AIAA Code of Best Practice for Joint Experimentation Check List

A. The starting place: Concept/Idea

- 1. Analyze concept/idea
- 2. Develop Hypotheses
- 3. Test Hypotheses
 - Develop Hypotheses tree(s)
 - Link each branch to a relevant and possible experiment or test
 - Review relevance and logic

B. Develop Experimental Campaign Plan

- 1. Parse the key concept/idea into meaningful parts
- 2. Determine desired campaign plan vector
- 3. Determine experimental activities and linkages needed to move along campaign plan vector
- 4. Develop structure that insures capabilities for valid generalization
 - Balance of control and live play
 - Baseline and control cases
 - Minimize intrusions
- 5. Map knowledge domain progresssion
 - Discovery experimentrs
 - Preliminary Hypothesis tests
 - Renined Hypothesis tests
 - Demonstrations

- 6. Control the complexity
 - Number of actors (from Few & Homogeneous to Many & Heterogeneous)
 - Stability of Environment (from Static to Dynamic)
 - Echelon (from One to Many)
 - Function (from Single to Multiple)
 - Information flow (from Stovepiped to Networked)
 - Interaction (from Non-interactive to Fully Interactive)
 - Domain structure (from Poorly Defined to Well Defined)
 - Uncertanty (from Low to High)
- 7. Analyze requirements and pick appropriate tools
 - Soft Operational Research Tools
 - Brainstorming
 - Expert elicitation
 - Wargaming
 - Solving tools
 - Linear programming
 - Heuristic searching
 - Modeling and Simulation
 - Constructive, virtual tools
 - Live envents
- Real world lessons learned
- Supporting tools
 - Data analysis

- Visualization
- Data mining
- 8. Develop requirements for Mission Capabilities Package Co-Evolution
- Organization
- Command arrangements
- CONOPS/Doctrine
- Logisitcs
- C4ISR Systems
- Weapons Systems/Other Materiel
- Training/Education
- Personnel
- Leadership
- 9. Pre-Experiment Phase
 - Define Experiment Objective (s)
 - Develop and refine the concept(s)
 - Identify one or more hypotheses to be tested/characterize variables
 - Establish context of the hypotheses
 - Formaualte scnarions and interesting parts of the scenario space
 - Identify ranges of the variables
- Assess feasibility and expected utility of experiment by estimating:
 - Costs
 - Orther resources required:
 - Personnel
 - Facilities

- Models
- Databases
- Execute Appropriate Models to:
 - Establish parameters
 - Explore the scenario space
 - Test assumptions
- Create Experimentation Plan
 - Specify null hypotheses
 - Develop operational definitions & measures
 - Identify training requirements for:
 - Participants
 - Data collectors
 - Red/White/etc. Cells
 - Guides/briefers etc.
 - Define learning objectives
 - Develop data collection and data analysis plans
 - Specify required control and adaptation during the experiment
- Specify the Experimental Structure
 - Dependent variables (objective functions)
 - Independent variables
 - Experimental focus
 - Context and conditions
- Idendify infrastructure needs
 - Assure adequacy of models, simulations and tools

- Define facility requirements
- Develop configuration management plans
- Specify appropriate Measures of Merit
 - Measures of Performance (MOP)
 - Measures of C2 Effectiveness (MOE)
 - Measures of Force Effectiveness (MOFE)
 - Measures of Polich Effectiveness (MOPE)
- Sepcifdy othe observables of interest
 - Meaningful scale points
- Refine data collection and data analysis plans
- Create experimental environment
 - Provide infrastructure
 - Create scenario
 - Install data driver
 - Install models, C3I
 - Integrate and federate models
 - Instrument for data collection
 - Plan VIP interface
- Select and train paricipants
 - Identify contingencies that training should address
 - Tailor selection, training and assessment proficiency for:
 - Friendly and coalition forces (blue)
 - OPFOR (red) and netural (gray)
 - Control (white team)

- Data collection and anallysis team
- Quality control team
- VIP interface
- Rehearse/Pretest
- 10. The Experiment Phase
- Maintain the experimental infrastructure
- Run the scenario
 - Simulate non-live effects
 - Insert sensor inpuits, enemy responses, system degradation, operating environment
 - Simulate, represent, predice, and generate effects
 - Maintain consisten time and granularity
 - Ensure replicability
- Ensure valid live effects
- Conduct supporting modeling or simulation activities
 - Conduct sanity check/quality control
 - Run additional base-lining with same inputs
 - Play roles
 - Step through control variables
 - Iterate as part of the plan
- Execute data collection plan
 - Collect data in accordance with plan
 - Identify insights

- Ensure quality control
 - Sample representative observations
 - Ensure continuous collection
- Maintain discipline
 - Maintain the integrity of the experimebnt
 - Control the scenario
 - Applly exit & restart criteria
 - Manage anomalies
 - Document changes/anomalies
 - Manage experiment
 - Manage configuration
- Hold inteim assessments
 - Qualitative
 - Quantitative
 - Evaluate utility of process
 - Identify anomalies
 - Use the "hotwash" to inform the iterative campaign process and enhance quality
 - Visualize data to determine adjustments to experiment
 - Perform intra-experiment adjustment
 - Capture insights
- Prompt "Hotwash"
 - Identify experimental process insights & lessons recorded

- Develop major findings based on availabvle data and preliminary observations
- Identify post-experimebntal issuesl
- Organize for experimental report

11. The Post-Experiment Phase

- Execute data analysis plan
- Conduct additionaldata analyses
 - Sensitivity analysis
 - Extrapolation beyond observed ranges & conditions'explore anomalies/insights
- Identify critical issues
- Generate products
 - Use M&S to clarify ambiguous results
 - Develop comprehensive reports and briefings
 - Conduct peer review
 - Promulgate results
- Refine/imporve M&S
 - Conceptual
 - Executable
- Exploit experimental results
 - Build knowledge base
 - Ensure that "lessons recorded" become "lessons learned"
 - Incorporate results into follow-on experiments

- 12.Double check the following items to maximize the probability of success and knowledge gains:
- Establish experimental concept credibility early
- Bound the problem efficiently
- Gain high level visibility and leverage
- Achieve a formal agreement to collaborate
- Ensure sufficient inflluence on the scenario to tailor it
- Obtain early involvemtn in the planning process (e.g., Stakeholders)
- Capture sufficient resources for training, data collection, and analysis
- Create a robust experimentation environment, including adequate:
 - Number and variety of experimental events
 - Instrumentation
 - Free play (opportunities to fail)
- Be warry of piggybacking on someone else's experiment

DRAFT

H Special considerations and check items if required to "Piggyback" on someone else's experiment (get positive resolution prior to agreement)

- 1. Maintain control of your experiment
 - a. Is there full involvement in the planning process?
 - b. Is there back up planning to cope with unplanned events
 - Adverse weather
 - Experimental infrastructure problems
- 2. Assure visibility of your experiment