously been overlooked
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in their analysis. Maintaining the integrity of the
data is one of the most important elements of the
quality control process.

Incidents will occur where failure to provide certain
information could cause the experiment to go
drastically awry. To account for those instances,
procedures should be established for the observers/
controllers to get advice from the senior member of
the observation team who, in turn, should confer
with the experiment director and senior controller.
On the other hand, the observers need to be alert
for qualitative data that can shed light on a situation.
The fact that an error of omission has occurred
may be very important to understanding subject
behavior and decisionmaking, so those cases
should be recorded and reported. Another situation
that arises is when a supervisor or other trusted
agent alerts observers to an event that requires
observation. This must be done discreetly. If it
is not, the fact that the observer is being alerted
will also be an alert for the subject(s).

Management of Anomalies

At the most general level, all experiments are
subject to anomalies – system crashes or failures,
humans who drop out, and compromises of the
scenario. The experimentation team, knowing that
anomalies threaten the experiment, must make
every effort to detect and record them, correcting
them when possible and excluding the impacted
data or subjects when necessary.
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Loss of Subjects

In spite of all the planning and preparation,
situations arise that cause subjects to drop out of
the experiment. There are ways to overcome this,
but the development of a contingency plan is
required. One way to overcome this is to schedule
enough observers and trials that the loss of two
or three subjects won’t affect the statistical validity
of the experiment. This will generally only work
when the experiment deals with individual subjects.
Another method is to train and have replacements
ready to join the effort while in progress. This is
more typical when experiment trials employ teams
of subjects. A last resort is to have time built in for
refresher training and use this time to train new
subjects, but even this requires having a pool of
subjects on standby. Sometimes, particularly if
someone is lost well into the experiment after team
dynamics are well-established, teams are simply
asked to carry on short-handed. However, those
teams will be working short-handed, which may
impact their performance, so statistical tests of
performance before and after the reduction in team
size will be needed.

Loss of Observers/Controllers

Observers/controllers can also drop out of the
experiment for various reasons. The ideal situation
would be to have additional trained observers/
controllers in a standby position. These would likely
be drawn from an organization located near the
experiment venue, so that they could go about
their daily routine while on standby. Failing that, a
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supervisor may be able to fill in, or observers can
be transferred from less important stations to the
more essential ones. This technique minimizes the
impact of the loss. The importance of the data, the
nature of the observation, and the resources
available will dictate the nature of the contingency
plan.

System Problems and Failures

The best way to mitigate against a system failure
that destroys the experiment is to avoid single points
of failure (one element that, if it fails, brings
everything to a halt). This is generally achieved
through redundancy. Failures can be avoided
through a thorough, comprehensive test program
that exercises al l  the elements prior to the
experiment. A common problem that arises during
testing is that the system is not as fully stressed
during testing as it will be during the experiment.
This leads to unexpected system crashes. The
number of operational stations during the test
period must equal the number of stations to be
used during the experiment.

Data Contamination

Subjects in an experiment are often highly motivated
to perform well. No matter how often they are told
that they are not being evaluated, they still strive to
excel. In some past experiments subjects have been
able to learn about the scenario or get help from
members of the experimentation team. In extreme
cases, one or more of the subjects has deliberately
sought to undermine the experiment. (There is an
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apocryphal story of a bored and frustrated young
trooper in a field experiment deliberately inflicting
friendly casualties.) As a consequence of any or all
of these types of action, some parts of the data may
be contaminated and lack the objectivity needed for
analysis. If this occurs, the bad data will have to be
excluded from the analysis.

Data Capture and Archiving

Data Preservation

In order for an experiment to contr ibute to
knowledge generation, it must be replicable. This
means, among other things, that the data must be
preserved in their original form. The data should
be copied before they are manipulated. Too many
things can happen to alter the data once work
begins. Data can lose its original format, be parsed,
and be improperly categorized. In addition to
archiving the data in their original form, a record
must be kept of al l  the steps involved in
manipulation of the data. This allows other analysts
to reconstruct the analysis. For the sake of ensuring
that data are saved, the prudent team saves
them in more than one location and on more than
one medium.

Privacy protection is also an important aspect. The
data must be kept separate from the identities of
the subjects. Care must be taken so that it is
not possible to link the subjects with performance
or data.
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Data Reduction

Data reduction is an important function that
frequently gets short-changed in practice. It is one
thing to collect the data; it is another to convert
them to a form that can be used by analysts.
Generally, those most well-suited to perform data
reduction are the data collectors. They are familiar
with the data and their notations. Data reduction
should occur as soon after the data collection as
practical, preferably in the days immediately
following the experiment. This has the benefit of
performing the data reduction while experiment
events are still fresh in the minds of the data
collectors. It also has the added benefit of having
all the collectors together so that they can work
as a team. This is especially valuable when
looking at data across nodes. Unfortunately, in
some recent experiments data collectors were from
a variety of organizations and on temporary duty
for only the training and game days, with no
time provided for data reduction. This practice
invites difficulties and reflects a failure to develop
a proper experimentation plan and/or allocate
resources appropriately.

The participants in the data reduction process
include all of the data collectors, data collection
supervisors, and analysts. It is important that
analysts participate because they will be able to
guide the data collectors if they have a problem
deciding how to code certain events, and they will
better understand the data and its origins.
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It is also important for the analysts to be present
in the data reduction effort for cases where
judgement is required in making coding decisions.
Inter-coder reliability is vital. The analysts, because
they see all the data, can spot where coders are
differing in how they code the data and resolve these
differences on the spot.

In many instances, the venue and systems used for
the experiment is immediately used for other
purposes. It is therefore imperative that data and
other experiment artifacts (scenarios, event
injections, survey forms, interview schedules, etc.)
be archived immediately after the completion of
the experiment to prevent it from being lost
when the supporting systems are reconfigured for
the next event.

In-Process and Quick Look
Reporting

It has become common practice in training
exercises to provide immediate feedback in the
form of results while an exercise is sti l l  in
process, as well as “quick look” reports all but
immediately on completion of the formal exercise.
While this makes perfect sense in a training
environment, where prompt and authoritative
feedback is one of the best ways to teach, it is
not the proper approach to experimentation. It is
imperative that this training tradition does not
carry over to experimentation. Experimenters,
sponsors of experiments, and decisionmakers
need to realize that considerable analysis is
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often required to ascertain the results of an
experiment. Instant feedback can (1) be misleading
and (2) lead people to believe that they do not need
to execute the data analysis plan.

Having said this, some data from experiments can
be captured and presented quickly (in near real
time). This is particularly true of data that evaluates
systems – measuring load, throughput, frequency
of use, etc. However, even this data is incomplete
when first captured. The patterns in it must be read
at the first order and in isolation from other
information. Furthermore, this data is often not at
the heart of the experimental hypothesis.

Having this system data quickly available is required
so that i t  can be used to drive models and
simulations in the post-experiment phase. Just
because it is available does not mean one should
share it. Sharing it without putting it into context
(by complete analysis) can result in false and
unwarranted conclusions being reached. Only
when the analysis is completed can issues such as
limits and interactive effects be studied.

It needs to be understood that much of the
most valuable data collected cannot be extracted
quickly. For example, the quali ty of shared
awareness can only be assessed after what is
known by individuals (not systems) is compared
with ground truth. Similarly, shared awareness
must wait until individual perceptions of the
operating environment are compared with one
another. Even simple system characteristics,
such as the difference between information
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available in different command centers, cannot be
examined unti l  comparat ive analyses have
occurred.

Strong reliance on immediate reporting and
preliminary analysis also tends to drive out
good findings and analysis. If decisionmakers’
attention focuses on immediate results, those tend
to stick – to become the primary learning from
the experiment. Later results, particularly if they
differ or show that alternative interpretations are
more consistent with the data, have a tendency
to be ignored. Cases have been reported where
mid-level managers hesitated to put more
considered analytic results forward because they
were inconsistent with the initial reports.

The proper uses of in-progress and quick look
reports are to spot trends and develop insights
(hypotheses that might be checked later when better
data and more time for analysis are available). If
shared, they should not be briefed as conclusive or
implying causality, and their preliminary nature
should be emphasized. From the perspective of the
experimentation team, the entire subject of
experimentation products and scheduling is one in
which both expectations and interpretations will
need to be actively managed.

Example Experiment:
Self-Synchronization

The illustrative self-synchronization experiment
involved virtually every form of challenge an
experimentation team can encounter. Their pretest
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was chaotic. They lost a trained observer at the
last minute. The host institution failed to renew
the license for their scenario driver, which came
due between the pretest and the experiment. One
of the subjects was called away on emergency
leave. Moreover, their collaboration tool crashed
during the second day of the experiment. However,
because the experiment plan was robust and
well-thought out, the experiment was still able to
accomplish its objectives.

Here is how the events unfolded. First, the pretest
training proved inadequate for both the observers
and the subjects. Extra time had to be devoted to
observing, classifying, and coding behaviors,
particularly collaboration behaviors. The planned
subject training in the use of collaboration tools
and search tools failed to reach the level of
proficiency specified for about 40 percent of the
pretest subjects. Those with the greatest difficulty
were found to be those with the least computer
expertise and experience. Finally, subjects showed
a clear tendency to impute today’s characteristics
to the sensors and communications systems
available during the game.

The interval between the pretest and the experiment
was busy. First, revised training was developed for
observers and tested on a small new group, who
were set up as a backup team for the experiment
itself. Second, a qualification test for basic computer
skills was developed to screen out subjects who
would have difficulty mastering the systems they
would need to employ during the experiment. In
addition, the data analysis plan was adjusted to
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include statistical controls based on subject
proficiency test results. Finally, the training for
subjects was altered to stress the difference
between the capabilities available during the
game and those available today. These adjustments
also caused the addition of one-half day to the
training schedule.

As the start of the experiment approached, one
of the experienced observers became ill. The
existence of the standby observer team was,
therefore val idated as the best qual i f ied
replacement was moved into an active role. As
the systems were being put into place for the
experiment and tested, the scenario dr iver
(commercial game) failed. A quick check found
that the host institution had forgotten to renew
the license for the system. An emergency purchase
order was generated and the problem was
promptly resolved.

The experiment started well. However, at the end
of the first training day, one of the subjects was
called home on emergency leave. She was replaced
by her commander, who had to be given special
training during off-duty hours to be ready for the
start of the experiment runs. Data for her team was
tagged to permit  later analysis in order to
determine whether her absence made a difference.

Finally, the collaboration tool, which was being
used more heavily than expected and for functions
not foreseen in the experiment plan, crashed on
the second day of the experiment. Players were
informed that a cyber-attack had taken out the
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system and play continued. Data from the period
impacted were also tagged. The technical support
team determined that more server capacity was
needed. The system came back up after 6 hours
and performed well from then on.

Among the lessons learned from our illustration
experiments is the fact that things will not all go
exactly as planned. Stuff happens. Subjects drop
out immediately before and during experiments,
observers get sick or are called away, systems
fail, and scenarios bog down. Controllers need to
be alert for problems. Solutions will often need
to be conceived on the fly. Solutions and problems
need to be thoroughly documented so that the
analysis can take them into account.

1Given that transformational experiments are designed to test
limits, it is difficult if not impossible to predict how subjects will
use the systems.
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CHAPTER 11

Products

G ood experimentation requires good
documentation in order to provide a record of

what went into its planning and what resulted
from its execution. First and foremost, good
documentation provides the basis for understanding
experimentation results and judging their
implications for transformation policy and
investment decisions, without which they would
have limited veracity and value to the DoD.
Secondly, products that document and explain what
went on before, during, and after an experiment
carefully preserve a record of the scientific research
accomplished. Finally, these products provide an
archival basis for extending and integrating the
experimentation results into the larger body of
knowledge. This chapter takes a closer look at the
various types of documentation required by
experimentation, what information and knowledge
they contain, and what purpose they are intended
to serve. Additionally, we reflect upon a number
of “best practice” principles that should be kept
in mind when developing these various
documentation products.
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Types of Documentation
Products and Their Use

Experiments are documented in a variety of ways,
with each product serving the needs of a specific
audience. Illustrated in Figure 11-1 are the principal
products of interest in a typical experiment,
although other types of reports, papers, briefings,
or other products could be generated to meet the
requirements of a specific experiment. As suggested
from this figure, good documentation is required
throughout the life cycle of the experiment, from
pre-experiment planning to dissemination and
archiving of results. Following this practice avoids
a common misperception (carried over from
exercise tradition) that the only documentation of
significance is the so-called “quick look” briefing
often provided to senior officials immediately
following the completion of the event.

Management Plan

The management plan for the experiment,
developed at the beginning of the pre-
experimentation phase, provides the overall
guidance for the experiment and specifies how
the experiment will be planned and executed. In
addition, this plan relates the experiment to the
various external constituencies by articulating
the various sponsor issues and stakeholder
interests. Finally, the management plan provides
the basis for securing support for the experiment
from various part ic ipat ing mil i tary units,
organizations, and other resources.
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Figure 11-1. Management and Dissemination Products
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Experiment Plan

A common mindset and practice of the past has
been to treat the experiment plan as a loosely
organized set of information papers or briefing
slides that are circulated largely to inform senior
officials about the purposes of the experiment, or
to address specific aspects of the experiment (e.g.,
data collection plan). Very rarely are all of the
various planning details brought together in a
centrally maintained, integrated, and cohesive
document. Such a sloppy and informal practice
often leads to a fragmented understanding of how
the experiment will come together to address
critical questions, or how the various elements
and participants will be synchronized. To avoid
such problems, it is necessary to think of the
experiment plan as being a living coordination
document that communicates a consistent,
comprehensive, and cohesive understanding of all
of the planning details to every participant,
supporter, and consumer of the experiment. An
experiment plan is more than just a set of
bulleted briefing slides. Like a military operations
plan, it is the formal glue that holds the broad
(and often diverse) experimentation community
together and focuses them on a common set of
objectives and intent.

Developed in accordance with the management
plan, the experiment plan serves as the principal
control vehicle for refining and documenting agreed
details of the experiment. Maintained by the
experiment manager, the experiment plan is a
living document that is subject to revision and
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refinement throughout the course of the pre-
experimentation phase. Documented within the
experiment plan are the specific elements of the
experiment outlined in Chapter 5, including a
careful record of how each element is revised or
refined during the pre-experiment phase. For
example, these elements should address:

• Experimentation hypotheses and research
questions;

• Experimentation treatments, baseline
conditions, and controls;

• Experimentation subjects (including selection
and training requirements);

• Experimentation scenarios;

• Definition of measures and data collection plan;

• Facility and other resource/asset requirements;

• Experimentation schedule (including pretest
and rehearsal events); and

• Contingency options.

Because experimentation serves a broad set of
constituencies, it is important that the experiment
plan reflects multiple disciplines and perspectives,
rather than being dominated by a single view. Proper
scope and balance are crucial and reflect the critical,
integrative role played by the experiment plan
for achieving and maintaining synchronization
among the various participants. Good experiments
and productive learning do not just happen by
accident or wishful thinking. Rather, they are the
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products of various professional communities
coming together via conscious and comprehensive
planning that is articulated and coordinated via a
good Experiment Plan. To quote the South African
professional golfer, Gary Player, “The harder you
work, the luckier you get.” A good experiment
plan effectively communicates the product of this
hard work.

Planning Conferences

To achieve this level of articulation and coordination,
i t  is often necessary to hold one or more
planning conferences for a specific experiment.
Planning conferences represent a major element
in the planning of large and comprehensive
experiments. However, they also constitute part
of the documentat ion process since their
deliberations and findings ultimately feed back
into the experiment plan. They become necessary
because of the sheer complexity of negotiating and
coordinating the myriad of details involved in a
successful experiment. Planning conferences
bring together the key participants, peer reviewers,
and supporting organizations at critical junctures
in the planning process in order to (1) focus
attention on major “show stoppers,” (2) identify the
strategy and means for overcoming each obstacle
to conducting the experiment, and (3) document
the inter-organizat ional agreements and
commitments that produce a successful experiment.
The timing and frequency of planning conferences
depend upon the specific scope and complexity of
the experiment. Planning conferences can be
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convened to address major, emerging issues, or be
set on a prescribed schedule (e.g., Joint Forces
Command experiments typically include an initial
planning conference, a mid-term planning
conference, and a final product conference).

Periodic Progress Reports

Periodic progress reports, typically issued by the
experiment manager on a regular basis to the
sponsors, stakeholders, supporting organizations,
and key participants, serve as a vehicle that
focuses attention on coordination and
synchronization issues between major planning
conferences. Like these conferences, progress
reports provide a vehicle for obtaining and
documenting organizational commitment and
support for the experimentation, although the issues
addressed might be of a lesser scope and
significance. Responses to each progress report are
circulated for coordination and then reflected as
revisions to the experiment plan. In this manner,
progress reports can remain focused on coordination
and synchronization issues, while the l iving
experiment plan continues to serve as the principal
archive of agreements and commitments.

As shown in Figure 11-1, it is important that
progress reports are issued throughout the entire
life cycle of an experiment. A past weakness of
some military experiments has been the tendency
of participating organizations to quickly lose interest
once an experiment has been executed, thus
making it difficult to maintain access to key
personnel who can make valuable contributions
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during the post-experiment analysis and
documentation phases. In response, the experiment
manager should consider using the progress
reports as a vehicle for maintaining the necessary
access and commitment needed to properly
complete the experimentation life cycle.

Modeling and Simulation Report
(When Appropriate)

As discussed in Chapter 5, many good experiments
will seek to explore and extend the empirical
findings through an adjunct modeling and simulation
effort. This work, often undertaken during the
analysis phase of the experiment, can serve to
examine a broader range of conditions and variables
than could be feasibly addressed in the actual
experiment. Since these results form an equally
important part of the analysis, they require proper
integration and documentation with other aspects
of the experimentation. Depending upon the level
of modeling and simulation work undertaken, the
results can either be documented in a separate
report (as shown in Figure 11-1) or directly
incorporated into the report of the main analysis
of the experiment. When such modeling and
simulation are performed as a major study by a
separate organization, it is appropriate that a
separate report be developed in order for the
addit ional assumptions and other analytical
considerations to be uniquely recognized and fully
documented. At the end of the day, however,
the modeling and simulation results need to be
folded back into the main experimentation analysis.
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Preliminary Findings Report

A frequently noted weakness of many past
military experiments is the tendency to maintain
the findings and interpretations in a “close hold”
manner until the publication of a final “approved”
report .  Such a pract ice ref lects a lack of
appreciation for the true nature of experimentation
(i.e., what constitutes success or failure) and a
fear that the experiment might cast specific
programs or other initiatives in a negative light.
However, this practice represents a disservice
to the scientific validity and operational relevance
of the experimentation. Good experimentation
always (subject to security restrictions) allows for
proper review and critique of the findings by both
(1) participating subjects, observers, controllers,
analysts, and support team members and (2)
external  sponsors,  stakeholders,  and peer
reviewers.  This review serves two re lated
purposes. First, the review provides an opportunity
for the empirical findings to be rigorously reviewed
and interpreted by mult iple discipl ines and
perspectives. The synthesis of these multiple
perspectives is crucial for developing a deep
understanding of the issues and complexity
surrounding the development of mission capability
packages. Second, this review strengthens and
validates the analytic “audit trail” that relates
the limited context of the experimentation to the
broader questions associated with transformation
policy and investment decisions.

As noted in the following section of this chapter,
the content and format of the final report needs to
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be tailored to the specific needs and interests of
the different audiences served by the experiment
(e.g., senior defense officials, members of the
defense research and development community,
and military historians and futurists). Accordingly,
the preliminary findings report should address these
broad sets of interests and allow the various
constituencies to gain an initial understanding of
what the experiment produced. In doing so,
however, it is important that care is taken in
distinguishing findings from interpretations.

Reporting Findings

Findings are simply the reported outcomes of the
experiment, usually a combination of quantitative
or statistical comparisons of the various cases
or treatments examined in the experiment,
supplemented or ampli f ied by qual i tat ive
observations and assessments gleaned from
subject matter expert observers. In addition,
findings generally include (or specifically reference)
the basic observations and data collected in
the experiment along with the important artifacts
(scenarios, constraints, probes, training, etc.)
associated with the experiment. Findings are
reported in a concise and carefully documented
manner since they are intended to convey an
objective impression of what transpired in the
experiment, and provide a basis for the various
constituencies to contextually judge the outcome of
the experiment.

Likewise, findings typically serve to focus attention
on important or significant outcome differences
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found among the cases or treatments addressed
in the experiment. In some cases, depending upon
the nature of the questions or hypotheses being
addressed, i t  is also important to highl ight
situations in which no differences were found.
Focusing on outcome differences (or the lack of
differences) gets to the heart of why experiments
are conducted in the first place. To merely say that
a new doctrinal concept, new piece of technology,
or new organizational structure produced a good
warfighting outcome is not sufficient since it
holds little meaning for any audience. Rather,
the key findings of the experiment should center
on how this outcome compared to that of a baseline
case or some other meaningful conditions. Failure
to emphasize comparative findings has often
been the most frequently observed weakness of
past military experiments.

Reporting Interpretations

By contrast, interpretations reflect the application
of experienced judgment to the experiment findings.
Interpretations are subjective in nature and involve
drawing inferences and/or implications from the
objectively reported findings. Hence, care should
be taken to distinguish findings from interpretations
in the reporting of an experiment. Like findings,
interpretations occupy an important (but different)
place in the reports of the experiment since they
allow the various constituencies the opportunity to
view the outcome of the experiment from different
points of view. Thus, interpretations serve a
legitimate role in the experiment reports, provided
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that they are clearly distinguished from objective
findings and that they are properly attributed to a
particular point of view.

Dissemination of the Preliminary
Findings Report

The prel iminary f indings report  should be
circulated for comment by appropriate audiences,
usually within a reasonably short period of time
after the initial analysis phase (including the
modeling and simulation work) has been completed.
At the same time, the experiment manager must
ensure that this review is completed in an orderly
and timely manner (perhaps a few weeks) and
that it does not extend into an unending debate
among different perspectives and interests. To
accomplish this, the experiment manager needs
to have the strong support of sponsors and
stakeholders, who have agreed beforehand on a
set of review and publication schedules.

Final Products for External Audiences

Since transformation experiments are of interest
to a broad audience, it is only natural that their
findings and interpretations be documented in a
variety of tailored products. One such product
includes summary briefings and white papers that
focus on the implications of experimentation
findings for transformation policy and investment
decisions. Typically, these briefings and papers are
aimed at senior defense officials and are geared
to highl ight the operat ional aspects of the
experimentation and to interpret/summarize the
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f indings in the terms of mi l i tary capabi l i ty
improvements, operat ional concepts, and
associated operational risks. At the same time,
these documents illustrate the interdependent
nature of the elements making up a mission
capability package. Finally, these documents tend
to be written in a concise manner that immediately
draws attent ion to the major insights and
conclusions drawn from the experiment.

In contrast to this set of “executive level” products,
a set of products needs to be developed for the
research and development community.  These
include technical conference papers and refereed
journal articles that are aimed more at the research
and development community. Here,     these papers
will typically focus on specific theoretical or
proposit ional issues of interest to speci f ic
professional forums such as the Institute of
Electrical and Electronics Engineers (IEEE), the
American Institute of Aeronautics and Astronautics
(AIAA), the American Psychological Society (APS),
the Human Factors Society (HFS), and the Military
Operations Research Society (MORS). The venue
for presenting such papers includes any number
of workshops, symposia, conferences, and
professional journals sponsored by these
organizations. As opposed to the summary nature
of the executive level papers and briefings aimed
at senior defense officials, these more academic
products will often describe selected aspects of the
experimentation in extensive academic detail.
Additionally, these technical products will often
focus greater emphasis on placing and interpreting
the detailed findings of the experiment within the
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context of the existing research literature. Finally,
these products will focus more on how the available
empirical evidence has led to the support and
refinement of specific bodies of theory (e.g., network
centric operations, sensemaking, collaboration).

Finally, a third set of products includes integrated
papers and articles that place the set of experiment
findings in an overall defense transformation
framework. Such products tend to combine an
operational and force development focus with
a r igorous analyt ic presentation in order to
examine the broader impl icat ions of  the
experimentation for the professional military
audience. Here, a likely venue of publication
will include senior service school journals, military
trade and association magazines, the annual
Command and Control Research and Technology
Symposium (CCRTS), the biannual International
Command and Control Research and Technology
Symposium (ICCRTS), NATO or coalition working
groups, and other national and international
military forums that can expose these results to
a broad mil i tary audience. Accordingly, the
integrated papers and articles should appeal to a
broad readership and be organized along the major
themes of defense transformation.

Archiving the Experiment for
Future Investigations

Experiments seldom have more than limited
relevance or utility in isolation, hence their findings
and interpretations should usually be placed in
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a broader context. In Chapter 4, the concept of
the experimentation campaign was introduced
along with a discussion of how knowledge and
understanding are often developed through a
cumulative series of individual experiments.
However, it would be a mistake to interpret an
experimentation campaign as only being a set of
individual experiments strung together. Rather,
an experimentation campaign can be characterized
as a well-designed sequence of investigations
that successively builds knowledge within an
organized framework of questions, hypotheses,
performance and outcome measures, and
associated empirical evidence. Even if a specific
experiment has not been anticipated to form part
of a larger campaign, it is often instructive and
useful to compare and integrate future findings
with those obtained in a previous experiment.
Given this broader context, consideration must be
given to preserving the methodology and original
empirical evidence in a form that makes it available
to future studies and experimentation.

The requirement to careful ly archive each
experiment is different from the management and
dissemination purposes discussed earlier in this
chapter. In one sense, archival documentation is
aimed more toward an internal, practit ioner
audience within the operations research, analysis,
and experimentation communities rather than at
an external, consumer audience. Secondly, the
body of empirical evidence from each experiment
is archived so that it can be made available to
others for subsequent analysis and integration with
other experimentation efforts. Finally, the archival
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documentation contributes to the refinement of
experimentation methodology, measurement and
assessment instruments, and modeling and
simulation techniques - all interests of an internal,
practitioner community.

As shown in Figure 11-2, a variety of archiving
products should be developed from both the
planning and execution of the experiment. Each
type of product reflects a specific content and serves
a specific purpose.

Original Data Records, Transcripts, and
Other Artifacts

Data records, interview transcripts, and other
artifacts of the experiment (e.g., scenario materials,
injections/probes, background books, training
materials) should be collected immediately after
execution of the experiment and preserved in their
original form. This can include a variety of both
electronic and hand-written materials such as
audio/video tape recordings, telemetry fi les,
computer modeling output, voice and digital
message traffic, SME observer and assessment
forms, interview notes, and survey forms. In some
cases, preservation of this material might be
based upon legal requirements (e.g., Use of Human
Subject requirements); however, the main purpose
of preserving the original material is to make it
available to future studies for refined analysis and
synthesis. Experience with past experimentation
has demonstrated that, with the passage of time,
new questions will arise or new perspectives will
be developed that can shed new light on existing
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data. Making these data available to future studies
and experimentation offers the opportunity for
refining the interpretation of data or making
comparative assessments, a hallmark of scientific
experimentation.

In preserving original records, transcripts, and other
artifacts, consideration should be given to selecting
an appropriate repository organization. This
organization should provide a mechanism for
both (1) promoting awareness of the material across
the DoD research community and (2) providing
appropriate access to the material. The length of
time for maintaining the material will depend
upon the nature and significance of the experiment,
possibly lasting years, or even decades as in the
case of “classic” or “seminal” experiments.

Data Dictionary/Glossary of Terms, Constructs,
and Acronyms

Perhaps the most frustrating aspect of comparing
research findings across different experiments is
the frequent lack of consistency regarding the
definition of key terms, constructs, and acronyms.
This is particularly true when one moves beyond
the engineering terminology associated with the
physical domain and into the more subjective
terminology associated with the information and
cognitive domains. Without consistency of meaning,
the comparison and integration of findings across
experiments becomes problematic at best. Thus,
a fundamental requirement for experimentation
campaigns (and a good principle to follow in
general) is proper documentation of the terms,
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constructs, and acronyms to be used in the
experiments. Specifically, for the information and
cognitive domains, the documentation should
include accepted operational definitions of each
term/construct/measure, accompanied by whatever
contextual information is required to ensure
consistent interpretation in future research.

As noted earlier, the consumer of data dictionaries
and glossaries is primarily the internal, practitioner
audience within the DoD and international research
and development communities. Thus, dissemination
of this information can be both internal to the
Services or Joint commands, and via the CCRP
website, MORS, and various NATO or coalition
working groups. Ultimately, much of this material
can be incorporated into future Codes of Best
Practice or propositional inventories maintained by
the practitioner community.

Methodology / Metric Dictionary

Considerable time, effort, and creativity often go
into the development of measurement and
assessment instruments that can accurately
illuminate the structures, processes, and functioning
of a military operation. As with key terms and
constructs, however, it is important to achieve
consistency across different experiments. Thus, an
important product of any experiment is the proper
documentation of how these various instruments
were developed and employed. This consistency
provides the basis for both (1) comparing empirical
evidence across different experiments within a
campaign and (2) extending and refining the
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measurement and assessment instruments within
the practitioner community. While this task is
relat ively straightforward for engineering
methodologies applied to the physical domain,
greater challenges exist within the information
and cognitive domains. Within these domains, it
is important to document the accepted dimensional
definitions and metric scales employed as part
of each instrument, accompanied by whatever
contextual information is required to ensure
consistent interpretation and use in future research.

As with key terms and constructs, the consumer
of measurement/metric dictionaries is primarily
the internal, practitioner audience within the DoD
and international research and development
communities. Thus, the dissemination of this
information can be both internal to the Services or
Joint commands, and via the CCRTS and ICCRTS
conferences, MORS workshops and symposiums,
and various NATO or coalition working groups.
Ult imately, much of this material  can be
incorporated into future Codes of Best Practice
maintained by the practitioner community.

Key Considerations: Products
and Their Dissemination

Experimentation provides essential support for
informing and supporting defense transformation. For
this to occur, however, it is important that the
experimentation products that are disseminated for
each of the different audiences give proper
consideration to several issues:
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• What are the different questions being
addressed at each stage in the transformation
process?

• What are the relevant perspectives of the
multiple sponsors and stakeholders?

• What types of evidence should be considered
and how should this evidence be forged into a
cohesive story that supports transformation
policy and investment decisions?

• What type of audience is being informed by a
particular dissemination product?

Product Focus Depends Upon the Type of
Experiment

As noted in Chapter 1, experiments of various
kinds have begun to proliferate throughout the
DoD as part of the general interest in defense
transformation. In Chapter 2, these experiments
were further broken down into three categories
or uses: discovery experiments, hypothesis
test ing exper iments, and demonst ra t ion
experiments. Accordingly, what is documented will
depend, in some degree, upon the purpose of the
experiment and the level of maturity reflected in
the experiment. Discovery experiments focus on
novel  systems,  concepts ,  organizat iona l
structures, technologies, and other elements in a
setting where they can be explored, observed, and
cataloged. Quite often, a major emphasis in their
documentation will be the important constructs
and re la t ionsh ips  d iscovered dur ing the
experiment. Here, it is important that the products
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identify the potential military benefits suggested
by the exper iment ,  to  document  emerging
concepts of employment, and to begin articulating
hypotheses for future experimentation. At this
stage of experimentation, decisionmakers rely
upon experimentation products to weed out ideas
that will not work, refine the ideas that seem
promising, and lay out a framework for further
research and development. While results at this
stage of experimentation are often tentative,
documentation can support future research and
development investment decisions by addressing
the following questions:

• What new performance variables or
relationships have been introduced or strongly
affected by the systems, concepts, processes,
and structures?

• What new constructs have emerged that require
more careful observation and measurement in
future experiments?

• What are the important contextual features and
boundary conditions that enable or prevent the
systems, concepts, processes, and structures
from making an operational contribution?

By contrast, hypothesis testing experiments reflect
a more classic approach to experimentation, which
seeks to examine carefully constructed comparisons
among alternative cases (including a baseline case)
under carefully constructed conditions in order to
provide supportive evidence for carefully articulated
propositions. Thus, a major emphasis in their
products is the r igorous documentat ion of
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experiment assumptions and controls, the empirical
data and their analysis, and the level of evidence
supporting each hypothesis. At this stage of
experimentation, decisionmakers look to the
experimentation products to validate specific
transformation init iat ives by addressing the
following questions:

• Do the comparative findings make a military
difference (operational significance)?

• Are the comparative findings reliable, given the
experimentation sample size (statistical
significance)?

• To what extent can the findings be generalized to
real-world military operational conditions
(experimental controls)?

Final ly, demonstration experiments offer an
opportunity to demonstrate the efficacy of a new
system, concept, process, or structure under
carefully orchestrated conditions. Additionally,
demonstration experiments often afford the
opportunity to examine the combined effect of
two or more such initiatives, thus balancing
decisionmaker attention across several elements
that comprise a mission capability package. In
contrast to the first two types of experiments,
demonstrat ion experiments are not about
documenting new knowledge. Rather, the purpose
of the documentation is to communicate the
demonstrated capability to those decisionmakers
unfamil iar with i t .  Good documentation can
support critical transformation investment and
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fielding decisions by refining the answers to the
following questions:

• What is the critical range of conditions over
which the demonstrated capability can be
expected to exist?

• What is the complete set of initiatives that must
be pursued in order to produce a robust mission
capability package?

Reporting Implications for Mission Capability
Packages

It is clear from Chapter 2 that the objectives of
experimentat ion are to develop and ref ine
innovative concepts of operation in the form of
mission capability packages. To accomplish this
object ive, experimentat ion must consider a
broad range of perspectives that includes (but
is not limited to) the various DOTMLPF elements.
A weakness of many past military experiments
has been a preoccupation with technology at the
expense of adequately documenting other aspects
of the operation. If experimentation is to truly support
the development of mission capability packages,
then i t  is important that the documentat ion
captures multiple perspectives on what is being
addressed and discovered, rather than narrowly
focusing only on materiel technology issues.
Beyond the more famil iar (and more easi ly
measured) aspects of technology performance,
such perspectives can include:
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• Doctrinal lessons learned (e.g., the validation of
new theories of warfare or new principles of
operation);

• Personnel performance and training
effectiveness (e.g., the adaptability of leaders
and soldiers/airmen/seamen to new
technologies, tactics, and procedures); and

• Organizational dynamics and performance
(e.g., the ability of new organizational
structures to support new forms of leadership
and collaboration).

The broad nature of the issues involved in
defense transformation requires the use of a
mult idiscipl inary team for developing the
experimentation products. Such a team not only
reflects expertise from each of the DOTMLPF
communities, but is also (as a whole) sensitive to
the various challenges associated with building
integrated mission capability packages. Expertise
from each community is required in order to
articulate each perspective in an appropriate and
insightful manner. Overall perspective is required
in order to balance the presentation of the issues
in the various experimentation products.

Document All of the Evidence

While it is true that all experimentation, by definition,
produces empirical evidence, it is not true that
all empirical evidence comes in the singular form
of precise engineering metrics (e.g., geographic
coverage, bandwidth, kills/engagement). Just as
good documentat ion considers mult iple



306 Code of Best Practice for Experimentation

perspectives on an experiment, so too will that
same documentat ion seek to organize and
synthesize multiple classes of evidence. Here, the
three classes of evidence are:

• Quantified, objective measures of engineering
performance;

• Calibrated, observable measures of behavioral
and organizational performance; and

• Subject matter expert  judgment of outcome.

Each of these classes of evidence corresponds
to different types of capability and performance
issues being addressed in the experiment. Each
class of evidence provides a critical ingredient in
the final story being written about the experiment.

Quantified, objective measures of engineering
performance are considered the “gold standard” of
scientific experimentation because they allow
outcomes and findings to be documented in a
defined, reliable, and replicable manner. Without
such a documentation standard, a comparison of
findings from one treatment or case to another
becomes problematic, thus negating much of the
value and purpose of experimentation in the defense
transformation process.

In the case of behavioral and organizational
performance, however, much of what transpires in
an experiment cannot be directly observed or
measured in an engineering sense. Hence, other
approaches must be taken to documenting this
aspect of an experiment. Unfortunately, too often in
the past, such dimensions and variables have
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been rout inely ignored because they were
considered too hard to document. By contrast,
however, the social sciences provide a variety
of well-accepted methods for observing and
documenting behavioral and organizat ional
performance in a structured manner. In most
cases, it is simply a matter of expending the time
and resources necessary to properly understand
and apply these methods. However, this investment
in time and energy will yield appropriate dividends.
Capturing this type of evidence in an experiment
is critical because much of the success in exploiting
new military technologies will be dependent upon
how human operators and decisionmakers react
and interact (both individually and collectively)
with these technologies. Ignoring this class of
evidence results in telling only half of the story of
the experiment.

The third class of evidence, subject matter expert
opinion, is valuable because of the experienced
insights that it typically brings to an experiment.
However, the documentation of such evidence
must recognize the scientific l imitations and
biases of such evidence. Subject matter experts,
despite their experience, suffer from the same
judgmental biases as other human beings, hence
their contributions cannot be substituted for
sound statistical analysis of more objective,
structured, and quantified measures. Here, over-
reliance on this class of evidence in documenting
the findings of an experiment can be problematic.

There have been several weaknesses that have
been often observed in past military experiments.
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There has been a tendency to document only what
can be easily measured and quantified (i.e., focus
experimentation reports and other products only on
measures of engineering performance). Without
placing this information in the context of other
classes of empirical evidence, these results are
misleading, they can miss the “big picture,” and
they are often irrelevant to the questions posed
by senior decisionmakers. In cases that go beyond
technical data, there has been a tendency to collect
and document only SME opinion, usually in the form
of summary judgments by senior “gray beards”
selected because of their interest in a particular
transformation initiative. While this approach
attempts to focus on the “big picture” findings of
an experiment, it suffers from a lack of scientific
rigor and precision insight. Documentation that
reflects only SME judgment not only runs the risk of
being self-serving and biased, but also discredits
the entire notion of scientific experimentation.

By contrast, good experimentation (as anticipated
and documented in the experiment plan) seeks
to exploit the strengths of each of these three
classes of evidence and to present a balanced
picture of this evidence to decisionmakers.
Recognizing that di f ferent aspects of the
experiment are best captured by different classes
of empirical evidence, the experimentation team
must work to integrate and document multiple
threads of analysis into a cohesive story, a story
that relates the various findings and insights of
the experimentation to potential transformation
investment decisions. As noted earl ier, this
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challenge will require a multi-disciplinary team
that can perform several critical functions:

• Select and combine the appropriate classes of
evidence for illuminating and supporting each
major insight or finding;

• Seek, where possible, to cross-validate one
class of evidence with other classes of
evidence addressing the same
experimentation issue;

• Compare these insights and findings with both
operational experience and the broader body
of research literature;

• Communicate across functional or DOTMLPF
community boundaries to relate the different
insights and findings within the context of an
integrated mission capability package; and

• Weave the various insights and findings into
supportable arguments that address specific
transformation investment decisions.

Tailoring Products to Various Audiences

Dissemination products serve different audiences,
hence they must be individually tailored to the
interests of these audiences. As noted earlier in this
chapter, these audiences include:

• Senior defense officials concerned with
immediate transformation policy and
investment decisions and their associated
risks and opportunities;
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• Members of the defense research and
development community concerned with the
theoretical and technical issues being
explored in a given experiment; and

• Military historians, futurists, and conceptual
thinkers concerned with placing the
experimentation results in a broader context
of defense transformation.

Given the different needs and interests of these
three different audiences, it is unlikely that a
single report, paper, or briefing would serve to
effect ively communicate the f indings and
interpretations of a given experiment. Accordingly,
the dissemination products aimed at each type
of audience must be consciously focused and
written in a manner that is best understood by
each recipient.

Decision papers, summary reports, and briefings
aimed at senior defense officials must be written
in a manner and tone that relates experiment
details to real-world, operational issues and
considerations. These dissemination products
focus attent ion on the key impl icat ions for
transformation policy and investment decisions. As
part of this focus, products must carefully distinguish
findings from interpretations and address the
operational “So what?” questions, rather than
merely reciting experiment outcomes. Additionally,
they should carefully outline the limitations of
the experiment so that decisionmakers understand
the key risks and uncertainties still surrounding a
particular policy or investment issue. In this manner,
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the products serve to justify the investment in
the experiment and help to articulate the role
and utility of experimentation in the defense
transformation process.

By contrast, scientific papers, reports, and briefings
aimed at members of the defense research and
development community are written with a more
technical tone and often with a specific technical
focus. These dissemination products will focus
attention on the key theoretical, technical, and
propositional issues addressed in the experiment.
As part of this focus, these products place
experiment outcomes in the context of existing
technical knowledge by addressing and
emphasizing the scient i f ic and engineering
“Why?” questions. Additionally, they serve to
highlight the relationships that exist among key
materiel, behavioral, process, and organizational
variables. Their purpose is to inform research and
development personnel in a scient i f ical ly
rigorous manner so that the experimentation
results can contribute to a larger body of scientific
and engineering knowledge. In this manner,
the products serve to establish the scientific
credibility of experimentation in the defense
transformation process.

Finally, white papers, articles, and books aimed at
a broad audience of military historians, futurists, and
conceptual thinkers tend to reflect an integrated
perspective on both operational and technical
issues. These dissemination products place the
experiment outcomes in the context of broad
transformational themes (e.g., Network Centric
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Warfare, Information Age warfare, effects-based
operations, and asymmetric warfare). Here, the
focus might be placed on interpreting the experiment
outcomes in the light of historical military case
studies, projecting their implications for future
operational scenarios, or integrating these findings
with other studies and experiments to develop
broader doctrinal and force structure conclusions.
The critical question often addressed in this
type of paper or article is “Where do we go from
here?” As such, these dissemination products are
often used to stimulate new conceptual thinking and
to motivate the undertaking of new areas of
research. In this manner, the products serve to
guide and extend the transformation process within
the DoD.

Tying it all Together:
Documenting Experimentation
Campaigns

As noted earlier in Chapter 4, experimentation
campaigns represent a systematic approach to
successively refining knowledge and understanding
in a specific transformation area. The value of an
experimentation campaign exceeds that of a
collection of individual experiments precisely
because of the integrated and cohesive learning
that takes place over an orchestrated set of
experiments. But for this broader learning to take
place, the synthesis of findings and interpretations
from across several related experiments must be
accomplished in a scientific or professional manner.
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The synthesis of findings and interpretations
from any set of studies or experiments is always
enabled through careful documentation. In the
case of  exper imentat ion campaigns,  the
documentation serves to weave the individual
findings and interpretations into a cohesive story
that addresses one or more transformation
themes. As in the case of a single experiment,
the products of an experimentation campaign
should be tailored to specific audiences: senior
defense of f ic ia ls;  members of  the defense
research and development community; and those
with a broader historical, futurist, or conceptual
focus. Thus, the focus and tone of each product
should be carefully matched to the interests and
needs of the intended audience.

Regardless of the audience, however, the principal
challenge in the documentation of experimentation
campaigns is to present the set of findings and
interpretations in a consistent and purposeful
manner. This places an additional burden on both
the managers of individual experiments and those
responsible for the broader experimentation
campaigns. Such a challenge underscores the need
to carefully document each individual experiment
since the authors of the campaign papers, reports,
and other products will draw heavily on these
previous documents for their raw material. If
critical assumptions, conditions, and limitations
have not been accurately captured in these previous
documents, then the l ikel ihood for some
misinterpretation and inappropriate conclusions
remains high. By contrast, the development of
campaign dissemination products should follow
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accepted scientific practices of carefully citing the
specific document references of each finding or
interpretation. Only by careful documentation and
thorough and complete citation is it possible to
translate the long-term investment in an
experimentation campaign into useful guidance
for defense transformation.

Conclusion

Good documentation of experiments goes well
beyond the creation of a few action officer briefing
slides, a set of press releases, or a “quick look”
briefing, an approach taken all too often in the past.
Experiments need to be carefully documented
throughout their life cycle by means of a specific
set of management, dissemination, and archival
products. The specific focus and tone of these
products must be matched to their particular
audiences. This reflects both good practice and
common sense since each type of audience will
be looking at the experiment to provide answers
to a different set of questions. In addition, these
products will also be shaped by the degree of
maturity reflected in an experiment (i.e., discovery,
hypothesis testing, and demonstration) since,
again, different questions are posed at each stage.

Likewise, the documentation of experiments must
reflect a broad set of perspectives, rather than
being held captive by a particular set of technology
interests. This is true for two related reasons. First,
the successful planning and execution of a good
experiment requires the support and synchronized
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part ic ipat ion of a diverse set of DOTMLPF
communities. Secondly, the experiment should
serve to shed light on a broad set of transformation
issues typically associated with developing mission
capability packages.

Finally, there is a degree of both science and art
reflected in the good documentation of experiments.
First, experiments should be documented in a
scientific manner, following the accepted practices
of the engineering and research professions.
Careful, professional documentation preserves
an objective record of what the experiment
produced and provides a solid foundation for
drawing a range of operational, scientific, and
investment/policy inferences from the empirical
evidence obtained in the experiment. At the same
time, good documentation reflects the art of
skillful communication. Since the purpose of
experimentation is discovery and learning, this
evidence must be assembled and communicated in
a way that highlights the comparative findings and
differences revealed by the experiment. Only in this
manner does the experiment contribute in a
meaningful way to the support of transformation
investment and policy decisions, the maturation of
technology, and the refinement of warfighting theory.
Both science and art are essential ingredients to
good documentat ion and must be properly
considered for the DoD to obtain appropriate return
on investment in the experiment.
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CHAPTER 12

Model-Based
Experiments

Overview

Models and simulations have a role, albeit a
different one, in support of all three uses of

experiments: discovery, hypothesis testing, and
demonstration. As a well-crafted experimentation
campaign matures, the roles and characteristics
of the models and simulations in use coevolve with
changes in the operational concepts and technologies.

This chapter describes a special  k ind of
experimentation, a model-based experiment, in
which models, most likely in the form of simulations
(executable models), substitute for human subjects
and military hardware in the experimentation
process and are the sources of the data. The same
principles, articulated in Chapters 4 and 5, apply
to model-based experiments just as they apply
to empirically-based experimentation. Model-based
experiments still require extensive pre-experiment
effort, must be supported by a multidisciplinary
team, and must adhere to the scientific method.

CCRP Publications
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There are many situations in which model-based
experimentation is the preferred method for
generating experimentation “data.” In fact, there are
times when they are the only mechanism for
achieving the desired insights. Given that the
transformation of the DoD focuses on the future, a
time for which empirical data is hard to find, model-
based experimentation can be expected to be useful
in exploring the possibilities. The DoD’s strategy
for transformation involves the coevolution of mission
capability packages. The MCP concept recognizes
the need for systematic and simultaneous change in
how the military functions along multiple dimensions-
change needed to leverage Information Age
technologies. At an overview level, three types of
things are changing:

• People - this includes the numbers, skills, and
ways in which they are organized for
operations;

• Process - how members of the military
organization, coalition, or interagency team
accomplish their responsibilities; and

• Infrastructure - the systems, federations of
systems, technologies, and other material
resources that are applied in support of military
operations.

Models can represent elements of a system and
explore how they interact. This can be helpful in
searching for two kinds of insights. First, there may
be insights about the binding constraints on the
performance of the system(s) or federation of
systems. For example, one might observe that
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increasing communications bandwidth between
HQ’s A and B did not improve B’s situation
awareness. A simulation might demonstrate that
the binding constraint on B’s performance is a limited
ability to process (fuse) the data that they are already
receiving. Therefore, additional communications
capacity could in fact prove to be of limited value.

Second, there may be insights related to
uncertainties that could affect force performance.
For example, consider a si tuat ion where a
significant number of chemical attacks are perceived
by troops in an area of operations. The reporting
associated with these types of events place large
demands on the command and control systems.
These demands might inhibit other types of
communications and information related to other
aspects of the situation. This interference with other
information f lows could have unantic ipated
consequences on operations (e.g., ATO processes,
maneuver control). A simulation experiment would
be a very efficient way of exploring the robustness
of a command and control system when subjected
to extreme circumstances, and for exploring
command and control logic that might increase the
robustness of a given command and control system
under extreme conditions.

Model-based experimentation has its most obvious
utility in support of discovery and hypothesis testing
experiments. Some specific reasons for choosing a
model-based experiment include:

• Efficiently (both in terms of cost and time)
exploring a set of scenarios, operational
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concepts, and technologies for combinations
of circumstances that appear to be fruitful
opportunities for further exploration using
human subjects and hardware (discovery);

• Supplementing other experiments with
simulation experiments that evaluate the
concepts and technologies under a broader
set of conditions. This data can then help to
more completely inform additional
experimentation, acquisition, doctrine, and
force structure decisions (discovery and
hypothesis testing);

• Extension, or evaluating the results of a tested
concept in a different context. An example
would be to use the data from a JTF HQ
command and control experiment as input to a
constructive combat simulation that assesses
the operational contribution of the HQ’s
performance improvement, or placing limited
experiment results into an entire mission
capability package and simulating overall
force performance (discovery and hypothesis
testing);

• Decomposing an entire MCP that was tested in
a live experiment, and exploring changes in
specific components (discovery and
hypothesis testing);

• Exploring the potential utility of technologies
that may not yet exist. An example being the
use of small agile robots as an integral part of
urban combat operations (discovery);
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• Efficiently evaluating the suitability of proposed
metrics (dependent variables) that are being
considered for application in an experiment or
experimentation campaign (discovery and
hypothesis testing); and

• Inexpensively replicating a concept and set of
technologies that were demonstrated in and
ACTD for explanatory purposes
(demonstration).

There are two major benefits to be gained from
properly crafted model-based experimentation. First,
the rules of logic that apply to modeling and
quantification bring discipline to thinking that is
often necessary to address complex problems
effectively. A related benefit of good modeling is that
it reduces a situation of interest to its essential
elements, focusing the experimentation team on
the important issues. Second, insight into very
complex issues and systems requires iteration
between analysis and synthesis.  Scientists, analysts,
subject matter experts, and decisionmakers must
be able to understand how a system decomposes
into its component parts, and how it behaves in its
totality. Good modeling supports both of these
requirements efficiently.
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Figure 12-1. Modeling and Simulation in Experimentation
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The Anatomy of a Model-Based
Experiment

The principles that should be considered for
successfully conducting a model-based experiment
are the same as those identified in Chapter 5. Figure
12-1 highlights the subset of the modeling discussed
in Chapter 5 with which we are concerned.

There are differences in specific requirements for
model-based experimentation that in some ways
make model-based experiments easier. But there are
also differences that make them much more
challenging. Perhaps the biggest pitfall in model-
based experimentation is the failure to recognize
the importance of the subtleties in modeling. This
section attempts to highlight some of the subtleties
that should be considered. The sequencing of this
discussion maps to the stages of the experimentation
process identified earlier.

Pre-Experiment Phase

The basic principles in Chapter 5, highlighting the
need for detailed preparation, also apply to model-
based experimentation. A point to emphasize for
model-based experiments is that the essential
activity in the pre-experiment phase is to identify
the goals of the experiment. Depending on the type
of experiment, these goals could be stated as a
priori hypotheses (hypothesis testing experiment),
or as desired improvements in Information Age
command and control, like a continuously adaptive
Air Tasking Order (discovery experiment). The



324 Code of Best Practice for Experimentation

expression of these goals provides the foundation
for all subsequent activities. They support the
selection of relevant measures and metrics, help to
identify the necessary skills in the team, and will
help to bound the types of existing models and tools
that are applicable to the experiment.

Developing, tailoring, and employing models and
simulations should be done by multidisciplinary
teams. The team should consist of experts as well
as stakeholders in the experiment (Figure 12-2). This
often requires special attention in model-based
experiments because many of the issues that might
cause a concept to fail in a full experiment will only
become evident in a model-based experiment if they
are represented in the model. An example might be
communications representation. In an experiment, if
there is no connectivity, then the players in the
experiment are unable to share information, and
the need for communications and a communications
expert are obvious. On the model side, many
simulations embed assumptions regarding
communications capacity, or information
dissemination delays (and concepts). Obtaining
reasonable behavior of a model along this dimension
will require coordination between communications
specialists (or technologists for advanced concepts)
and modelers. Otherwise, a model may have
embedded (implicit) assumptions or gaps in logic that
are essential considerations for evaluating the
experimental tool or concept.
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Figure 12-2. Multidisciplinary Modeling Team

There are some analogies that can be drawn between
modeling terminology and experimentation
terminology that can help clarify our thinking in
relation to formulation of an experiment. Specifically:

• Independent variables in experiments are
equivalent to the subset of the model’s input
data. Those that we choose to vary are called
controllable variables. Those that will not be
varied are called uncontrollable variables. In
effect, the controllable variables equal the
treatments in an experiment.

• Dependent variables (experimentation data) in
experiments are equivalent to the output data
or target variables in models. In both cases,
these should be clearly defined metrics that are
selected for their relevance to the goals of the
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experiment. The NATO Code of Best Practices
for C2 Assessment1 provides an excellent
supporting discussion on metrics.

• Intervening variables in experiments are
equivalent to the remaining data, algorithms,
and logic in a model that either provides
context for the model, or describe some
relevant cause-and-effect relationship among
independent and dependent variables.

Identifying what we already know is an essential
part of the pre-experiment phase. The principles
concerning the identification of relevant operational
knowledge, organizational knowledge, insight into
related experiments, and operational environments
remain important in model-based experimentation.
There are also additional dimensions that should be
considered when thinking this special case through:

• What tools exist that could potentially describe
both the baseline and treatments of interest of
the experiment? One of the fundamental
principles of experimentation is that one must
form a baseline and systematically introduce
change. This implies that we can describe the
baseline and its behavior. In DoD architecture
terms, the baseline is analogous to the “As Is”
architecture, and the treatments are potential
“To Be” architectures.2

• Are there any complete models developed that
represent the phenomenon of interest?

• What are the model’s assumptions (explicit
and implicit)?
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• Given the assumptions, what is the valid
extensibility of the model? In experimentation,
we are extrapolating off of existing knowledge.
We need to ensure that the model does not
misrepresent the concepts of interest.

Usually, an initial conceptual model supporting
an experiment consists of a collection of logical and
graphical representations of baseline systems and
processes, and the changes to the systems and
processes that form the “treatment(s) in the
experiment. There are two models of interest in
model-based experimentation. The first model is
a description of the baseline systems and processes
against which the changes will be evaluated. The
second is the experimentation conceptual model.
It is this model that identifies the components of
the MCP that are to be represented and evaluated
during the experiment.

For transformation-related modeling, it is important
to explicitly consider variables in the physical,
information, and cognitive domains (Figure 12-3).
Alberts et al3 discuss in detail these domains and
their inter-relationships. How these domains and the
activities within them are represented in the models
or simulations should be determined as part of the
pre-experiment process. The NCW Value Chain
(Figure 2-1) describes the role of information in
achieving desired effects in an operational context.

During the pre-experiment phase, it is important to
identify existing models of the baseline system.
Some of them may even be formally validated
simulations of the system. These sources should
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Figure 12-3. Sensemaking Conceptual Framework
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be vetted for relevant concepts to be included in
conceptual models, as well as potential application
in the experiment.

Executable Models
(Simulations)

A simulation is simply an executable model. The
selection or development of the simulation(s)
intended to support a transformation-related
experiment is one of the most important activities
in the pre-experiment phase. The artificial world
being simulated consists of only those components
(or abstracts thereof) of the real world and those
interactions among those components that are
represented in data or in algorithms. There is by
definition a loss of information when one reduces
the real world to a model. A good model will include
both the essent ial  elements and adequate
representations of the real world and real world
behavior or effects. At an overview level, when
thinking about applying constructive simulation tools
to experimentation, interactions in the physical
and information domains have high potential for
achieving insight into cause and effect relationships.
Normally, the mapping between the components of
interest in the MCP and the simulation components
(algorithm and data) is possible. Cognitive domain-
related issues can be explored in simulations.
However, the exploration of cognitive cause and
effect relationships (to generate experimentation
data) is often not suited to constructive computer
simulation because of the “soft” and complex
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characteristics of human cognitive processes, like
sensemaking.

For transformation-related experimentation, there
are some important features to look for in a
simulation tool. First, information needs to be
treated as a commodity in the simulation. It is
important that it be a commodity that can move
among simulation entities in either a push or a pull
fashion. That is, the command and control
algorithms in the simulation cannot assume that
perfect information exists in the abstract, and then
“reduce performance” based on a simple multiplier.
For many transformation-related experiments, this
practice reduces to the propagation of an assertion
through the simulation. This practice could lead to
a misleading conclusion. Network Centric Warfare
seeks to reduce and manage uncertainty for
commanders and staffs. It does not assert that
uncertainty can be el iminated. 4 Therefore,
simulations need to address explicitly essential
uncertainties. Most important among these are (a)
uncertain enemy behaviors (and goals), (b) errors
in key sensor systems (false positive and negative),
(c) potential errors in the sensemaking process,
and (d) potential information infrastructure losses
and fai lures. Third, command and control
representations (and representations of information
flows) cannot be assumed to be hierarchical, or
centrally located. NCW principles seek to recognize
and support evaluation of the necessarily distributed
decisionmaking that wi l l  exist in the future
operational environment. Finally, the resolution of
the simulation should be consistent with the
resolution of the components of the MCP that are



331Chapter 12

the independent variables in the experiment. In the
extreme, if one is considering experimenting
with the structure of a Standing Joint Force
Headquarters, a constructive simulation that
explicitly models sensor-to-shooter kill chains is
probably inappropriate.

Given the above principles, many exist ing,
“validated” simulations can not effectively support
transformation experimentation. Some rules of
thumb for selecting or developing useful simulation
tools are:

• Do not limit the search to formally validated
models. These models may in fact not be valid
for transformation concepts;

• Seek to use stochastic models as a default. The
“second moment” or variability of outcomes is
usually where the catastrophic failures and
exceptional opportunities are found.
Deterministic models assume those conditions
away; and

• Ground the simulation in sound conceptual
models of the baseline and modified MCP or
MCP component and its behaviors.

Conduct of the Experiment

Let us assume we have selected or developed a
simulation to support a modeling experiment, and
that we are now ready to use the executable model
or simulation to generate the data we need to
“collect.” We must now carefully consider the design
of the experiment (what data is to be collected
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under what “circumstances.” This design must be
consistent with the stated hypotheses or discovery
objectives. The best information for achieving this
consistency is found in the mission capability
package and the supporting conceptual models.
Complex MCPs in which multiple hypotheses are
being tested need to be treated differently from
small, focused discovery experiments.

All experiments should be supported by a
systematic exploration of the space of interest.  This
is sometimes referred to as the design matrix. The
details of these designs should be grounded
somewhere in the rich academic literature that
describes specific techniques.5 6 For the purposes of
this discussion, there are two top-level design
concepts with which we should be familiar. The first
are designs that capture first order effects. These
designs are the simplest and are intended to capture
major, direct changes that are attributable to the
independent variables. Normally, these types of
designs are applicable to limited objective and
discovery experiments. An example would be a
“Plackert-Berman Design,” which was applied in
support of Army equipment modernization simulation
experiments in the 1990s.7 This type of design
requires fewer runs of the supporting simulation, and
the output can be efficiently used in traditional
statistical inference approaches. The disadvantages
are that the insights are limited to these first order
effects. Most MCPs and most operational
phenomenology are highly interdependent and
nonlinear. There are many experimentation
techniques that support the exploration of these
complex situations. These should be selected for
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their fit with the situation the researcher encounters.
Factors such as the number of control lable
independent variables, suspected complexity of the
dependencies, and computational capacity should
be considered.

A technique that is rapidly emerging as an effective
approach for addressing complex decisions and
outcome spaces is exploratory modeling.8 9 These
techniques support the conduct of experiments that
search large combinations of independent and
intervening variables and then present the output
data in a manner that assists human insight. In fact,
this is a technique that might be employed to effectively
simulate stochastic modeling using deterministic
simulations and large numbers of different input
variables.

Post-Experiment Phase

One of the advantages of model-based experiments
is that they are potentially more flexible than
experiments involving human subjects (particularly
large military organizations). So, activities normally
associated with the post-experiment phase of an
experiment can and should stimulate rapid iteration
and evolution of the model, the experiment’s design,
and expectations. It is this phase of the experiment
that should, in most circumstances, be led by skilled
analysts. Skilled, energetic inquiry into model
behavior and experiment data provided to the
remaining members of the experimentation team will
contribute to higher-quality results. These results
could confirm or refute a priori hypotheses, generate
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new hypotheses, or cause refinement of the model
to support more refined exploration of the hypotheses
of interest.

Analysis

In practice, the analysis is iterative with multiple entry
points. Figure 12-4 describes this cyclic process in
terms of the types of reasoning that should be applied
to systematically explore the experiment’s results,
and its implications with respect to the hypotheses
of interest.

Figure 12-4. Analysis of Model-Based Experiment Results

We will begin discussion with deduction. This is
actually accomplished during the pre-experiment and
experiment phases when we fully specify the model.
Models, including simulations, are deductive tools
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because all possible behaviors are specified by the
input data, including the algorithms. Historically,
modeling and simulation were largely limited to
supporting deductive approaches to analytical
thinking. Emerging computational power, simulation
techniques, and inductive tools and techniques
provide a previously unachievable foundation for
analysis. It is the combination of these capabilities
that enables this more robust approach to be applied.

The generation of model output centers on the
conduct of the experiment, or the execution of the
experiment design. The objective of this stage, as
described earlier, is the production of data about the
dependent variables.

Model-based experiments, using the techniques
described above, will generate significant amounts
of data. This data is explored using inductive
techniques that generate a fully specified model from
the inputs. Examples of such approaches are
Bayesian Networks, Neural Networks, and Data
Mining. These techniques effectively generate a
“meta-model” that describes the relationship between
the dependent and independent variables implied by
the model.

There are a number of possible conclusions that can
be drawn from the “meta-model.” It could conclusively
confirm the hypothesis, in which case the results
could then be used to support more robust
experimentation. However, the hypothesis could also
be seemingly disproved. The experimentation team
in this case could traverse one of two paths. First, it
could conclude that the model did not adequately
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represent the real world and modify the model using
the insights that were developed as a result of the
experiment. Another possibility is that the insights
resulted in the formulation of a new set of hypotheses.
That is, a form of abduction occurs and the model is
modif ied to support exploration of the new
hypotheses. In both of the cases that result in model
modification, the process proceeds back to the pre-
experiment phase and structured exploration
continues.

Counterintuitive Model Results

Sometimes when analyzing the results of a model,
counterintuit ive results are encountered. In
transformation-focused modeling experiments, it is
likely that this will occur relatively more frequently
than in traditional analyses using models.  Moreover,
model-based experimentation best demonstrates its
value during the exploration and resolution of
counterintuitive results. Achieving those insights
requires the ski l l ful part icipation of the
multidisciplinary team.

When a ful ly-specif ied model generates
counterintuitive results, there are three possible
causes. First, the model is wrong. It is incorrectly
representing some important element of the real
world, and that error is skewing the model’s results.
These errors should be corrected, and the
experiment redone. The second possibility is that
the model is correct, as far as it goes, but it is
insufficient in its representation of the real world.
That is, there is some essential element of the real
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world system that is missing from the model. This
deficiency has situational-dependent responses. If
it is possible, the model should be extended to
include the omitted features and the experiment
should be redone. If it is not possible to address
the deficiency within the context of the existing
model, then the team should either develop a
separate model-based experiment that focuses on
the deficient area, or the experiment’s report should
contain caveats that describe the deficiency and its
implications. This documentation can serve to
prevent inappropriate conclusions and to help focus
future experimentation on the exploration of the
issue. The final possibility for a counterintuitive
result is that the model is providing an unexpected
insight. These potential insights are the most
valuable contr ibut ions of model-based
experimentation.  It is these insights that provide
new directions for transformation concept
development and planning.

Issues in Model-Based
Experimentation

Model Validity

DoD Instruction 5000.61 lays out policies and
procedures for validating models and simulations.
In the case of transformation experimentation,
following the letter of this policy can, in fact, be
counterproductive. Under the policy, components
have the final authority for validating representation
of their forces and capabilities.10 This means that only
face validity (credibility to expert audiences) is sound
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and that it is valued over construct validity (correct
identification of the factors at work and their
relationships) and empirical validity (the ability of a
model to make correct predictions). By definition,
exploring transformation involves changing the way
forces, headquarters, and support functions are
organized and interact. Representations of these
experimental concepts in models, although
substantively appropriate, may not be consistent with
the traditional component view of modeling.
Moreover, the administrative timelines and expenses
associated with meeting the VV&A requirements are
inconsistent with the concept of rapid iteration
through discovery types of experiments.

Thinking about validity effectively in the context of
transformation experimentation mandates a return to
first principles in modeling. One way of organizing
validity-related thinking is to recognize three kinds of
model validity: technical, operational (tactical), and
dynamic.11

Technical validity has four primary components:

• Model validity - refers to the model’s
correspondence to the real world (fidelity, or in
the language above, this includes some aspects
of construct validity);

• Data validity - refers to the validity of both raw
and structured data. Raw data validity refers to
the capacity to capture the phenomenon being
modeled correctly or the accuracy, impartiality,
and the ability to generalize. Structured data
validity deals with abstract data, such as
aggregated units;
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• Logical validity - refers to the way in which model
behaviors and results are considered. For
example, consider two replications of a
stochastic simulation. In one replication, an
aircraft carrier is sunk, and in the other it
supports the mission at full capacity. But,
analysis of half an aircraft carrier is not
reasonable. This also refers to the absence of
relevant variables. For example, a model of a
network-centric concept that assumes perfect
communications and perfect sensor performance
(again, in the language above, this includes
some aspects of construct validity); and

• Predictive validity - do the model’s results make
reasonable predictions of outcome conditions?
This is very difficult to confirm for models and
simulations of future concepts and technologies.
However, the issue should be raised. If a model
is generating counter-intuitive predictions or its
results appear inconsistent, the modeler will
want to investigate the causal mechanisms with
the model.

No model meets all of the criteria for technical validity.
Therefore, the next step in validation is to assess
the importance of the divergence, or evaluate the
operational validity of the model. This process should
have support and input from all segments of the
multidisciplinary team supporting the experiment. In
operational validation, the team should explore the
outputs of the model and trace the relationships in
the model from that output back to the changes in
inputs that caused the change. Additionally,
operationally-oriented team members should be
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assessing operational reasonableness (face validity)
of the force behaviors implied by the modeling.

Dynamic validation explores the limiting conditions
under which the model is valid. There are two
facets that should be considered. The first is with
respect to the insight it provides into the behavior
of a force or concept. That is, experiments should
not draw conclusions lightly about the performance
of some platform or small unit doctrine changes
from a simulation whose entity resolution is at the
level of flight groups and battalions. Second,
experimentation teams need to explore and
understand the limiting conditions of the decisions
that the model should reasonably support.

As a matter of practice, the key validation attributes
and conditions should be identified as part of the
early pre-experiment planning. The team should
identify necessary and sufficient conditions that the
model must meet to be considered valid for achieving
the experiment’s objective. The conditions should be
presented to leaders as potential sources of risk to
the experiment and be revisited periodically as the
experiment planning progresses.

Uncertainty

The best practices described above present some
techniques to address issues of uncertainty. Explicit
consideration of uncertainty is absolutely essential
in experimentation, especially transformation-
focused experimentation. The systematic exploration
of issues of uncertainty is a necessary component
of transformation risk management. Model-based
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experiments are a potentially high payoff approach
to exploring uncertainty because of their efficiency
and flexibility. Unfortunately, it is also often among
the first things to “go overboard” as the experiment
planning process reacts to schedule pressures.

Peer Review

The purpose of transformation-related
experimentation is to generate new knowledge.
Academia has a long-standing tradit ion of
systematic peer review as professional researchers
assert they have “created” new knowledge. Model-
based experimentation especially requires this type
of peer review because these assertions will be
made, either for decisionmaking or for further
exploration, without the benefit of real world contact.

Unfortunately, many model-based experiments (and
studies) have been completed without the benefit of
constructive peer review. This often results in two
unfavorable conditions. First, there are logical
mistakes in the model (it is invalid) that undermine
the model’s results. Second, the supported
community does not trust the model, which could
undermine the experiment’s results, even if they are
technically credible.

Leaders of model-based experimentation teams
should explicitly plan for external peer review
throughout the experiment. Ideally, this process
should remain informal and flexible. This will keep
model-based experiments resource efficient.
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Conclusion

Model-based experimentation is a necessary
component of an experimentation campaign,
particularly in the context of transformation
experimentation. If carefully integrated into the
experimentation campaign and effectively executed,
it will make significant contributions in both the
efficiency and effectiveness of the DoD’s
transformation programs.
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CHAPTER 13

Adventures in
Experimentation:

Common
Problems and

Potential
Disasters

Purpose

Transformation has become a major thrust for DoD
leadership. As a result, more and more

organizations have undertaken campaigns of
experimentation to discover, explore, refine, and
demonstrate innovative concepts and applications
of technology. While these efforts are clearly well-
intended, and many have produced valuable insights
and knowledge, not all of these efforts have been
fully thought through. As a consequence, many
experiments have been less productive than they
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could have been. Similarly, because of a failure to
even think about, much less manage, linkages among
individual experiments, many past campaigns of
experimentation have contributed far less to the body
of knowledge than they might have.

This chapter identifies and illustrates the types of
problems experienced within the past several years.
Looked at with perfect hindsight, some of these
errors appear to defy common sense and logic.
However, every type of mistake described here has
happened to at least two different experimentation
teams working within the DoD. Because the purpose
of this Code of Best Practice, and this chapter, is to
inform and teach, no individuals, teams,
organizations, or agencies are identified by name
and some effort has been made to mask the identity
of the specific experiments from which these lessons
have been drawn.

Many of the issues raised here have also been
reviewed in earlier sections of the Code where the
actions necessary to avoid these mistakes were
discussed as being a part of best practice. This
section of the Code approaches these issues from
the opposite perspective, treating them as errors and
discussing the problems that result. We hope that
this may help experimentation teams and their
sponsors see the importance of thoughtful planning,
careful implementation, and specific attention to the
issues raised here.

Problems experienced in the pre-experiment phase
often prove the most serious because they are
difficult and expensive to fix later on and may, indeed,
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prove impossible to overcome. Unfortunately, they
have also proven to be quite common, particularly
as DoD organizations, with limited experience and
much to learn, have begun to experiment.

Flawed Experimentation
Environment

One of the most common problems is the effort to
“piggyback” transformational experiments onto
training exercises. As noted earlier, training exercises
always take place in the context of immediate needs
and current doctrine, organization, and training.
Moreover, the bulk of the funding in these exercises
comes from the training budget. For both of these
reasons, experimentation objectives have been
subordinated to training objectives. Consequently,
genuinely transformational MCPs can almost never
be introduced into these venues. At best, specific
limited innovations (hardware, software, etc.) are
introduced piecemeal. This is no more productive
than introducing military forces into a battle
piecemeal. Their full potential is simply not going to
be realized.

Another common problem is introducing multiple
experiments into a single venue, such that they
actually interfere with one another. Because modern
military operations are complex and interrelated,
conducting several experiments in the same venue
(for example an ACTD or a JWID) opens the
possibility that two or more of the experiments
actually confound one another. In some cases, this
has occurred because one experiment’s independent
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variable was the dependent variable in another.
However, the first variable was being consciously
manipulated, which rendered the second experiment
moot. More commonly, intervening variables
important to one experiment (and therefore
controlled) are being treated as factors in another
experiment, again undercutting the second
experiment. Multi-experiment venues need careful
and detailed experimentation plans as well as
continuous opportunities for interaction between the
various participants.

On a similar note, partial implementation of
developmental technology can have a sudden,
disruptive effect on experimentation when not all of
the essential supporting functions have been
included. Of particular concern in some past
experiments has been the lack of adequate logistics
and infrastructure support for newly developed
systems. By their very nature, advanced technology
experiments involve the application of systems that
have not gone through a full development cycle.
Hence, the ability or inability to support such systems
in an experiment can be problematic and disruptive
to experimentation events. In other cases, the
presence of technical support personnel, sometimes
in very large numbers, can introduce artificialities.
One of the best strategies for anticipating and
minimizing such disruptions is the inclusion of
rehearsal events in the experiment schedule.

Advocacy experiments designed to showcase or
build an unambiguous body of evidence to support
a particular initiative fly in the face of good
experimentation practice and waste precious
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resources needed for genuine experimentation. This
occurs when an organization seeks to prove the
value of their concept or system enabler, rather than
genuinely researching alternatives. It is often
characterized by unrealistic assumptions, scripting
red so that the blue approach will be optimized,
collecting narrow data on easily controlled topics
or other artificialities designed to ensure that the
results are consistent with organizational goals
rather than knowledge gain.

The failure to allow intelligent red in dynamic
experiments is a similar error. Many of the most
effective U.S. and coalition courses of action involve
targeting red’s decisionmaking and C4ISR systems
– delaying decisions, overloading the systems, or
manipulating those systems. However, if the red
moves are pre-scripted or significantly constrained,
then there is no impact on red C2, regardless of how
well the blue approach functions. Moreover, the
absence of an intelligent red force means that the
U.S. force and C2 systems are not being challenged
to be agile.

Reliance on a single scenario rather than capability-
based analysis is another problem sometimes
encountered. Choosing a single scenario means
optimizing blue’s approach during the experiment.
This fails to acknowledge the fact that the U.S. and
its coalition partners are facing an increasingly
diverse set of threats and should be relying on
capability-based analysis to ensure our future
systems are robust and adaptable to the range of
possible threats. Moreover, when scenarios are an
essential part of an experiment, then a set of
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scenarios that represents the range of interesting and
important challenges is the correct approach. The
selection of only a single problem or class of
problems is incorrect.

Failure to select appropriate subjects can limit the
value of an experiment. Most DoD experiments
assume that the subjects are competent at their
military specialties. However, experiments have
been held in which the subjects were partly drawn
from groups who lacked the experience and training
required to perform the key tasks effectively. When
this occurs, performance is more closely associated
with subject capability than with the innovations
being assessed. The result is an experiment that
does not contribute to increased knowledge or
understanding.

An earlier discussion stressed the problems
associated with failure to train subjects adequately.
When this happens, performance improves over
time as the subjects improve their skills with
experience, and thus the data tend to understate
the value of the intervention. In essence, part of
the experiment is spent training the subjects.
Because most experiments train on a schedule and
do not give the subjects proficiency tests to see how
well they have mastered the interventions being
studied, the experimentation team can only make
informed guesses about the potential value of the
intervention. If proficiency tests are introduced, data
analysis can be done that controls for differences
in the initial skills of the subjects. If pre- and post-
experiment proficiency tests are used, even richer
analyses are possible.
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Lack of Adequate Resources

For a variety of reasons, several DoD organizations
that “recognized” the importance of performing
experiments have not given them adequate resources
or priority, or devoted adequate time to the pre-
experiment phase. This is a serious problem and has
greatly impacted the value of a number of important
efforts. This low priority for resources, planning, and
time can result in late creation of the experimentation
team, insufficient organization during the pre-
experiment phase, failure to identify and organize
adequate expertise, failure to have a pool of
appropriate subjects, failure to provide adequate
training materials or training time for experiment
participants, failure to provide an appropriate variety
of rich scenarios or drivers for experimentation, and
failure to provide enough resources for quality
analysis. All other things being equal, most
organizations would benefit from only a few well-
crafted and properly supported experiments than with
more that are inadequately resourced.

All too often, the experimentation teams are too
narrow, lacking the skills and experience necessary
for success. First, they often leave out the range of
relevant disciplines necessary to understand the
substantive problems under study, including
experience and expertise in research design as well
as the “soft” disciplines of psychology, anthropology,
sociology, organization theory, and political science.
Second, teams often fail to include the interagency,
coalition, and international communities that create
the setting for most military operations today.
Excluding either expertise or substantive context
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under the assertion that these complicating factors
will be addressed later, after mastering the core
engineering and military problems under study, is a
weak argument. Transformation needs to occur in
realistic contexts, not artificially constrained ones.
Moreover, human behavior is one of the very real
obstacles to success, so it needs to be embraced
as a crucial element of the problem.

Flawed Formulation

As the DoD has worked to learn how to experiment,
some teams have generated sets of hypotheses that
will not contribute to knowledge maturation. These
are often long, clumsy structures that essentially
argue “IF we do lots of things correctly, THEN we
will perform successfully.” These formalisms are
inadequate to guide research, even discovery
experiments. They need to be replaced by the simple
IF, THEN, CONDITION form introduced earlier in this
Code. Formulations also need to be supported by a
set of null hypotheses that will guide analysis and
permit genuine gains in knowledge.

Another form of weak experiment formulation is the
creation of models so simple that obviously relevant
variables are simply ignored. When the underlying
model is “under-specified,” the results will be artificial
and wil l  lack the robustness needed for
transformation. The simplest and most common form
of this error occurs when the differences between
human subjects or teams of subjects are ignored.
Experimentation designs that assume all subjects
and teams are identical often fail to generate useful
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products because their results actually depend on
the humans involved. Similarly, failures to instrument
in order to record changes in work processes or
informal group structures have led to missed
opportunit ies to gain important knowledge.
Simulation experiments in which perfect information
is assumed also fall into this class of error.

Some recent experiments have not manipulated the
independent variable adequately, thus failing to
provide the basis for establishing causality. Without
variabi l i ty in the independent variable, i t  is
impossible to show correlation or causality. One of
the major reasons for developing a model of the
phenomenon under study before each experiment
is to ensure that the “ interesting” region is
understood for the variables of interest. If the range
of values the independent variables will take is left
to chance, or worse yet, if it is designed as a very
narrow range, then the likelihood that major effects
are observed in the dependent variables of interest
declines rapidly. This can reduce the quality and
importance of experimentation results dramatically.

Failure to control for human subjects can also create
problems in experiments. One recent experiment that
used small groups as surrogates for command
centers had the unfortunate experience of having
group leaders with radically different interpersonal
styles. As a result, the differences in performance
were clearly associated with those differences and
could not be linked to the innovations under study.
Another experiment had serious problems because
there was a clear difference in the expertise and
knowledge of its teams. Fortunately, this experiment
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was using a “Latin Squares” design in which each
team had equal exposure to each treatment or
intervention, so the very obvious difference between
teams did not adversely impact the results.

Failure to control for organizational change can also
be a problem. Most DoD experiments assume
consistent work processes and organizational
structures. However, human subjects are remarkably
adaptive. More than once they have decided to alter
their functional organization in the middle of an
exercise. Sometimes they do so in the middle of a
single trial. Unless the experimentation team is
prepared to capture those changes and to include
them as intervening variables in its analyses, the
experiment may well miss important findings.

Experiments often lack a baseline or comparative
structure. The lack of a baseline or comparison
between two meaningfully different alternatives
violates a fundamental principle of experimentation.
This error has often occurred in transformation
experiments involving the introduction of advanced
information system technology into command and
control operations. The absence of a meaningful
baseline (in this case, the absence of this technology)
or comparison between alternative approaches
makes it impossible to measure the value-added
associated with the new technology. As a result,
sponsors and stakeholders are left with only
anecdotal evidence that the new technology
represents a worthwhile return on investment.

Perhaps among the most frustrating problems
encountered are experiments that consciously
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implement only part of a mission capability package.
The rationale given is almost always the same – an
opportunity existed to try something new, but not
enough time or money was available to include the
other elements believed necessary to create a real
capability. The consequences of these decisions are
easy to foresee. At best, the impact of the isolated
element will be badly understated. At worst, this
isolated element will perform worse than the current
or baseline system or approach. Both the greater
familiarity with existing tools and approaches and
the fact that new tools and technologies imply
different work processes, organizational structures,
and training mean that thrusting a partial change
into an existing system is a very weak approach to
transformational experimentation.

Failure to develop an explicit model of the problem
and processes under study also makes it very
difficult to run a successful experiment or campaign
of experimentation. The approach that, “we’ll try it
and see what happens,” almost invariably means
that the experimentation team wil l  have an
incomplete or erroneous data collection plan. As a
result, they will have a very difficult time generating
meaningful empirical findings. Even discovery
experiments should be supported by a simple model
of what the team believes is important and the
dynamics they expect to observe. For example, the
humans in C2 systems are often very creative in
adapting their work processes and even structures
as they gain experience with a set of tools or
problems. Failure to be ready to capture and
document those changes, which are often crucial
intervening variables, may mean those changes are
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missed. At a minimum, it will mean that the same
topics will have to be reexamined in another
experiment.

Flawed Project Plan

All too often, DoD experimentation is started from a
narrow base, or even as though no one else has
thought about the subject under analysis. This is
enormously wasteful of both time and energy. All
experimentation efforts should organize a team to
identify the leading researchers and practitioners in
any field where research is contemplated. (This is a
practice that DARPA, among other research and
academic institutions, regularly employs.) This, and
a rich review of existing work, are important ways to
identify crucial issues, work only on innovations that
can matter, and save resources by building on
existing knowledge.

As noted earlier, experiment design is a difficult,
complex, and dynamic field. While the basic
principles are clear, the specific techniques
available, and the types of analyses and modeling
appropriate to assess experiments are not easy to
master. Failure to expose the detailed research
design to peer review has often resulted in less than
optimum use of resources and knowledge gain from
DoD experiments. This does not imply that research
designs should be circulated widely l ike
experimental findings. It does mean that seeking
constructive criticism from a few trusted peers
outside the experimentation team will often pay off
handsomely.
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Failure to develop explicit data collection plans and
data analysis plans leads to serious difficulties.
Remarkable as it sounds, one of the most visible
experiments conducted in the last decade had no
formal data analysis plan. The assumption was that
“everything” should be captured and the analysts
could then figure out what to analyze later. Not
surprisingly, serious problems occurred because they
had to try to create information relevant to a number
of issues that emerged as crucial but had not been
foreseen, and the process of analysis took an
extremely long time. Another program, in a different
agency, proceeded on the assumption that they
would recognize what was important and therefore
created no data collection plan. They have had great
difficulty generating credible results and getting
resources to continue their efforts.

Failure to hold a rehearsal is one of the most serious
errors an experimentation team can make. Despite
a wealth of experience demonstrat ing that
rehearsals and pretests surface problems, thus
helping to avoid practical problems that are difficult
to foresee when planning in the abstract, some
experimentation teams have found that they lack
the time or resources for a proper rehearsal. When
that occurs, the first several trials of the experiment
essentially become the rehearsal. This can mean
that important objectives are not achieved, and
almost always means that the data from those first
several trials will have to be thrown out.

Due in no small measure to the press of events and
a legitimate desire to use data from an experiment
to support decisions (particularly resource allocation
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decisions) experimentation results have been
rushed. So-called “quick look” reports and “initial
assessments” are scheduled days, or even hours,
after the end of the experimental trials. This is an
appropriate approach when conducting training
exercises, but far from useful in experimentation
where detailed data analysis is often needed to find
what was learned. It is important to note that the
empir ical data sometimes contradict the
impressions of human observers and controllers.
When these early evaluat ion sessions are
scheduled, the most readily available data drive the
senior leadership’s understanding of what was
learned. Hence, data generated automatically and
survey data from subjects and observers, which can
be gathered and processed quickly, predominate.
Serious analyses, often involving comparisons of
data and information collected in different locations
at different times as well as the careful review of
the data and searches for anomalies and alternative
explanations, typically require weeks and can take
months for complex experiments. Moreover, these
serious analyses often contradict or condition the
data readily available and the opinions of the
participants in the experiment. However, the “rush
to judgement” has often already occurred, rendering
these r icher f indings and their  stronger
interpretation moot.

Failure to control visitor access would seem to be an
obvious problem, but remains a factor in too many
DoD experiments . Mil i tary organizations are
hierarchies and prominent efforts at transformation
activities are often visited by sponsors and senior
officials who are trying to understand what is going
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on and provide support. However, the presence of
senior officers or experts will alter the behavior of
subjects. Sometimes they become distracted,
sometimes they work extra hard and become hyper-
vigilant, and sometimes they become nervous.
Remarkably, some experimentation teams do not
plan for visitor control. One recent experiment was
conducted in spaces that had to be transited by those
working on an adjacent project. Others have been
interrupted by senior officers who wanted to talk with
some of the subjects while the experiment was in
progress. Still others have invited senior visitors to
take a seat and participate in the experiment itself.
All these experiments were impacted and, therefore,
less useful than they might have been.

Last minute set-up and equipment problems tend to
occur as a consequence of not planning ahead.
Almost all experimentation involves federations of
systems. Even when the IT being used is from a
single system, new linkages must be established
between the simulation driver and that system,
between the system and the automated data
collection efforts, and to support experimentation
administration. Failure to allow appropriate lead time
for bringing these systems online or resources to
maintain them and respond rapidly when problems
are encountered can disrupt the schedule for
experimentation and may corrupt some of the data
being collected.

Failure to debrief all participants is a puzzling error.
Those involved in an experiment all see the events
from different perspectives. All of them should be
debriefed so that their insights are available to
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support understanding of the findings and also
because many of the less central participants will
know about glitches and anomalies that may not be
immediately visible to the senior members of the
experimentation team.

Measurement/Analysis
Problems

Failure to instrument properly so that the needed
data can be collected is all too common. This usually
is a consequence of waiting too late to develop the
data collection plan and therefore being unable to
instrument the computer systems being used or to
arrange for proper recording of crucial aspects of
the experiment. Failure to instrument properly
almost always means failure to capture data
properly and reliance on indirect indicators or
human observers, reducing the validity of what is
learned. This also stems from failure to use a model.

Reliance on “happiness tests” for assessment of
objective issues is all too common. Military utility is
important and the comments and insights of
experienced personnel, subjects, observers, and
controllers are all valuable to the experimentation
team. However, there is a rich literature that
demonstrates that people of all types, despite their
best efforts, tend to see what they expect to see.
Moreover, several DoD experiments have shown
that the opinions of experimentation participants
about their performance using specific innovations
and their performance measured objectively are
very different. Experimentation teams that seek to
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avoid the hard work of identifying objective
measures by relying on simple surveys are very
likely to generate flawed results.

Too often, experimental data collection focuses only
on what can be easily recorded and measured,
rather than on metrics for critical indicators of
performance and effectiveness. This type of error
is most often observed in experiments involving the
introduction of advanced information technology
into command and control.  For example,
considerable effort will be focused on measuring
the flow of message traffic among command and
control nodes, or on electronically capturing the
status of specific situation displays during an
experiment. Yet, at the same time, little or no
attention will be given to the information content of
message traffic or situation displays, the relative
significance of this information in the context of the
operat ional scenario, or the impact of this
information on the sensemaking and decision
processes of a command group. As a result,
analysts are left with little empirical basis to judge
whether or not the increased distribution of
information actually had a positive effect on
command and control performance.

Inadequate access for observers has also been a
problem in some experiments. Those experiments
that depend on human observers always face a
tradeoff between keeping them from impacting the
data and allowing them access. However, a few
experiments have actual ly been run on the
contradictory assumptions that human observers
are needed to track the behavior of subjects, but
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should not have access to decisionmaking or other
key activities. In fact, while the presence of
observers will impact behavior somewhat, that
impact can be minimized by (a) having them present
al l  the t ime, including subject t raining and
rehearsals, so they “fade into the woodwork,” and
(b) being certain that the participants and observers
understand that they are recording what happens
in order to assess the innovation and its impact,
but not to evaluate the subjects.

Confusing measures of performance with measures
of effectiveness is not a “fatal” error, but it does
impact the interpretation of findings. Measures of
performance deal with whether systems work.
Measures of effectiveness deal with whether it
matters whether the systems work. To take a simple
example, precision munitions designed to hit targets
with very small aim points have “performed well” if
they hit those targets. If, however, the weapons carry
only a small warhead and therefore do not damage
the targets significantly, they have not been
effective. The value chain discussed in the section
on measures of merit should enable experimentation
teams to select the appropriate sets of metrics for
each experiment. When possible, these should not
be limited to measures of performance, but also
include appropriate measures of effectiveness
(force effectiveness, mission accomplishment,
policy effectiveness, etc.).

Failure to capture anomalous events and time
periods can also limit the value of experimentation
data. No experiment goes perfectly. Systems being
used by the participants break down, subjects
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become ill and must be replaced by others with less
experience on a team, errors are made by
controllers, and so forth.  As a consequence, some
periods of time of performance by subjects will be
impacted by factors outside the design. When this
occurs, the experimentation team must record the
anomaly and make sure that the data from the
impacted subjects, teams, or time periods are
analyzed to determine whether it is different on
variables that matter. If it is, it must be excluded
from the main analysis, though it may be examined
to see if any useful insights can be inferred from
how the anomalous data differ from the main case.

Failure to properly select and train observers and
controllers or to maintain quality control on their
activities during the experiment will result in poor or
irrelevant data. While subject training has been a
widely reported issue in DoD experiments, a number
of problems have also arisen with observers and
controllers. First, these people need substantive
knowledge – they need to understand what the are
observing as well as the setting in which they are
observing it. Hence, the use of academics or
graduate students will require training about the
experiment setting as well as the substance of the
work being performed. People with prior military
experience are preferred because they require less
introduction. Even so, their experience may well be
out of date or drawn from a different perspective than
that in use during the experiment, so some “refresher”
training is wise.  Observers and controllers should
also be given training that describes their roles and
the behaviors expected from them. Experimentation
is an effort to duplicate some aspects of reality, so
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those involved in conducting experiments need to
be as unobtrusive as possible.  Remarkably, some
controllers schooled in training exercises have been
found to try to teach the participants and improve
their performance, while other observers have “lent
a hand” when the subjects were busy.

Failure to perform inter-coder reliability tests, when
human observers and judges must code data,
results in data that lacks reliability and credibility.
Developing coding rules and maintaining them over
time and across several people responsible for
converting raw observations into data is very
difficult. Social scientists have developed processes
over decades of effort to help ensure the data
generated are both valid and reliable. Teams that
hurry and fail to spend the time and effort to test for
inter-coder reliability both after training and during
the data coding process itself are vulnerable to both
high error rates and “coder drift” as the rules change
with coder experience and the types of cases
encountered.

Post-Experiment Problems

Data from transformational experimentation are
valuable not only to the team that collects and
analyzes them, but also for the larger DoD
community. First, they are an essential part of the
peer review and broad discussion necessary for rich
knowledge. Second, they can be of great value for
research on related topics. However, all too often
experimentation data are not available beyond the
team that collects and analyzes them. This occurs
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at times because of classification, though that is
rare and should not prevent circulation to others
with legitimate need to know and appropriate
clearances. It also occurs in an effort to avoid
embarrassing the individuals or organizations
participating in the experiment. However, data can
be masked. All too often, holding experimentation
data closely for no obvious good reason calls the
credibility of the work into question. In every case,
failure to keep and circulate detailed results and
data slows the effort to acquire better knowledge.

Failure to retain experimentation materials is a
related, but less obvious, problem. Experiments,
even very simple ones, require a lot of work, much
of it in creating the setting and infrastructure
necessary for success. Scenarios and vignettes
designed to focus experimentation, sets of “injects”
intended to manipulate independent variables and
create experimentation data, data structures used
to drive simulations, linkages between disparate
systems to make them function coherently,
measurement tools, training materials, video and
audio tapes that have already been mined for the
data needed in a single experiment, and a host of
other experimentation artifacts are potentially
valuable to others developing experimentation plans
or seeking to replicate important aspects of the
experiment. All too often, these artifacts are
discarded, disassembled, or not documented, which
means they are lost at the end of the experiment.
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Issues in Campaigns

Organizations charged with transformational
experimentation, whether at the DoD level, within
CINCdoms, within Services, or in separate
agencies, are very busy and under great pressure
to move ahead rapidly. Unfortunately, this has
translated, in some cases, into unrealistic schedules
where events start occurring so rapidly that they can
neither be managed properly nor used to build
coherent knowledge. While the transformational
experimentation agenda is large, progress requires
well-conceived, well-executed and tightly linked
campaigns of experimentation. Even if they need
to be tightly scheduled, failure to provide the
resources to fully understand and exploit each
experiment and to create schedules that permit the
accumulation of knowledge over time are serious
errors.

Campaigns of experimentation are, by definition, sets
of linked experiments. However, beyond a common
name, some campaigns have not truly linked their
experiments together. That is, they have no real
knowledge gain purpose, variables are defined
differently, and the outputs from early experiments
are not used as inputs to the later experiments. These
efforts represent major missed opportunities for
improved knowledge.

Unless a model and explicit knowledge repository
are created, many of the benefits of experimentation
campaigns are lost. Good campaigns capture and
reuse knowledge, sets of scenarios, experimental
injectures, measurement schemes, analyses plans,
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data, and working models. Enormous waste and loss
of knowledge occur when these factors are ignored.

Rather than seeking to accumulate understanding
and knowledge, some experimentation campaigns
have sought to create “bake-offs” between competing
hypotheses, approaches, or technologies. This
attitude fails to appreciate the likelihood that different
approaches and technologies offered within the
professional community are more likely to be useful
under different circumstances or integrated into a
single, coherent approach than they are to be
“superior” or “inferior” to one another. Hence, both
exploratory and hypothesis testing experiments need
to be thought of as crucibles, within which useful
knowledge and innovations are tested and
transformational knowledge built, rather than as
processes of serial elimination.

Conclusions

Perhaps the strongest indication that DoD
experimentation remains immature is the inability to
recognize the value of permitting “failure.” Failure is
either (A) a failure to support the hypothesis or novel
ideas, or (B) a failure to run a good experiment.
Currently, many in DoD will not accept a failure of
Type A, but often accept a failure of Type B. This is
exactly wrong and a sign that these individuals and
organizations do not understand experimentation.
This attitude arises from the mindset necessary for
military success. However, in many cases, the most
successful experiments are those that show what
cannot work, the circumstances under which a new
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system or approach is inappropriate, or how some
innovation can be thwarted by simple counter-
measures. Learning is every bit as much about
understanding what is not true as it is about grasping
new insights and knowledge. A real life, positive
example of the value of being open to “failure” is
JFCOM’s concept of Rapid Decisive Operations.
After several years of concept development, a
number of workshops and seminars to flesh out the
concept, and a few experiments to learn how it might
be implemented, MG Cash, Director of
Experimentation at J-9, was able to tell a workshop
that “the word rapid may not be right.” His
organization was not so invested in the concept that
they could not learn from their efforts and change
the concept while still experimenting with it. This type
of knowledge gain is essential if DoD is to be
successful in transformational experimentation.

The thrust of this chapter is that there are a great
many problems and pitfalls for those seeking to
conduct transformational experiments. The good
news is that they can be avoided with foresight and
planning. This Code of Best Practice is offered as
both an introduction to experimentation for those
unfamiliar with that process or with that process in
the DoD context and also a source of guidelines
intended to ensure success.
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APPENDIX A

Measuring
Performance

and
Effectiveness in

the Cognitive
Domain

Introduction

M ilitary experimentation in the past has focused
predominantly around the assessment of

technology, using tradit ional measurement
approaches from the engineering sciences. Yet, the
emergence of concepts such as Network Centric
Warfare, Information Age warfare, and effects-
based operat ions have placed increasing
importance on how well this technology performs
within a more complex socio-cognitive setting.
Evidence from the past few years suggests that
these traditional measurement approaches have
yielded little more than anecdotal insight into how
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technology and human performance combine in
either productive or unproductive ways. Such data,
while interesting, does not provide DoD with the
quantitative foundation for assessing the return-on-
investment of various transformation initiatives. As
a result, experimenters have begun to search for
more appropriate (and quantitative) methods of data
collection that can be usefully applied to addressing
performance in the cognitive domain.

To this end, it is useful to address the state-of-practice
for quantifying performance in the social sciences.
Such methods have matured over the past several
decades to provide socio-cognitive research with the
same types of statistical analysis and modeling tools
used in the physical sciences.

Behavioral Observation and
Assessment Scales

Given the “hidden” nature of mental processes,
performance in the cognitive domain must be
inferred indirectly through behavioral observation
or structured interviews. As compared with
laboratory experimentation, conducting military
experimentation in a real-world setting presents a
more complex measurement chal lenge. In
laboratory experimentation, cognitive performance
is often reduced to a set of objective measures by
limiting the experimental task to a fairly elementary
level (e.g., memorize a string of random numbers).
In military experimentation, however, participants
engage in a variety of extremely complex cognitive
tasks for which there are no straightforward
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object ive performance measures. Hence,
measurement of cognitive performance in a real-
world setting must be built upon an operational
definition of the task process and task outcome.

Responding to this challenge, psychologists
concluded decades ago that structured methods
must be developed for reliably observing different
aspects of task behavior and output that were
relevant to real-world task performance. Such
methods should be capable of assessing both
acceptable and unacceptable performance in a way
that was amenable to statistical analysis and
model ing. Final ly,  i t  was recognized that
assessment of cognitive task performance is best
accomplished by having subject matter experts
judge the performance. Unfortunately, subject matter
experts are not always readily available to the
experimentation team. Additionally, different subject
matter experts might not agree on which aspects of
performance to focus on or what constitutes different
levels of performance. In response to this challenge,
a number of behavioral observation methods were
developed – initially for use in investigating human
error in aircraft accidents, later refined for use in
job performance evaluations, and finally broadened
to address a variety of dimensions of performance
involving humans, technology, and organizations.
These methods were designed to capture expert
judgments of task performance in the form of a
standardized set of quantitative measures.

Two such methods, Behavior Observation Scales
and Behavioral-Anchored Rating Scales, are
relevant to military experimentation. These methods
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can be used as direct observation tools during an
experiment, or applied via structured interviews after
an experiment to quantify important dimensions of
performance in the cognitive domain. Behavior
Observation Scales (BOS) are simply a checklist of
critical (and observable) behaviors that correlate
with acceptable task performance. They can be
employed during an experiment to provide a
quantitative estimate of how many times acceptable
task performance occurred in a particular setting.
However, a more useful tool is represented in the
Behavioral-Anchored Rating Scale (BARS). Here,
the experimenter can use a BARS to assess the
degree to which some task dimension is performed
–typically on a 3, 5, or 7-point scale that extends
from unacceptable performance, through minimally
acceptable performance, to outstanding
performance. At each point along the scale, the
levels of performance are “anchored” by detailed
descriptions of what type of behaviors might be seen
by an observer in a real-world task setting.
Compared to the BOS, a well-developed BARS
provides more utility for conducting an in-depth
analysis of cognitive performance observed during
an experiment.

To illustrate these methods further, the following
discussion outlines the manner in which a BARS
instrument is developed for use in an experiment.
Similar concepts apply to the simpler BOS
instrument. The procedure for developing BARS is
straightforward; however, it includes a number of
essential steps:
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• Identify a set of critical incidents that exemplify
a range of performance in the task area of
interest. In this step, the experimenter obtains
narrative descriptions of incidents that
characterize examples of unacceptable,
minimally satisfactory, good, and excellent task
performance. These narrative descriptions
should pertain to observable aspects of the
task performance (e.g., behaviors and output)
and should be specific enough to uniquely
characterize the level of performance. That is,
the descriptions should be sufficiently specific
to allow different observers to agree on the
level of performance witnessed.

• Cluster the critical events into meaningful
dimensions. In this step, the experimenter
defines one or more dimensions of task
performance that allow the critical incidents to
be commonly grouped. This step relies upon
judgment informed by a review of relevant
research literature.

• Develop a brief, but precise definition of each
task dimension. In this step, the experimenter is
constructing a framework for observation,
assessment, and data collection. As part of this
framework, these definitions help to orient the
focus of subject matter expert data collectors
during the experiment. It is useful for this step
to involve some level of review by subject
matter experts (e.g., experienced commanders
and staff officers) so that good agreement is
achieved on defining each relevant task
dimension.
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• Develop the behaviorally anchored rating scale
for each task dimension. In this step, the
experimenter typically defines a 3, 5, or 7 point
ordinal scale that represents a ranked rating
scale for the task dimension. At each point
along the scale, example behaviors drawn from
the set of critical incidents are used to construct
a brief narrative anchor for that level of
performance. By providing a narrative
description that uniquely identifies each level of
performance, the scale anchors serve to
calibrate the observation and judgment of the
subject matter expert data collectors. As with
the previous step, this step should involve
some level of review by subject matter experts.

• Train the experiment observers and data
collectors in the use of the anchored rating
scales. In this final step, the experimenter
conducts training and rehearsal to ensure the
consistency of observations and ratings among
different data collectors. As part of this step, it
is often necessary to “recalibrate” the data
collectors mid-way through an experiment. This
recalibration is needed because repeated
observations of task performance can
sometimes produce a downward bias in the
ratings as data collectors become more
sensitized and focused on task error.

Critical Event Framework

While BARS instruments are useful for assessing
certain types of observable task performance, their
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utility is limited for assessing outcome measures in
the cognitive domain. The difficulty arises because
internal cognitive functions such as perception,
pattern recognit ion, sensemaking, and
decisionmaking are not avai lable for direct
observation. At the same time, these internal
processes are occurring almost continuously
throughout many experiments. Thus, a strategy is
required for capturing the most significant aspects
of cognitive activity during an experiment. One
method for organizing the collection of cognitive
performance metrics involves the development of a
critical event framework. Based on theories drawn
from the scientific literature, this framework is an
artifact of the experiment and most likely does not
exist in the real world. Similar in purpose to BARS,
it serves to focus the attention of data collectors on
relevant events within the experiment. However, in
this case, the critical incidents are often obtained
through post-experiment interviews with the
participants rather than being observed in real-time
during the experiment.

To illustrate this method, consider an experiment in
which new technology and procedures are being
assessed for improving the collaboration within a
command center. Here, the need arises for a
measurement framework for assessing the level and
quality of collaboration observed during the
experiment. Construction of this framework focuses
on how certain critical decisions were formulated
and made during the course of the operation.
Accordingly, one way of defining each “decision
event” might be to break it into three basic steps:
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• Framing the decision (identifying what problem
or anomaly is being addressed by the decision,
what constraints and givens are applicable, and
which variables are considered relevant);

• Identifying alternative responses; and

• Evaluating the alternative response.

Next, the experimenter develops a rating scale for
describing the level of staff collaboration that
supported the commander in each of these steps.
Here, two BARS instruments might be developed to
provide an ordinal scale assessment – one pertaining
to the level of participation (e.g., none, one advisor,
many advisors) and another pertaining to the quality
of interaction (e.g., low—concurrence only,
moderate—solicited options, high—debated
options).

Finally, the experimenter defines how the BARS will
be used in the experiment. One option here might
be to conduct a post-experiment interview with the
commander and his principal staff advisors to
identify the top three to five decisions that shaped
the course of the operation. Then, for each decision
“event,” the experimenter would have the
participants assess the level of collaboration using
the BARS instrument.
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The Role of Statistical
Inference in Measuring and
Modeling Cognitive
Performance

As noted earlier in this chapter, the goal of military
experimentation and modeling is to develop an
understanding of how specific transformation
initiatives relate to improvements in performance and
effectiveness. Thus, the analytic purpose of metrics
and data collection is to support the process of
identifying relationships among specific input and
output variables. In the case of many processes in
the physical and information domains, these
relationships are largely deterministic in nature.
Assuming our measurements to be accurate, we
would expect to observe precisely the same
experimental relationship on one day as we would
on another. If the results vary, we look for additional
variables or factors that explain the difference and
then add these to our model. Scientists do not like
unexplained variability, and this approach has worked
well in many areas of research – up to a point!

Two problems arise, however, as experiments
address processes with greater complexity. First, we
might not be able to conceive of enough variable
factors to explain all of the variability in the process
we are observing. Second, we cannot be sure that
our existing metrics accurately reflect the
phenomenon that we intended to measure. Thus,
despite the best intentions of the research, we are
left with a certain percentage of the process variability
that we cannot yet explain. So how does one draw



376 Code of Best Practice for Experimentation

conclusions about what was found or not found in a
particular experiment? This is the basic challenge
facing those who desire to experimentally measure
and then model performance in the cognitive domain.

One approach taken by operations research
analysts in dealing with this problem has been to
traditionally assume away the relevance of cognitive
processes and variables. Hence, early combat
simulation models often ignored command and
control issues or accounted for them by means of
simplified mathematical constructs (e.g., Petri nets).
As the field of artificial intelligence matured, these
mathematical constructs were replaced by predicate
calculus (“if then”) rule sets in an attempt to model
the cognitive logic inherent in certain military
decision processes. The problem with this
approach, however, is that the size of these rule
sets grew tremendously (e.g., over 20,000 rules to
describe a battalion headquarters) but still did not
adequately “explain” output variability. In other
cases, analysts simply defined cognitive processes
as a stochastic “black box.” Random number
generators were used to select outcomes from a
range of possibi l i t ies so that the internal
mechanisms of these processes could be ignored.
At the end of the day, however, modelers can only
model what can be discovered empirically through
experimentation or real-world experience. This
brings the discussion back to the question of how
to approach the measurement and modeling of
cognitive performance.

Over the years, the goal of many social scientists
(those dealing with social quantification) has been
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similar to that of operations research analysts: the
measurement and modeling of complex phenomena.
The traditional tool for doing this has been statistical
inferential methods of analysis. The use of such
methods allows the researcher to do three things:

• Estimate the strength of relationship that exists
among a set of process variables/factors and
the performance/effectiveness outcomes of the
experiment. Applied to transformation
experiments, this estimate can provide insight
as to whether or not specific transformation
initiatives have produced a practical
improvement in some military task or function.
At the same time, statistical modelers can link
various estimates of this type together to form a
causal path model that predicts how these
improvements translate upwards to higher
levels of force effectiveness and policy
effectiveness;

• Describe the level of statistical confidence one
has in estimating these relationships from the
limited amount of data collected during an
experiment. This level of statistical confidence
can be used as an indicator of whether
additional experimental trials are needed to
assure decisionmakers that the estimated
improvement is real; and

• Characterize the degree to which variability in
the outcome measure(s) has been “explained”
by the different process variables and factors.
This characterization provides the experimenter
with insight regarding which variables or factors
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were the most influential in producing the
improvement – a particularly useful piece of
information when multiple transformation
changes are being investigated simultaneously.
Conversely, the amount of outcome variability
not explained by the experiment is a useful
indicator of the degree to which von
Clausewitz’s “fog and friction of warfare” are
still operating.

While a number of simple, nonparametric analysis
methods (e.g., Mann-Whitney U Test, Sign Test, and
Chi-Square Test) exist for analyzing data, most
currently accepted methods of statistical analysis are
all based upon an underlying mathematical equation
called the General Linear Model (GLM). The general
form of this model is
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 = the level of predicted performance
outcome,

x
i
 = the level of the ith predictor variable or factor,

β
i
 = the estimated linear weight of the ith predictor
variable, or  factor derived from the experimental
data, and

n = number of predictor variables or factors
considered.

The GLM provides the experimenter with a method
for predicting the level of system performance or
force effectiveness (y

outcome
) that results from
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combining specific levels or values of each of the n
predictor variables or factors. These predictor
variables/factors can represent either process inputs
(e.g., presence of a new information display) or
intermediate process variables (e.g., level of
collaboration achieved). Obviously, increasing the
types of measures collected during an experiment
increases the number of terms in this equation and
(potentially) improves the quality of prediction.

The model is called “linear” because this estimate is
produced by constructing a “best fit” n-dimensional
line through a scatter plot of the empirical data
collected for each of the variables or factors during
each experimental trial. The term “best fit” implies
that this n-dimensional line is adjusted until it
minimizes the squared sum of error between each
estimated outcome point and the outcome actually
observed in a given trial. The resulting n-dimensional
line is described by the various estimated β

i
coefficients that essentially represent the scaling
factors for each input variable or factor. The
estimated β

i
 coefficients are normalized so that they

can be compared in relative size to provide an
indication of which variables and factors impact
greatest on outcome.

A number of different manifestations of the GLM have
been traditionally used in scientific research.
Historically, a special case of the General Linear
Model – called Analysis of Variance (ANOVA) - has
enjoyed popular use in experimental research.
Typically, ANOVA is used as a statistical test to
determine if a single input factor – say, comparison
of a new information display against a baseline
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condit ion – produces a rel iable change in
performance outcome between two groups of trials.
As part of this method, the experimental differences
found over each group of trials are used to construct
an F-value that can be related to different levels of
statistical significance (expressed in terms of the
probability that the observed difference in outcome
could have been produced by chance). The desire
of the experimenter is to achieve an F-value that
reflects less than an β=0.05 probability of chance
occurrence (Note: in some instances researchers
demand a more stringent value of β=0.01). Variations
of the ANOVA test have been developed by
statisticians to account for pre-existing conditions
(Analysis of Covariance, ANCOVA), multiple input
factors (Multiple Analysis of Variance, MANOVA), and
a combination of multiple input factors and
preexisting condit ions (Mult iple Analysis of
Covariance, MANCOVA).

ANOVA-type methods have been traditionally used
by researchers to justify the academic publication
of their experiment findings. However, limitations
of these methods are an issue for mil i tary
experimentation. First, these methods apply only
when the input variables and factors are
represented as discrete cases, not continuous
variables. Second, these methods tel l  the
experimenter only if statistical significance was
achieved or not, and do not provide any sort of
indicator of the strength of the relationship found.
Thus, this method ignores the fact that an
experimental finding may be statistically significant
(and, hence, publishable in a scientific sense), but
not reflect a real practical finding.  Finally, as more
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factors and levels of each factor are considered in
an experiment, ANOVA methods can become quite
exhausting to employ.

Given the demand for a better analytic tool, interest
has grown during the past several decades in a more
generalized type of statistical analysis, Multivariate
Regression / Correlation Analysis (MRC). This more
general form of analysis offers several advantages
over the ANOVA methods used in academic
research. First, the MRC methodology can accept
continuous variables and factors as input, thus
permitting more detailed types of measurements in
field experiments. Past studies have shown that the
results of multivariate regression/correlation analysis
generally hold up even when the predictor variables
do not exactly meet the rigorous definition of an
interval scale or ratio scale variable. Second, the
experimenter can employ transformed variables to
reflect non-linear relationships (e.g., logarithmic
scaling) and “dummy coded” variables to reflect
discrete cases or options. This extends multivariate
regression/correlation analysis to address more
complex relationships among the experimentation
variables.

The GLM also provides experimenters with a visible
measure of modeling progress. As with the more
restricted ANOVA methods, the GLM allows one to
estimate the statistical significance of the model –
that is, compute the likelihood that the experiment
modeling results were produced by random chance.
In addition to yielding a prediction model of the form
y

outcome
= Σβ

i
x

i
, the GLM also provides a measure

called the total correlation coefficient, [0<R<1], that
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reflects the degree of variability of y
outcom 

that has
been accounted for in the prediction equation. In
practical terms, R2 provides a direct estimate of the
percentage of outcome variability “explained” by the
set of n predictor variables or factors considered in
the model. For example, an MRC prediction model
yielding a value of R=0.75 would imply that the
model has accounted for (0.75)2 = 56.25% of the
outcome variability observed in an experiment. This
might suggest that the researchers should either
search for additional explanatory measures and/or
conduct additional experiments to raise the level of
prediction. In this manner, experimentation can use
the R2 metric as a measure of campaign progress
or modeling success.

Sometimes the experimenter will collect measures
that are themselves correlated. For example, if one
measured both the quality of situation awareness and
situation understanding in a given experiment, they
would expect to find that these two measures are
correlated with one another. If they were to then use
both measures as predictors of decision quality, they
would find that their predictive contributions overlap
somewhat. To address this issue, analysts typically
employ the MRC modeling approach in a hierarchical
fashion – adding various sets of predictor variables
and factors to see which combination yields the best
prediction equation. At the same time, this procedure
allows the analyst to ignore other, redundant
variables or irrelevant variables that do not
significantly add to the prediction.

Other forms of the MRC model have been developed
by statisticians to provide the experimenter with
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addit ional tools for exploring and modeling
relationships. Among these are the following:

Canonical Correlation   This method allows the
experimenter to construct a model with multiple types
of outcome measures. Canonical correlation is
conceptually similar to MRC, except that it examines
the prediction of m outcome measures instead of a
single outcome measure. Hence, the procedure
involves the estimation of two sets of β coefficients,
one set for the predictor variables and factors and a
second set for the outcome measures. Canonical
correlation provides the experimenter with a more
powerful tool for predicting operational performance
and effectiveness in more complex types of
operations –e.g., effects-based operations.

Factor Analysis     This method al lows the
experimenter to explore sets of measures collected
during an experiment and to statistically reduce
them into a smaller set of composite measures.
Using other considerations and background
information, the experimenter can then develop
interpretations of each composite variable to
develop a deeper understanding of the basic
functions or constructs operating within an overall
socio-technical process. Such analyses assist this
stage of experimentat ion by helping the
experimenter to develop more abstract and simpler
explanations of how the various transformation
variables and factors are combining and interacting
to produce improved performance or effectiveness.

Causal Path Analysis   Causal path analysis is a
straightforward extension of MRC in which the
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experimenter is interested in constructing a more
complex, multi-level process model. As discussed in
the last section of this chapter, causal path analysis
provides a technique for combining data from a series
of experiments, with each experiment addressing a
different portion of the overall process

Specialized Analysis Models  Other specialized
models exist for specific types of statistical modeling
inquiries. For example, discriminant analysis,
logistics regression, and probit analysis reflect
different methods for classifying outputs. Techniques
such as multidimensional scaling offer a method for
identifying important underlying dimensions in an n-
dimensional data space. Methods such as Kaplan-
Meier survival analysis provide a method of
predicting time-to-onset of specific outcomes.

In short, there exists a wide range of statistical
inference methods for translating experimental data
into empirical prediction models. Commercially
packaged models such as SPSS (social sciences),
BMDP (biomedical sciences), Genstat (agriculture),
and Systat (psychology) offer a basic set of linear
modeling procedures that are based on community-
accepted criteria for achieving goodness-of-fit in the
modeling process. As such, these packages offer
military experimentation with a robust set of tools
quite adequate for investigating f irst-order
relationships. Through the use of transformation
functions, these same models can be used to identify
a wide range of nonlinear relationships underlying
experimental data structures.
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Their ease of use, however, is offset somewhat by
their limited ability to address more complex
modeling issues, such as non-normal distributions,
heteroscedasticity, statistical bootstrapping, and
cross-val idat ion. Accordingly, stat ist ic ians
interested in more sophisticated types of analysis
are more apt to use general purpose modeling tools
such as GLM for data exploration and statistical
modeling. At the end of the day, however, the
modeling of cognitive processes comes down to
what level of empirical evidence decisionmakers are
comfortable with in making program and policy
decisions. At one extreme, the academic practice
of publ ishing research with relat ively low
predictabi l i ty (e.g.,  R2 = 0.4) is clearly not
acceptable for mil i tary experimentation and
modeling. At the other extreme, expecting empirical
modeling to achieve nearly perfect predictability
(e.g., R2 = 0.9) is unrealistic given the complexity
of human behavior at the individual and
organizational levels. In the end, the decision rests
upon two interrelated sets of questions – one set
that addresses practical significance and the other
set that addresses statistical significance:

•  What is the estimated magnitude of the
performance/effectiveness increase, and is the
size of this increase of practical significance to
the military?

•  Do we sufficiently understand what influences
performance/effectiveness, and has the
experimental research accounted for a
sufficient number of variables and factors?
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Answering these questions requires a combination
of good science and good judgment. At some point,
the marginal return of conducting additional
experiments or modeling investigations is not worth
the added time and cost. In some cases, time and
attention are better spent addressing new questions
and challenges rather than refining our
understanding of old ones. But, ultimately, this is a
decision that is collectively made by the sponsors
and stakeholders within the experimentation
community.
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APPENDIX B

Measurement
Hierarchy

Introduction

M ilitary transformation experimentation should
be built upon a multilevel foundation of metrics

that (1) acknowledges the contributions of both
technical and human performance and (2) traces
these contributions up through various casual
pathways as they contribute to mission and policy
effectiveness. One such hierarchy that has recently
emerged from work within NATO research
community and the DoD Command and Control
Research Program is shown in Figure B-1. This
f igure depicts nine specif ic levels at which
measurements can be taken to provide insight
regarding the impact of specific transformation
initiatives.

As one moves from the rudimentary level of technical
performance to the higher level of policy
effectiveness, it is clear that different types of metrics
are required and that different approaches must be
taken to observing and measuring outcome in an
experiment or analysis. Generally speaking, these
differences can be addressed in terms of:
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Figure B-1. Hierarchy of Experimentation Metrics

• The context or focus of observation and
measurement in the experiment;

• The types of influencing factors or variables
that must be controlled or accounted for;

• The basic dimensions by which performance or
effectiveness are assessed;

• The timescale or event focus for conducting the
observation and assessment;

• The degree of observational transparency that
dictates the level of probing and reasoned
judgment required for making the assessment;
and
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• The types of observation and assessment
approaches that can be employed either
before, during, or after the experiment.

The following sections summarize and compare the
each level of measurement in terms of these six
issues.

Real-Time Information and
Knowledge

At this level, metrics address the collection, storage,
movement, and interpretation of reports and sensor
data received from the battlespace. Data is
transformed into information by placing it in a
meaningful operational context. Information is
transformed into knowledge by drawing from it
relevant conclusions concerning current events,
activities, and entities within the existing battlespace.
These processes occur at every level within the
command hierarchy (e.g., tactical, operational,
strategic); however, metrics will typically correspond
to that level of command and control of interest in
the specific experiment. Figure B-2 summarizes the
measurement issues for this level.



390 Code of Best Practice for Experimentation

Figure B-2. Measurement Issues – Real-Time Information
and Knowledge

Expertise, Beliefs, Culture, and
Experience

At this level, metrics address the process of how
relevant expertise, beliefs, culture, and experience
within the military organization are organized and
made available within the command process to
transform data into information and information into
knowledge. As with real-time information and
knowledge, metrics will typically correspond to that
level of command and control of interest in the
specific experiment. Figure B-3 summarizes the
measurement issues for this level.
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Figure B-3. Measurement Issues – Expertise, Beliefs, Culture,
and Experience

Individual Awareness and
Understanding

At this level, metrics address the process of individual
sensemaking – the integration of relevant military
experience and expertise with real-time battlespace
knowledge to generate individual awareness and
understanding. Awareness can be defined as
knowledge that is overlaid with a set of values,
objectives, and cultural norms that are unique to the
individual, to a community of expertise within the
command process (e.g., intelligence, logistics, air
support), or to an individual command (in the case
of joint/coalition operations). Understanding moves
beyond awareness by requiring a sufficient level of
knowledge to (1) draw inferences about possible
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consequences of the situation and (2) predict future
states and patterns within the battlespace. Both
awareness and understanding uniquely define which
conclusions concerning events, activities, and
entities within the battlespace are significant or
important to a specific individual, a specific
community of expertise within a command, or to a
specific command. The choice of which individual
perspectives are isolated for examination will be a
function of the focus and objectives of the specific
experiment. Figure B-4 summarizes the
measurement issues for this level.

Figure B-4. Measurement Issues – Individual Awareness and
Understanding
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Collaboration

At this level, metrics address the process structures
and mechanisms required to integrate different
bodies of knowledge and different perspectives into
a relevant common operating picture. These different
bodies of knowledge and perspective can exist within
a command headquarters or across component
commands within a joint or coalit ion force.
Collaboration serves to both (1) reconcile different
goals/objectives of the participants and (2) enhance
problem-solving capability by bringing to bear
multiple perspectives and knowledge sources.
Collaboration can take many different forms and be
influenced through a number of dimensions, including
media, time, continuity, breadth, content richness,
domain structure, participant roles, and linkages
across which it takes place. Collaboration is
necessary because rarely will any single individual
or community of expertise be capable of dealing with
the complexity of military operations. Figure B-5
summarizes the measurement issues for this level.
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Figure B-5. Measurement Issues – Collaboration

Shared Awareness and
Understanding

At this level, metrics address the degree to which
the relevant bodies of knowledge and perspectives
have been usefully integrated and focused on a
common problem or task faced by the organization
as a whole. In this regard, shared awareness and
understanding are the result of sensemaking
extended to the organization level. As the nature of
problems and tasks vary over time in a military
operation, so will the focus and scope of shared
awareness and understanding. Contrary to popular
belief, shared awareness and understanding is
problem/task-specific and does not imply a universal
sharing of all knowledge or experience. Figure B-6
summarizes the measurement issues for this level.
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Figure B-6. Measurement Issues – Shared Awareness and
Understanding

Decisionmaking

At this level, metrics address the process of
translating understanding into action – all within the
framework of the mission/task goals and objectives
articulated in command intent. While the general
dimensions of quality and timeliness apply to
decisionmaking, there exist other important
characterist ics that can be measured in an
experiment. For example, decisions can be arrived
at through a number of different socio-cognitive
strategies, depending upon (1) time available, (2)
the degree of situation recognition that derives from
past experience, and (3) the nature of situational
ignorance (e.g., too much/little information, too
many/few explanatory frameworks). Thus, it is
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important to address whether or not the organization
has appropriately adapted its decisionmaking
procedures to these factors – a measure of
organizational agility or flexibility. At the same time,
it is also important to measure the recursive impact
of decisionmaking on the sensemaking activities of
the organization. In this sense, decisions are seen
to not only lead to actions within the battlespace,
but also to the focusing and direction of command
staff attention and perspective. Finally, it is
important to recognize that many decisions will
impact simultaneously on operations at the tactical,
operational, and strategic level, as recently
demonstrated during operations in Kosovo. Hence,
metrics at this level must address this simultaneity
of impact, as appropriate, in relation to the focus
and objectives of the experiment.

Figure B-7. Measurement Issues – Decisionmaking
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Force Element Synchronization

At this level, metrics address the degree to which
specific military functions and elements (e.g.,
reconnaissance and surveillance, information
operations, maneuver/assault, logistics, civil affairs)
are coordinated to achieve the desired operational
effects with maximum economy of force. Because the
focus at this level is on operational effects (e.g.,
combat force attrition, infrastructure damage, area
denial, point target destruction, information denial,
civilian population management, humanitarian relief),
it is important that the metrics accurately reflect the
consequences of each effect in the physical,
information, and cognitive domains of interest.
Synchronization is a multi-dimensional phenomenon.
Hence, metrics at this level must address
synchronization from a variety of perspectives such
as (1) coordination/harmonization of component
goals and subtasks, (2) coordination of schedules/
timing, (3) geographic coordination, and (4)
coordination of contingency actions taken in
response to emergent situations. Synchronization
also assesses the level of military force maturity by
illuminating the degree to which joint operations have
evolved from the strategy of simple deconfliction of
force elements to the strategy of creating synergistic
effects among force elements. Figure B-8
summarizes the measurement issues for this level.
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Figure B-8. Measurement Issues – Force Element
Synchronization

Military Task / Mission
Effectiveness

At this level, metrics address the degree to which
the operational effects combine within a military
campaign to achieve the desired end-state or impact
on the adversary’s will and capabilities. Thus,
success at this level of measurement is highly
scenario-dependent and is influenced not only by
U.S. force capabilities, but also by the capabilities
of the adversary, the presence of third-party
interests, the geographic region of operation, and
the stated goals and objectives of the military task
or mission. In addition, the relative contribution of
different weapons systems, command and control
systems, doctrine, training, leadership and other
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transformation elements will vary according to these
same factors. As with synchronization, metrics at
this level are multi-dimensional and must be capable
of addressing the consequences of the military task
or mission in terms of the physical, information, and
cognit ive domains of interest.  Figure B-9
summarizes the measurement issues for this level.

Figure B-9. Measurement Issues – Military Task / Mission
Effectiveness

Policy Effectiveness

At this level, metrics address the interaction of
military tasks and missions with other instruments
of national security policy (e.g., diplomacy, politics,
humanitarian relief, economic assistance, legal/
justice). Policy effectiveness corresponds with the
emerging concept within DoD of effects-based
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operations – as characterized within recent counter-
terrorist operations against al-Qaida and other
internat ional terror ist  groups. This level of
measurement represents a potentially complex
challenge because of the often subtle manner in
which these instruments combine to produce
coercion and influence against an adversary. Thus,
metrics must be capable of reflecting the degree of
deconfliction, cooperation, or synergy present when
military operations are combined with other
instruments to achieve specific policy goals. At the
same time, metrics at this level must reflect a
number of real-world considerations that impinge
upon the military operations –e.g., the presence,
contributions, and conflicting goals of coalition
partners, private-voluntary relief organizations, non-
governmental organizations, and transnational
organizations in the battlespace. Figure B-10
summarizes the measurement issues at this level.

Figure B-10. Measurement Issues – Policy Effectiveness
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APPENDIX C

Overview of
Models and
Simulations

Introduction

A model is defined to be a physical, mathematical,
or otherwise logical representation of a system,

entity, phenomenon, or process.1 Conceptually,
military experiments use models of postulated future
military situations to support the full range of
experimentat ion types, including discovery,
hypothesis testing, and demonstration experiments.
Simulations are defined as the process of designing
a model of a real-world system and conducting
experiments with this model for the purpose either
of understanding the system or of evaluating various
strategies (within the limits imposed by a criterion
or set of criteria) for the operation of the system.2

In considering modeling and simulation (M&S) “Best
Practices” to support experimentation, users should
always bear in mind that “all models are wrong.
Some are useful.”3 The discussion in this chapter is
intended to help members of multidisciplinary

CCRP Publications
To view endnote references, click your mouse on the number marker to take you directly to correlating reference.
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experimentation teams better understand models,
and guide them through the process of selecting,
applying, or possibly developing models and
simulations to support the experimentation process.
The overall goal is to increase the likelihood of
having “useful” models.

Models can be as simple as conceptual flow charts
of decision processes, or as complex as large force-
on-force combat simulations executing many
thousands of lines of software code. Models at both
ends of this spectrum can and should be used
throughout the experimentation process. An
emerging concept in the DoD experimentation,
testing, and acquisition communities that reinforces
this point is called the model-experimentation-model
paradigm.

In order to use models successfully in
experimentation, model(s) should meet three basic
tests:

• Models must be clearly defined. The
experimenter must be able to determine what is
(and is not) being described in the model(s)
quickly and unambiguously.

• The contents of models must be logically
consistent. The logic, algorithms, and data that
describe the phenomenology of interest must
be compatible. If this is not true, the “answer”
the model and accompanying analysis generate
could be incorrect or misleading. Seemingly
simple inconsistencies can potentially have
catastrophic consequences, especially in
warfare.
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• Models must be transparent. When models are
applied and begin generating results,
transparency allows team members to better
interpret model behavior, identify cause and
effect relationships, and obtain insights. This is
especially important in C2 experimentation
because emerging network-centric doctrine and
enabling technologies may result in some
counterintuitive outcomes that will require
exploration.

Overview of Models and
Simulations

The different professional disciplines that are
involved in modeling and simulation have subtle but
fundamental differences in the meaning of field-
specific terms. There is no “right” answer in relation
to these differences. It is important, however, that
those involved in a particular experimentation effort
reach a clear and common understanding of terms
and the implications of those terms.

Types of Models

There are many taxonomies in different professional
communities categorizing different types of models.
This discussion addresses predominantly descriptive
models, and draws a distinction between static and
dynamic models. Descriptive models focus on
providing insight into how a system is, or how it
behaves. Static models emphasize the logical,
physical, or conceptual layout of a system. These
models focus on the system’s components, their
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relationships, and their interactions. Examples of
relevant static models are:

• Static Conceptual models - IDEF XX, and the
DoD Architecture Framework; and

• Dynamic models (simulations) - which introduce
the notion of time, and explore the behavior of
the system as the components interact.
(Examples include colored petri nets,
executable architectures, systems dynamics
models, and combat simulations.)

Models and simulat ions are ideal ized
representations of systems (or networks of
systems). Good models capture the essential
properties and facilitate insight into the system. An
important consideration in developing models of
complex systems is the identification of what are
the “essential properties” of the system. These will
be situation dependent, and should be carefully
aligned with the goals of the experiment.

Static Models

Descriptive static models describe how an entity or
system is designed, or is expected to behave. One
broadly applied static model is the DoD Architecture
Framework. The products in the DoD Architecture
Framework are an excellent example of how different
communities involved in experimentation have
differing views of “essential properties.” The
operational, system, technical, and architectural
views of a modeled military system all provide
different views of the same thing. As a matter of
practice, it is essential that the different views be
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consistent, balanced, and appropriately resolved to
support an experiment.

A conceptual flow chart is another specific example
of a simple static model. These models can be used
quickly and easily to depict important physical and
informational relationships that might exist in the
system. Figure C-1 is an example of a conceptual
flow chart that shows the l inkage models of
information value in a command and control
system. These models are most useful early in the
experimentation process to support early concept
development, and to communicate complex
concepts to stakeholders that may not be familiar
with overall concepts. Their strength is their
simplicity. They are domain independent, can be
developed with minimal resources, and are
straightforward to understand. The weakness of
conceptual  f low models is  in  thei r  l imi ted
extensibility. As concepts and the supporting
models become more complex, these types of
models can become unwieldy and confusing.

IDEF type modeling is a logical extension of simple
conceptual models, and a possible next step once
the limits of a simple model are reached. IDEF
diagrams have syntactical and structural rules that
allow the models to represent more complex systems
clearly than straight graphical models.

A supplemental feature of IDEF models is an ability
to be constructed hierarchically. A single node can
contain another network that describes the process
in more detail. IDEF models are best suited to refining
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operational concepts early in the discovery phase of
experimentation.

Dynamic Models (Simulations)

Dynamic models, or simulations, are logical or
mathematical abstractions of a “real” system that
describe, explain, and potentially predict how “real”
systems will behave over time. Within the context of
experimentation, it is useful to think about three
categories of simulations:

• Live simulation - These use human role players
interacting with actual or postulated C2
systems within some artificial scenario. Field
Exercises are an example of a live simulation.

• Virtual simulations - Sometimes referred to as
“human-in-the-loop,” these simulations provide
automated players and forces that interact with
live subjects. The JTASC Confederation is an
example of a virtual simulation.

• Constructive simulations - These are closed
form simulations designed to run a scenario or
set of scenarios end-to-end without human
intervention. JWARS, ITHINK, and executable
process models are examples of constructive
simulations.

Constructive Combat Simulations

Most “standard” constructive combat models in the
DoD were designed and developed during the Cold
War. They are attrition-based, usually have only
limited ability to realistically represent maneuver,
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and only rarely consider information flows in relation
to command and control. Because of this, these
models have very limited utility in support of
experimentation (and analysis) in support of
transformation. These simulations can be used
effectively to provide context for some experiments.
For example, a simulation describing strategic flow
could give first order estimates on force arrivals in
support of a game.

There are some ongoing large constructive
simulation development efforts that hold some
promise for experimentation. JWARS represents
explicitly the operation of key sensor systems, flow
of information, and operational command and
control. The algorithms provided for use in the
simulation have been (or are in the process of being)
validated by the services. That said, it is a complex
tool that is still immature, and has limited scenario
data. JWARS would be an appropriate tool to
support large-scale wargames, and to provide
context for more localized experiments. It is too
resource-intensive for early discovery experiments,
and focused hypothesis testing.

Executable Architectures (Process Models)

A quickly emerging and maturing class of simulation
development environments are called process
modeling tools. These tools allow one to rapidly
prototype a model of a C2 concept, and then to
execute simulations of how that operational concept
might behave. Commercially available tools such as
G-2 / rethink, Extend, and Bona Parte are already in
use throughout the M&S and experimental
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communities. The advantages of these tools are that
they allow rapid prototyping, and are resource
efficient compared to live or virtual simulation
techniques. These tools are very appropriate in
support of discovery and early hypothesis testing
types of experiments. The graphical features allow
domain experts to work more directly in the model
development and analysis process. A disadvantage
is that the models produced are often “one of.”
Therefore, their quality control can vary greatly, and
can be problematic to V&V in accordance with the
DoD instructions.

Agent-Oriented Modeling

Agent-Oriented Modeling is an increasingly
popular subtype of the constructive simulation
technique that allows for entities to act (and
interact) as “independent actors” in a simulated
environment. The description and representation
of the C2 process through agent modeling and
programming techniques is a dist inguishing
feature. Modeling of the C2 process as a group of
agents, based on artificial intelligence concepts,
favors the modeling of the cognitive nature of
command tasks. Agents can be implemented, in
an object-oriented environment, as either objects
(e.g. ,  actor  or  “applet”  type of  agents)  or
aggregates of objects (coarse-grain agents). Such
agents interact  wi th each other through a
messaging infrastructure. The term agent-oriented
modeling is used as a way of capturing this idea.
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Modeling and Simulation Infrastructure
(Engineering)

A number of new and innovative approaches to
simulation and information systems allow different
objects to be brought together to represent the
complete command process, rather like Lego™
bricks. Such a philosophy also encourages the
development of models based on holistic and
evolutionary principles. Figure C-2 provides a
conceptual description of the existing and emerging
components that might be used to accomplish M&S
in support of experimentation.4  It is presented as a
reference to guide the development of ongoing M&S
activities and experiments.

Figure C-2. Infrastructure to Support Modeling, Simulation,
and Experimentation

The conceptual infrastructure contains three types
of nodes (components). The first is actual or
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postulated command and control systems. These
allow domain experts to serve as subjects and
behave as realist ical ly as possible under
experimental conditions. The second node consists
of high-resolution virtual simulations and more
traditional training simulations. These simulations,
such as the JTASC training confederation (JFAST)
or the emerging JSIMS simulations, often provide
the context that stimulates the C2 systems and
adjudicates interactions among entities. Finally, the
infrastructure contains constructive, or analysis,
simulations. The data repositories indicate that all
of these tools should be populated with consistent
data (See Chapter 9).

There are two specific types of links identified to
connect the components. The first, the DII COE,
provide a set of standards that facilitate meaningful
communication between the different types of
applications identified in the nodes. Similarly, the
HLA provides a conduit and set of standards that
facilitates communications between simulations.

Model “Translators”

Recent advances in the state-of-the-art of modeling
and s imulat ion support  systems that  have
tremendous potential to support experimentation
are model translators. There are commercial and
GOTS tools emerging that allow analysts and
engineers to develop different, but consistent,
views of the same system. The use of translators
can facilitate consistent views between static and
dynamic models of systems.5



412 Code of Best Practice for Experimentation

Linking of Performance Models to Effectiveness
Models

One approach to using the infrastructure described
is to create a structured hierarchy of models and
an audit trail from C2 systems, processes, and
organizations to battle outcome. The objective is
to create supporting performance level models of
part icu lar  aspects of  the process (e.g. ,
communications, logistics) which can be examined
at the performance level. These supporting models
create inputs to higher level force-on-force models.
This ensures that the combat models themselves
do not become overly complex.

Figure C-3. Model Hierarchy

For example, a detailed model of the intelligence
system can be very complex, if we wish to take into
account the flow of intelligence requirements,
taskings, collection processes, fusion processes,
and intelligence products. In order to analyze the
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impact of intelligence, it is important to have all of
this detail, but it does not necessarily have to be
represented explicit ly in the main model. A
supporting model that captures all of this detail can
be created in order to produce outputs at the
measures of effectiveness level, such as speed and
quality of intelligence. These can then form inputs
to the main simulation model. The main model then
takes these into account in producing its own
outputs. These will now be at the measures of force
effectiveness level. Examples include friendly
casualty levels, adversary attrition, and time to
achieve military objectives.

C2 Modeling Guidelines

A general set of C2 modeling guidelines based on
a set of requirements should be reviewed by the
experimentation team and may be a good candidate
for peer review. The primary objective of these
guidelines is to relate C2 processes and systems
to battle outcome. In order to do this, a model must
be capable of explicitly representing the collection,
processing, dissemination, and presentation of
information. These capabilities, therefore, lead to
the set of C2 modeling guidelines described below.
It should be noted that these requirements are not
yet fully satisfied by any existing model.

These guidelines should be considered part of the
model selection and development processes for a
specific problem. The experimentation team should
be conscious about an explicit or implicit
implementation of the consideration points. The C2
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modeling guidelines, as presented in the NATO
COBP for C2 Assessment, include:

• Representation of information as a commodity.
This consideration is the most critical and
difficult to implement, but is the foundation for
the other guidelines, as well as for the model
itself. Information should be considered as a
resource that can be collected, processed, and
disseminated. It includes information about
both adversary and friendly forces, as well as
environmental information such as weather and
terrain. Information should posses dynamic
attributes such as accuracy, relevance,
timeliness, completeness, and precision. These
values should affect other activities within the
model, to include, when appropriate, combat
functions;

• Representation of the realistic flow of
information in the battlespace. Information has
a specific source, and that source is usually not
the end user of the information. A requirement
exists, therefore, to move information from one
place to another. Communications systems of
all forms exist to accomplish this movement.
These systems can be analog or digital.
Information can be lost and/or degraded as it
flows around the battlespace. The model
should represent the communications systems
and account for these degradation factors as it
represents information flow;

• Representation of the collection of information
from multiple sources and tasking of
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information collection assets. This guideline
applies equally to adversary and friendly
information. For the collection of adversary
information, the model should represent a full
suite of sensors and information collection
systems, and the ability of these systems to be
tasked to collect specific information.  For the
collection of friendly information, this
consideration is just as critical. Knowledge of
one’s own capability in combat, as well as that
of the adversary, is essential for effective
decisionmaking;

• Representation of the processing of
information. Information is rarely valuable in
original form and must be processed in some
way. Typical processing requirements include
filtering, correlation, aggregation,
disaggregation, and fusion of information.
These processes can be accomplished by
either manual or automated means. The ability,
or inability, to properly process information can
have a direct bearing on combat outcome;

• Representation of C2 systems as entities on the
battlefield. C2 systems perform information
collection, processing, dissemination, and
presentation functions. They should be
explicitly represented as entities that can be
targeted, degraded, and/or destroyed by either
physical or non-physical means. Additionally,
the model should account for continuity of
operations of critical functions during periods of
system failure or degradation;
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• Representation of unit perceptions built,
updated, and validated from the information
available to the unit from its information
systems. This is a critical requirement. Each
unit should have its own perceptions, gaining
knowledge from superior, subordinate, or
adjacent units only when appropriate;

• Representation of the commander’s decisions
based on his unit’s perception of the battlefield.
Each unit should act based on what it perceives
the situation to be, not based on ground truth
available within the model. When a unit takes
action based on inaccurate perceptions, it
should suffer the appropriate consequences;
and

• Representation of IO for combatants. With
information so critical to combat outcome, the
model should be able to represent the
deliberate attack and protection of information,
information systems, and decisions. This
applies to all sides represented in the model.

Issues in C2 Modeling

This section addresses the core problem of analyzing
the effectiveness of C2-related systems, and what it
is that sets it apart from other types of operational
analysis. The problem lies in making a properly
quantified linkage between C2 measures of policy
effectiveness, such as communication system delays,
C2 measures of effectiveness, such as planning time,
and their impact on higher level measeures of force
effectiveness, such as friendly casualties, attrition
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effects, and time to achieve military objectives, which
capture the emergent effects on battle outcome.
These higher level MoFE are required in order to be
able to trade off investment in C2 systems against
investment in combat systems such as tanks or
aircraft. At present, there is no routine way of making
this linkage. Hence, all analyses of C2 systems
demand a high level of creative problem structuring
and approach to overcome this challenge.

Other modeling issues that have proved important
to C2 analysis are:

• Representation of human behavior: rule-based,
algorithmic, or “human-in-the-loop;”

• Homogeneous models versus hierarchies/
federations;

• Stochastic versus deterministic models;

• Adversarial representation;

• Verification, Validation, and Accreditation
(VV&A); and

• The conduct of sensitivity analysis.

Representation of Human Behavior: Rule-
Based, Algorithmic, or “Human-in-the-Loop”

In developing models that represent C2 processes,
most approaches (until recently) have been founded
on the artificial intelligence (AI) methods of expert
systems. These represent the commander’s
decisionmaking process (at any given level of
command) by a set of interacting decision rules. The
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advantage of such an approach is that it is based on
sound artificial intelligence principles. However, in
practice it leads to models that are large, complex,
and slow running. The decision rules themselves are,
in many cases, very scenario dependent and, as
noted earlier, human factors and organizational
expertise may be needed on a project team to treat
these issues correctly.

These factors were not a problem during the Cold
War. There was sufficient time to complete extended
analyses, and only one key scenario dominated.
However, in the post-Cold War environment, such
certainties have evaporated. Indeed, uncertainty is
now an even more key driver in analyses. There is
an increasing requirement to consider large
numbers of scenarios and to perform a wide range
of sensitivity analyses. This has led to a requirement
for ‘lightweight,’ fast running models, that can easily
represent a wide range of scenarios, yet still have
a representation of C2 which is ‘good enough.’ Some
authors have begun to explore advanced algorithmic
tools based on mathematics such as catastrophe
theory and complexity theory. This is discussed
below under new methods.

Many analyses employ human-in-the-loop
techniques in order to ensure realistic performance
or to check assumptions and parameters. However,
human-in-the-loop techniques are expensive and
require the inclusion of soft factors and their
attendant Measures of Merit. The introduction of
human factors also raises the level of uncertainty
as these factors are difficult to integrate and are
not necessarily well understood in the C2 specific
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context. The increased cost, complexity, and
uncertainty of human-in-the-loop requires analysts
to use these techniques for small portions of the
overall problem structure, rather than as the primary
analytical method. However, much transformational
experimentation will require human-in-the-loop
simulations, whether live or virtual.

Homogeneous Models Versus Hierarchies/
Federations

In order to establish the audit trail referred to earlier
(tying individual C2 systems, processes, and
organisations to battle outcomes), all the detailed
processes involved, such as the transmission of
communications across the battlefield and the
impact of logistics on decisionmaking, should be
represented explicitly in a simulation. In this
example, the question then arises as to whether all
the transmission media (radio, satellites, etc.), with
their capacities, security level, communications
protocols, etc., should be represented in the main
model explicitly, or whether this aspect should be
split out as a supporting model of the overall
process. Similarly, the detailed logistics modeling
required to establish constraints on decisionmaking
could be undertaken as part of the main model or in
a specialized supporting model. These supporting
models could be run off-line, providing sets of input
data to the main model (giving rise to a model
hierarchy) or they could be run in real t ime
interaction with the main model (giving rise to a
model federation). In the off-line mode, the main
model would generate demands on the
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communications and logistics systems. The
supporting models would check whether these
demands could be satisfied. If not, communication
delays and logistics constraints in the main model
would be increased, and the main model rerun. This
would have to be done a number of times to bring
the main and supporting models into balance.
However, such an approach can generate valuable
analytical insights. The high rate of services that
may be required to support the main model can
involve a long analysis process. This method
becomes critical with a large assortment of C2
parameters or a long scenario period. Sensitivity
analysis requirements may also contribute to the
requirements for implementation of this approach.

Figure C-4. Illustrative Model Linkage

Figure C-4 shows the main model producing (in
addition to its MoFE) a set of dynamic demands on
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communications (such as communications systems
capacity as a function of time) and logistics (demands
for transport and key consumables) processes in order
to achieve the assessed levels of MoFE. These are
then fed back into detailed models of the
communications and logistics infrastructure. Those
supporting models can then match the dynamic
demand placed on the communications and logistics
infrastructure to the available capacity. If there is a
mismatch, the assumptions in the main model are
adjusted iteratively to bring the two models into
balance. This approach is more flexible and reactive
for a large set of C2 assessments. Nevertheless, the
main disadvantage arises from the complexity of the
architecture itself (number of linked sub-processes,
failure of the sub-model, etc.).

A similar approach can be applied to concepts of
operation. In some models, it is possible to describe
a concept of operations as a sequence of standard
missions (e.g. attack, defend, move). These
missions can then be analyzed to determine the
demand that they place on the support ing
infrastructures. Then, as before, this can be tested
offline to see if the infrastructure can cope. Again,
this would have to be iterated a number of times,
but leads to an ability to relate the infrastructure
capacity to its ability to support a defined concept
of operations (and hence battle outcome). In
addition to the use of such hierarchies of supporting
models in an off-line mode, it is possible to create
real-time federations of such models to represent,
inter alia, combined or joint operations.
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Stochastic Versus Deterministic Models

The ideas of chaos theory show that structural
variance (or ‘deterministic chaos’) can occur when
sets of decision rules interact in the simulation of a
dynamic process. Small changes in initial conditions
can lead to very different trajectories of system
evolution. Any simulation model of combat, with a
representation of C2, has to confront this kind of
problem. The merits of a deterministic approach are
reduction of run times and the creation of a single
‘thread’ connecting the input data and the results,
making analysis of the model output potentially
easier. However, the representation of the C2
process (whether using decision rules or not) gives
rise to a number of alternative decision options at a
given moment, and can thus potentially give rise to
such ‘deterministic chaos’. If such effects are likely
to arise, one solution is to use stochastic modeling.
The use of stochastic sampling in the model,
together with multiple replications of the model,
gives rise to a distribution of outcomes which is much
more resistant to such chaotic effects.

Representing Adversary Forces

Historically, adversary capabilities and behaviors
were often fully scripted or heavily constrained. This
was more appropriate in Cold War contexts than it
is today. However, it was never ideal for C2 analysis
because the dynamic interaction between friendly
and adversary forces is a critical element of C2
representation. Today, much more robust adversary
capabi l i t ies are employed and indeed are
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necessary. Analysts must consider not only a range
of scenarios, but also the range of possible
adversary actions and reactions.

Verification, Validation, and Accreditation
(VV&A)

VV&A has traditionally been a challenge for model
development efforts, but is particularly challenging
for C2 modeling. This is due to the variability
inherent in most C2 processes, especially those that
involve the human aspects of information
processing and decisionmaking.

1“A Glossary of Modeling and Simulation Terms for Distributed
Interactive Simulation (DIS).” August, 1995.
2Robert E. Shannon. Systems Simulation the Arts and Science.
Prentice-Hall, 1975.
3George E.P. Box. “Robustness is the Strategy of Scientific Model
Building.” Robustness in Statistics. eds., R.L. Launer and G.N.
Wilkinson, 1979, Academic Press, p. 202.)
4”Evolving the Practice of Military Operations Analysis.” DoD
Applying Knowledge Management, MORS Symposium. March
2000.
5”Executable Architecture for the First Digitized Division.” Paul
C. Barr, Alan R. Bernstein, Michael Hamrick, David Nicholson,
Thomas Pawlowski III, and Steven Ring.
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APPENDIX D

Survey
Situation Awareness Questions

Part 1 (Unprompted)

Summarize your assessment of the situation.

Part 2 (Prompted)

1. What is the friendly mission?

2. What are the friendly opportunities?

3. What are the risks to friendly forces?

4. What are the adversary’s vulnerabilities?

5. What are the adversary’s intentions?

6. What are the adversary’s defensive
capabilities?

7. What are the adversary’s offensive capabilities?

8. If you are unsure of adversary’s intentions, what
are the different possibilities?

9. What are the important environmental factors in
this situation?



Note: There were other questions on the survey form,
but the above were the questions used for determining
the situation awareness scores.
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Acronyms

A
ACTD - Advanced Concept Technology
Demonstrations

AIAA - American Institute of Aeronautics and
Astronautics

AIDS - Acquired Immune Deficiency Syndrome

APS - American Psychological Society

ATD - Advanced Technology Demonstration

ATO - Air Tasking Order

C
C2 - Command and Control

C4ISR - Command, Control, Communications,
Computers, Intelligence, Surveillance, Reconnaissnce

CCRTS - Command and Control Research and
Technology Symposium

CINC - Commander in Chief

COBP - Code of Best Practice

CPOF - Command Post of the Future

CPX - Command Post Exercises
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D
DARPA - Defense Advanced Research Projects
Agency

DM - Dominant Maneuver

DoD - Department of Defense

DOTMLPF - Doctrine, Organization, Training,
Material, Leadership, Personnel, and Facilities

DTIC - Defense Technical Information Center

E
EBO - Effects-Based Operations

ESC - Electronic Systems Center

ETO - Effects Tasking Orders

F
FTX - Field Training Exercise

G
GPS - Global Positioning System

H
HEAT - Headquarters Effectiveness Assessment Tool

HFS - Human Factors Society

HQ - Headquarters
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I
ICCRTS - International Command and Control
Research and Technology Symposium

IDEF-0 - a formal process modeling language, where
activity boxes are named as verbs or verb phrases,
and are connected via arrows, named as nouns or
noun phrases, which define inputs (from the left),
controls (from the top), outputs (to the right), or
mechanisms (from the bottom). Each activity has a
definition, keywords, and can be quantified by time,
cost, frequency, etc.

IEEE - Institute of Electrical and Electronics Engineers

IQ - intelligence quotients

J
JEFX - Joint Expeditionary Force Exercise

JFCOM - Joint Forces Command

JROC - Joint Requirements Oversight Council

JTF - Joint Task Force

JV - Joint Vision

JWID - Joint Warrior Interoperability Demonstration

L
LOEs - Limited Objective Experiments



430 Code of Best Practice for Experimentation

M
MCP - Mission Capability Packages

MOCE - Measures of C2 Effectiveness

MOFE - Measures of Force Effectiveness

MOP - Measures of Performance

MOPE - Measures of Policy Effectiveness

MORS - Military Operations Research Society

M&S - Modeling and Simulation

N
NATO - North Atlantic Treaty Organization

NCW - Network Centric Warfare

NGO - Non-Governmental Organization

O
ONA - Operational Net Assessments

OOB - Order of Battle

R
RDO - Rapid Decisive Operations

RPV - Remotely Piloted Vehicles

S
SME - Subject Matter Experts
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STOW - Synthetic Theater of War

T
TD - Technology Demonstration

V
VIPs - Very Important Persons

VV&A - Verification, Validation & Accreditation
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CCRP/COBP Feedback
Thank you for your interest in the Code of Best Practice (COBP) for
Experimentation. If you are a potential user of this document, then
you are invited to contribute to a review being carried out to test its
effectiveness (principally in format, but views on content are also
welcome).

Please spend an appropriate amount of time reading the document
and then complete this short questionnaire. Return to the CCRP
using the fax cover sheet provided on the reverse side of this
questionnaire. Alternatively, you may log on to www.dodccrp.org
and fill out an electronic version of this form.

1. What three features of best practice stick in your mind most?

_____________________________________________________________________________________

_____________________________________________________________________________________

_____________________________________________________________________________________

2. Are there any points which you found new or unexpected?

_____________________________________________________________________________________

3. Are there any points which did not appear in this Code that
you think should be included?

_____________________________________________________________________________________

4. Did you find the Code easy to read and understand?
Yes ___  No ___ If no, please state why?

_____________________________________________________________________________________

5.   Did you find the Code…
Too wordy? ___  About right? ___  Too terse? ___

6. Is the layout…
Very clear? ___  Clear? ___  Unclear? ___  Very unclear? ___

        If unclear or very unclear, please state why?

        _____________________________________________________________________________________

7. Do you accept all of the guidance contained in the Code?
       Yes ___  No ___  If No, what do you disagree with?
        _____________________________________________________________________________________

         _____________________________________________________________________________________

8. Do you have any other comments or suggestions?

        _____________________________________________________________________________________

         _____________________________________________________________________________________

         _____________________________________________________________________________________
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