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Abstract

This paper proposes a multiagent architecture for the fully autonomous
hierarchical and adaptive control of tactical forces on a simulated battle-
field and demonstrates the efficacy of this control scheme as compared to
human subjects.  The multiagent architecture includes a planning agent
for course of action development, a route selection agent and position
agent for unit reactions to real-time command and control information,
and a unit and vehicle agent to adjust formations, speed, and orientations
according to local conditions.  The agents were terrain aware and main-
tained a situation awareness picture from reports received across the net-
work during the battle.  They key finding in this paper is the validation of
this multiagent approach by comparing its mission effectiveness to that of
human planners.  In a tactical planning experiment, the multiagent sys-
tem showed dramatic improvement across all mission effectiveness mea-
sures when compared to forces that followed plans prepared by human
subjects.  Empowered by further development of agent architectures that
make tactical decisions with this level of performance, constructive simula-
tions will be more effective in several application areas.  They will be able
to better estimate the mission-level effects of different information pic-
tures, to provide intelligent and reactive automated forces to replace
human players, and to provide decision support during the planning and
execution phases of combat operations.
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Introduction

With the rising complexity of the modern battlefield, credible analy-
sis of the effects of command and control (C2) systems becomes
increasingly difficult.  The problem with analyzing these systems is
that none of them directly defeat the enemy.  Instead, they influence
the decision-making processes by which commanders at all levels
direct actions to defeat the enemy.  Traditional analysis tools have
difficulty modeling the human decision, so analysts have difficulty
analyzing the effects of C2 variables such as alternative network
structures or varying information quality.  One modeling approach
is to use human experts for command and control of forces in a con-
structive simulation.  However, man-in-the-loop experiments
require specialized hardware and software along with a cast of
trained decision makers.  Replication is time consuming.  There is a
modeling gap within constructive simulations where they cannot
model the knowledge, judgment, and decisions that translate battle-
field information into combat action (Kewley and Larimer, 2003,
10-14).  An alternative approach is to develop intelligent software
algorithms, or agents, to replicate human decision-making within
constructive simulations.  When these agents are presented with
information, the resulting decision and combat action will reflect
the quality of that information via mission level measures of effec-
tiveness.

The experiment described in this paper models tactical command-
ers as agents in a hierarchically organized multiagent system.  This
multiagent system draws its inspiration from existing research into
adaptive tactical command and control, control of complex systems,
and agent based models of land combat.  The multiagent architec-
ture assigns tactical control tasks to five different agents.  The plan-
ning agent uses a co-evolutionary genetic algorithm to assign
missions and general locations to individual units.  Each unit has a
route selection agent that uses a genetic algorithm to develop routes
for tactical movement.  A positioning agent uses a random search
technique to adjust unit positions in order to best accomplish
assigned missions.  The unit agent employs a fuzzy rule set and a
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fuzzy inference system to control unit speeds and formations.  The
vehicle agent uses a fuzzy inference system to adjust individual vehi-
cle speeds and orientations within the formation.  In a tactical com-
mand and control experiment, forces controlled by the multiagent
system performed better than forces that adhered to manually
developed routes and positions entered prior to the battle.

Supporting Research

Researchers studying complexity in organizations agree that busi-
ness organizations in today's complex world cannot survive by a
rigid set of bureaucratic controls.  They should instead form smaller
flexible, interacting, and adaptive “cells” or “patches.”  Organiza-
tions should manage the goals and objectives of these cells so that
they are in line with organizational goals (Lissack 1999, 110-124)
(Coleman 1999, 33-48).  Margaret Wheatley argues that self organi-
zation produces results by allowing adaptability and inspiring cre-
ativity in the face of a rapidly changing world (Wheatley, 2006).  A
number of researchers investigating tactical command and control
call for increased flexibility and adaptability on the battlefield.  The
notion of an “edge organization” offers a way to increase a unit’s
agility and effectiveness by moving decision-making and execution
capabilities away from centralized control centers and to the “edge”
of the organization, where it interfaces with its environment (Alberts
and Hayes 2003, 4-7).  This type of an organization is more likely to
thrive in a complex environment characterized by nonlinear and
collectivist dynamics, opportunities for self-organization, and
unpredictable cascading effects (Atkinson and Moffat 2005, 19-55).
Implementation of this vision requires an information-age approach
to command and control in which information is distributed
broadly, interactions are unconstrained, and decision rights are
pushed to the lowest level (Alberts and Hayes 2006, 73-113).  Writ-
ers from within the military ranks share in this call for agility and
adaptability.  The military decision making process used in tactical
planning doctrine focuses too much effort on the selection of a
course of action prior to the battle and fails to prepare decision
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makers for adaptive and flexible decisions during the fight (Shoffner
2000, 37-39).  The US Army Training and Doctrine Command
Analysis Center at White Sands Missile Range conducted a study
which found that dominant maneuver, “the multidimensional appli-
cation of information, engagement, and mobility capabilities to
position and employ widely dispersed joint air, land, sea and space
forces to accomplish the assigned operations tasks,” was effective for
small tactical forces.  This form of maneuver focuses on event-
driven actions by which friendly forces react and adapt to the devel-
oping situation (Barris, 1999).  Understanding these emerging chal-
lenges, the US Army has adopted its command and control
doctrine to encompass the concept of mission command, where
subordinate leaders exercise initiative within the framework of com-
mander’s intent, mission orders, and resources (Headquarters
Department of the Army, 2003, 1-17 – 1-19).  The multiagent sys-
tem presented in this paper introduces this type of information-
enabled adaptability and flexibility into the control of automated
forces.  

A multiagent system consists of a network of problem solving agents
that interact to solve problems that are beyond the capabilities and
knowledge of any one individual agent.  Research shows that these
systems have several general characteristics  (Sycara 1998, 79-92).
Each agent has a limited viewpoint and incomplete information
about the problem.  Data are decentralized, and computation is
asynchronous.  The agents in the system are often heterogeneous
and can be planning agents, which satisfy goals and objectives, or
reactive agents, which have no internal representation of their envi-
ronments and simply act upon stimuli in their present state.  The
designer of a multiagent system must consider, in addition to the
design of individual agents, assignment of tasks to those agents,
agent organization, and communication between agents.  Research-
ers in several domains have applied multiagent systems to the con-
trol of complex systems. Liu and Hsu used a hierarchical
organization of fuzzy control agents to manage traffic at stoplights
(Liu and Hsu, 2007, 4961-4966).  Feng et.al. used a hierarchical
organization of cooperative agents to synchronize a manufacturing
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system with and enterprise resource planning system (Feng et. al,
2007, 1047-1052).  The introduction of radio frequency identifica-
tion (RFID) provides a wealth of information to enable agent-based
control of industrial systems (Bratukhin and Treytl 2006, 1199-
1205).  

Within the military domain, multiagent systems have also been
applied to the control of simulated forces.  Researchers at Georgia
Institute of Technology and the Air Force Institute of Technology
applied genetic algorithms to the problem of search and attack for
swarms of unmanned aerial vehicles.  This work resulted in the evo-
lution of self-organizing behaviors for the swarm (Lamont and Price
2006, 1307-1315).  Stensrud et. al. used genetic algorithms to gen-
erate novel and effective opposing force tactics for a convoy training
simulation (Stensrud et. al., 2007).  Ludwig and Farley chose a
supervised learning approach called hierarchical dynamic scripting
for control of forces in a computer game (Ludwig and Farley, 2008).
Ekanayake and Pathirana used a multi-agent control system to con-
trol the pattern geometry of cluster bombs as they impact the earth
(Ekanayake and Pathirana, 2007, 471-476).  Within the maritime
domain, Beaumont and Chaib-draa (Beaumont and Chaib-draa,
2007, 373-384) and Randall (Randall, 2008) each used multi-agent
systems for planning and tactical tasks in maritime simulations.
The work presented in this paper also uses a multiagent system to
control simulated forces, and it extends existing research to address
the use of agents not only during simulation execution, but also to
develop the tactical plans formulated prior to the battle.  The use of
planning agents was previously published by the authors (Kewley
and Embrechts, 2001, 161-171).  Further research introduced real-
time decision agents and showed their applicability to the study of
command and control systems by assessing the value of information
(Kewley and Larimer, 2003, 10-14, 25-26) and the effectiveness of
centralized or decentralized command and control (Kewley, 2004,
926-930).  This paper further extends that work by combining the
planning and real-time decision agents in a multi-agent hierarchy.
It then compares the performance of these agents to human plan-
ners in a simulation experiment.
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Command and Control Agent Architecture

The aforementioned supporting research efforts are valuable
sources of insight for the command and control agent architecture
developed in this paper.  This multiagent system is appropriate for
control on a complex and unpredictable battlefield.  Inspired by the
“mission type orders” that power down authority and control on the
tactical battlefield, this architecture decomposes forces into a hierar-
chy and assigns decision agents to different levels in that hierarchy.
The high-level planning agent will not attempt to explicitly control
all subordinate units.  The planning agent’s pre-battle information
picture is more coarse than that of real-time agents.  It is terrain
aware, but it cannot consider all possible locations for subordinate
elements.  Its enemy picture considers the composition of enemy
forces and their general location on the map. It will give general
locations, goals, and flexibility distances to subordinate units.  These
subordinate units will consider with greater detail and precision the
local terrain, weapons, and enemy forces in order to adapt their
behavior (specific locations and routes) to maximize attainment of
their assigned goals.  The real-time agents search the terrain infor-
mation in detail for positions of advantage while considering up to
date locations of reported enemy units.

The experiment in this paper tests the capability of a networked and
cooperative group of command and control agents to improve tacti-
cal planning and execution.  This network consists of a planning
agent to develop the general scheme of maneuver used during the
battle.  Agent coordination and collaboration are relatively simple.
The planning agent serves as the coordinator in a centralized
scheme (Lin et. al., 2004, 631).  The scheme of maneuver consists of
unit positions, missions, and movement techniques along with a
scheme for fire support.  The planning agent also gives each unit a
flexibility distance that tells each subordinate unit agent how much
freedom it has to change unit positions.  The route selection agent
used by each unit develops a route to get to the assigned location.
The positioning agent adjusts assigned positions within the con-
straints of the assigned flexibility distance.  These real-time agents
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do not communicate directly with each other.  Instead, each agent
reads its situation awareness picture from a centrally managed com-
mon operational picture, enabling self-organization and some
degree of swarming behavior as they individually pursue the mis-
sions assigned by the planning agent within the current situational
context.  The unit agent controls unit speed and formations, and
the vehicle agent adjusts individual vehicle speeds, orientations, and
locations within those formations.  By this architecture, each vehicle
in the force has its position affected by up to five different coopera-
tive agents.  

The Planning Agent

This agent uses fuzzy genetic decision optimization and co-evolu-
tion (Kewley 2001, 161-171) to evolve a set of robust friendly
courses of action which may be expected to perform well against a
variety of enemy courses of action.  Fuzzy-genetic decision optimi-
zation (FGDO) solves complex problems which require concurrent
optimization of multiple objective criteria. It has three modules.
The first module is a co-evolutionary genetic algorithm (Mitchell
1996, 26-27) which varies tactical planning parameters in order to
maximize the overall performance. The second module is a con-
structive combat simulation model which evaluates the proposed
tactical plans against a set of enemy plans. The third module is the
fuzzy preference module.  A graphical user interface allows the user
to select the important combat outcomes and their order of satisfac-
tion.  These selections define a fuzzy inference system which aggre-
gates the outputs of the simulated battle into one overall fitness
value, which is then returned to the genetic algorithm.

Several characteristics of the planning problem make a genetic algo-
rithm an appropriate choice for a heuristic solution technique.  Sil-
ver gives an overview of heuristic solution methods (Silver, 2002).
The planning solution space is very large and complex, and meta-
heuristics are concerned with the avoidance of local minima.  The
challenge of metaheuristics is to appropriately represent the solution
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structure and constraints.  One challenge of metaheuristics such as
tabu search and simulated annealing is the appropriate definition of
a neighborhood within the tactical planning domain.  A genetic
algorithm is a population-based heuristic where a group of succes-
sive populations is evolved over a number of generations using the
genetic operations of selection (the selection of “parents” to evolve
new solutions), crossover (the generation of new solutions by com-
bining information from the parents), and mutation (the random
adaptation of elements of a new solution) (Goldberg, 1989).  A
genetic algorithm was chosen because the genome representation
was seen as more natural and tractable than the neighborhood rep-
resentation.  In addition, the population-based search naturally
enables parallel processing and co-evolution of competing friendly
and enemy plans.

The chromosome representation for the planning agent builds a
container chromosome from a complex set of sub-chromosomes.
The planning agent's chromosome contains five sub-chromosomes,
a fires sub-chromosome, a locations sub-chromosome, a flexibility
sub-chromosome, a movement technique sub-chromosome, and a
mission sub-chromosome.  Figure 1 shows a course of action chro-
mosome for a small force.  This chromosome will be referred to as
Plan A.  The first sub-chromosome is the fires sub-chromosome.  It
contains a randomly generated priority of fires object for each con-
tingency in the battle.  Plan A has two phases and three contingen-
cies.  Units execute Phase 1, Contingency 1 first.  Then, depending
upon enemy action, the units will execute either Contingency 1 or
Contingency 2 during Phase 2.  The remaining four sub-chromo-
somes each contain, in a linear arrangement, a single object to be
used by each unit during each battle contingency.  Plan A gives
orders to 4 units.  Since there are 3 contingencies, these four
remaining sub-chromosomes each have 12 objects arranged lin-
early.  The location object is an x,y coordinate pair which tells the
unit where to go.  The flexibility object is a distance on the uniform
interval between 0 and MAXDISTANCE, a parameter in the algo-
rithm.  This distance tells the unit how far it is allowed to stray from
the location given by the location chromosome.  The movement



KEWLEY & EMBRECHTS | Tactical Command and Control Agents    9

technique object gives the unit a fuzzy ordinal preference system
(Kewley 2000, 72-96) which defines the priority goals a unit should
seek during movement.  An artillery unit with limited ability to sur-
vive in a direct fire fight may execute an infiltrate movement tech-
nique, which prioritizes friendly survival and avoidance of enemy
contact.  On the other hand, a heavily armored tank platoon may
execute a movement to contact movement technique, which priori-
tizes seeking and engaging enemy forces.  The missions sub-chro-
mosome is similar to the movement technique sub-chromosome.
However, it gives each unit a fuzzy ordinal preference system which
defines priority goals a unit should seek when it arrives at its desti-
nation, as opposed to during movement.  

Figure 1’s Plan A shows an example chromosome representation of
a tactical plan.  During Phase 2, Contingency 2, the force places
indirect fires in direct support of Unit 3, and they fire destroy mis-
sions against enemy forces.  Unit 3 moves to grid coordinate 502,
113.  It will use the Movement to Contact movement technique
during movement, seeking contact with enemy forces.  When it
arrives at its location, it will execute an Attack by Fire mission.  This
mission will cause it to search a circle centered at coordinates 502,
113 with radius 9326 meters (the flexibility distance given by the
flexibility chromosome) for better positions that allow it to attack
and destroy enemy forces with direct fires.
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Figure 1. The plan chromosome for a tactical course of action con-
tains a fires sub-chromosome which assigns a fires object to each 
contingency.  It also contains sub-chromosomes which assign each 
unit, for each battle contingency, a destination, a flexibility distance, 
a movement technique, and a mission.

When a course of action chromosome performs genetic operators, it
simply performs those operations on each of its sub-chromosomes.
The probability of crossover applies only to the planning agent's
container chromosome, not the sub-chromosomes.  If a uniform
random draw on the [0,1] interval is less than the probability of
crossover, the container chromosome will execute crossover for all of
its sub-chromosomes.  When it performs crossover, it successively
executes crossover for each of the five sub-chromosomes.  Each sub-
chromosome performs single point crossover.  For example, the off-
springs’ fires sub-chromosomes are formed by crossing the parents’
fires sub-chromosomes.  The offsprings’ location sub-chromosomes
are formed by crossing the parents’ location sub-chromosomes, and
so forth.  It executes initialization and mutation in a similar fashion.  

The Route Selection Agent

A course of action developed by the planning agent gives each unit
a location for each phase of the battle, but instead of giving a route,
it gives a movement technique—movement to contact, assault,
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recon, or infiltrate.  These movement techniques define the objec-
tives a unit should seek as it develops its route.  For example, the
assault movement technique seeks speed and enemy destruction,
while the recon technique seeks enemy acquisition as opposed to
destruction, with little emphasis on speed.

A genetic algorithm evolves successive populations of routes.  The
route planning genetic algorithm used by the route selection agent
was adapted from the work of Hocaoglu and Sanderson (Hocaoglu
and Sanderson 1997, 81-104) and Xiao et. al. (Xiao et al. 1997, 18-
28).  The genetic algorithm represents a route as a variable length
list of points through which a unit must pass while moving from its
current destination to its final destination.  Each point is an x,y
coordinate pair in the continuous domain.  In this representation, a
unit’s route may have from 0 (move straight to destination) to any
number of waypoints evolved by the algorithm.  The algorithm
adds a point to a route by inserting a knot point along one of the
route legs.  The point insertion algorithm first chooses one of the
route legs at random.  In figure 2, the algorithm has randomly
selected leg 2 from the three possible route legs.  It then randomly
chooses an interim point along that leg at which it will insert the
knot point.  It then must determine a knot distance.  The knot dis-
tance is a random value drawn from a normal distribution with a
mean of zero and a standard deviation of 1/2 the length of leg 2.  If
the knot distance is positive, then a knot point is inserted perpendic-
ularly to one side of the leg.  If the knot distance is negative, the
know point is inserted perpendicularly to the other side of the leg.
In figure 2, the knot point has been inserted perpendicular to leg 2
and knot distance from the interim point.  The knot point is
inserted in the route between points 1 and 2 to give a new route
shown by the dotted line.
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Figure 2.  The process of adding a random point to a route.  The knot 
point is inserted between points 1 and 2 to generate the new route 
shown by the dotted line.

Upon initialization, the route genome draws the initial number of
points from a truncated exponential distribution with a mean of 1.
It is most likely to have 0 points, next most likely to have 1 point,
and so forth.  For all initial points, the genome adds a random point
to the route using the algorithm shown in figure 2.  Upon crossover,
two routes will perform single point crossover in order to form two
offspring for the next generation.  Upon mutation, the route
genome will successively test each of its points for mutation.  If a
mutation trial is successful, one of three things will happen to the
point, each with equal probability.  The genome may remove the
mutated point, the genome may add a random point to the route, or
the genome may remove the mutated point and add a random point
to the route.

A route evaluation model evaluates each route in the population
given the current enemy situation, competing weapons capabilities,
and surrounding terrain.  It discretely steps along the route at given
intervals and develops estimates for expected percentage of enemy
units seen, expected number of enemy vehicles destroyed, expected
friendly vehicles destroyed, and movement time.  Based on its move-
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Figure 3.  Illustration of the route planning agent in action.  Darker 
areas represent high ground, white dots represent forested areas, 
and large white squares represent reported enemy positions.  The 
agent applied the movement to contact movement technique to move 
one advancing friendly platoon (blue_LAV1) down the left side of the 
sector (route shown as left white line) through reported enemy units.  
It applied the infiltrate movement technique to move the rightmost 
advancing platoon (blue_LAV2) behind a ridgeline and through trees 
in order to avoid enemy contact.
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ment technique, the unit uses a fuzzy ordinal preference system
which aggregates these route statistics into an overall route prefer-
ence, used as a fitness value by the genetic algorithm.  The route
agent uses different ordinal preference schemes for each of the
agent's five different movement techniques.  As a unit moves, the
route selection agent re-evaluates its current route at fixed time
intervals.  If the genetic algorithm finds a better route, it will replace
the current route.  This allows a unit to adjust to the changing
enemy situation as it moves.  Figure 3 shows the route planning
agent in action.

The Positioning Agent

A unit may adjust not only its route, but also its final destination,
bounded by the flexibility distance given by the planning agent.  In
a manner similar to the one used by the route selection agent to
evaluate routes for a given movement technique, the positioning
agent evaluates candidate positions for a mission given by the plan-
ning agent—attack by fire, support by fire, defend, recon, delay, or
hide.  A mission is a set of objectives sought by the unit when it
reaches its destination.  For example, both the attack by fire and
support by fire missions seek enemy destruction.  However, the sup-
port by fire mission also places greater emphasis on staying close to
the location given by the planning agent, so that it does not get too
far away from the unit whose movement it supports.  Since the
search for a single position is a much simpler search task than the
search for a route, the positioning agent uses a simple uniform ran-
dom search as opposed to a genetic algorithm.  At constant inter-
vals, the agent uniformly selects a set of random points from within
a circle.  The center and radius of the circle are determined by the
location and flexibility distance given to the unit by the planning
agent.  A position evaluation model takes into account the sur-
rounding terrain and enemy forces to give estimates for percentage
of enemy units acquired, expected number of enemy vehicles
destroyed, and expected number of friendly vehicles destroyed from
each selected location.  It also considers the distance from its
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assigned location.  Based on its mission, the agent aggregates these
criteria using a fuzzy ordinal preference system to get an overall
score for each location.  The agent will reposition the unit to the
best location found.  

The Unit Agent

This agent determines the speed, formation, and spacing of a unit
based upon whether the unit is suppressed, the level of enemy dan-
ger, terrain restriction, and the direction to the most dangerous
enemy.  The rules are implemented using linguistic variables
(Zadeh, 1975, 199-249) and a Mamdani fuzzy inference system
(Mamdani, 1975, 1-15).  This technique allows mathematical inter-
pretation and execution of rules which also make sense to a human
decision maker.  The rules strongly suggest consequents (the THEN
clause) for strong matches to their antecedent (the IF clause).  They
weakly suggest the actions of their consequents if there is a weak
match to the antecedent.  This structure allows a fairly concise and
readable rule set to determine a potentially large set of potential
outcomes.  The rules below are two of those used by the unit agent:

[IF Terrain_Restriction is not very_high THEN Spacing is med AND 
Column is very_low AND Wedge is high AND Line is med AND 
Speed is med]

[IF Suppression is greater_than_or_equal_to high OR 
Enemy_Danger is greater_than_or_equal_to high THEN Spacing is 
very_high AND Column is very_low AND Wedge is high AND Line is 
med AND Speed is very_high]

The Vehicle Agent

This agent is similar to the unit agent, but it controls individual
vehicles as opposed to units.  This agent considers the level of
enemy danger, whether or not it is firing, the distance the vehicle is
from its position in the formation, and the direction to the most
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dangerous enemy to adjust an individual vehicle's orientation and
speed.  For example, a vehicle will tend to slow down to fire and ori-
ent toward the most dangerous enemy.  However, as it gets further
from its position in the formation, it will increase speed and main-
tain orientation in order to get its position back.  The rules below
are two of those used by the vehicle agent:

[IF Enemy_Danger is greater_than_or_equal_to med_high AND 
Firing is  very_low AND Dist_To_Goal is greater_than_or_equal_to 
high THEN Direction is straight AND Speed is very_high]

[IF Enemy_Danger is greater_than_or_equal_to med_high AND 
Firing is very_high AND Dist_To_Goal is less_than high AND 
Enemy_Flank_Dir is greater_than_or_equal_to right THEN Direction 
is right AND Speed is very_low]

The first rule causes a vehicle in imminent danger but not firing at
the enemy to move quickly along its line of march to get out of the
danger area.  The second rule causes a vehicle in danger from the
right and returning fire to slow down and orient toward the enemy,
exposing frontal armor as opposed to flank armor.

Collaborative Command and Control Agent Experiment

One possible application of agent technology is for the control of
automated forces during training or analysis simulations.  Current
simulations used in the Army training and analysis communities
require the scenario developer to generate and input the tactical
plan used by the enemy.  The automated forces react to local con-
tact with battle drills, but they do not use their collective situation
awareness to adjust to enemy action.  The agent-based architecture
used in this experiment provides this capability.  This experiment
hypothesizes that within a constructive simulation, units controlled
by conventional, manually developed, routes and positions will have
the same level of success in tactical operations as units controlled by
a multiagent system.  The alternative hypothesis is that the perfor-
mance of units controlled by the multiagent system and the perfor-
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mance of manually controlled units are not equal.  This experiment
defines performance (fitness) as the ability of the course of action to
satisfy the prioritized goals given by the higher commander in the
form of a fuzzy ordinal preference system.

Scenario

The planning task was to generate an offensive course of action for
a future mounted combat scenario in hilly and partially wooded ter-
rain. The friendly forces, just complete with resupply operations in
Assembly Area Gold in the north (see figure 4), were given an
immediate mission to continue the attack 15 kilometers to the south
to destroy defending enemy forces and seize the key terrain on
Objective Rich.  The enemy mission required them to destroy
friendly forces and prevent them from gaining Objective Rich.

Experimental Design

The subjects for this experiment developed the manual tactical
plans used for comparison against the multiagent system.  They
were junior and senior cadets in a Decision Support Systems class.
They are certainly not experts when it comes to tactical planning.
The seniors had a course in combined arms operations, so they
have at least been exposed to the doctrinal principles behind tactical
planning for combined arms forces, but the juniors have only expe-
rienced planning at the infantry platoon level.  If the system can be
shown to improve upon their performance, one can conclude that
this multiagent system outperforms inexperienced planners.  This is
a strong conclusion, given the infancy of this technology.

The experiment used a 2 x 2 factorial design.  The first factor was
the source of the tactical plan for the overall force, manual or auto-
mated (using the planning agent).  The second factor was the ability
of forces to react to the developing situation on the battlefield.  The
baseline forces strictly adhered to the routes and positions given in
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the tactical plan, and the intelligent forces used four different intelli-
gent agents (route selection agent, positioning agent, unit agent, and
vehicle agent) to adapt unit and vehicle locations on the battlefield.

Table 1. Experimental design for collaborative command and control 
agent experiment.

Genetic Evolution of Automated Plans

The experiment's first step was to allow the planning agent to evolve
a set of distinctly different, high performing, and robust friendly
plans using co-evolution against a combination of two fixed enemy
plans, developed by human planners, and four parallel populations
of adapting enemy plans, which co-evolved in an effort to defeat the
friendly plans.  During co-evolution, the automated forces in the
combat simulation used the entire network of intelligent agents to
control movements on the battlefield.  This use of intelligent forces
greatly increased the computation time required to evaluate a
course of action.

An additional complication is the increased dimensionality intro-
duced by the complex course of action representation used in this
problem.  The plan chromosome used in the experiment scenario
had two phases, one phase per contingency, and 7 units, giving a
total of 14 different orders and two priority of fires objects.  The
complexity of the fires object is calculated first.  There are two types
of support and 3 mission types.  The priority of fires list was limited

Group Size Plan Development Routes and Positions Comment 

1 12 Automated Static Automated plans with static execution.

2 12 Automated Adaptive Automated plans with execution by 

collaborative route, position, unit, and 

vehicle agents. 

3 12 Manual Static Automated plans with static execution 

4 12 Manual Adaptive Manual plans with execution by 

collaborative route, position, unit, and 

vehicle agents. 
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to a maximum of four units.  The complexity cf  of the fires object is
given by:

The orders object is even more complex.  The friendly area of oper-
ations, discretized into a grid of points separated by 300 meters, has
1253 possible locations to which a unit could move in one phase.
Although the flexibility distance is continuous, one may define “dif-
ferent” flexibility distances as those that are different by 300 meters.
Since flexibility ranges from 0 to 10000, there are 33 different flexi-
bility distances a unit could have.  There are 5 different movement
techniques and 6 different missions.  The complexity co of an order
is given by:

Finally, the complexity cp of a tactical plan is all possible combina-
tions of 2 fires objects and 14 orders:

This is clearly a difficult search problem, even with this small tacti-
cal plan.  An added problem is that plan evaluation takes 25-40 sec-
onds to give a stochastic result.  Despite these formidable
difficulties, it is possible for a genetic algorithm to search this com-
plex space to give acceptable answers.  The genetic algorithm used
the parameters shown in table 2.  These parameters were chosen,
based on experience in previous experiments, considering trade-offs
between speed and performance, and between global exploration
and local exploitation.
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Table 2. Co-evolutionary genetic algorithm parameters.

The algorithm used a tournament selector with 3 members in the
tournament.  In order to select parents to perform crossover and
mutation, the tournament selector randomly selected 3 members of
the previous population and compared fitness values.  The one with
the highest value was retained as a parent.  It replaced all members
and repeated to select the second parent.

Using these parameters, the algorithm generated 4800 different
friendly and enemy courses of action for evaluation.  Each friendly
course of action fought against two fixed enemy courses of action
and 4 evolving enemy courses of action.  This scheme required res-
olution of 28800 battles at 25-40 seconds each.  A parallel imple-
mentation of the genetic algorithm greatly reduced the time needed
for evolution.  Seventeen different networked workstations estab-
lished themselves as battle servers to evaluate individual courses of
action, and one client workstation managed the overall evolution.
For each generation, the client workstation sent scenario informa-
tion to each server.  It then used genetic operators to evolve the
friendly and enemy courses of action for the current generation.  It
sent friendly/enemy course of action pairs over network sockets to
the battle servers for evaluation and waited for the servers to return
fitness values for both the friendly and enemy courses of action.
When all evaluations were done, the client workstation used the fit-
ness information to evolve the next generation and repeated the
process.  This evolution took 16.5 hours to complete.  It is interest-
ing to note that the tactics evolved by this scheme make military

Parameter Value Comment 

Number of Populations 4 4 populations of friendly courses of action evolved independently 

Migration Rate 0 No information shared between the 4 populations 

Population Size 20 20 members of each population 

Replacement Rate 60% Replace the worst 60% of each population for each generation 

Mutation Rate 0.10 Perform mutation 10% of the time 

Crossover Rate 0.90 Perform crossover 90% of the time 

Number of generations 60 Evolve for 60 generations 
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Figure 4.  This sample automated course of action sent the 
unmanned aerial vehicle (UAV) to recon at the observation post in 
mid-sector and sent the attack helicopters on a movement to contact 
along axis Air Attack to destroy enemy forces in sector and on the 
objective.  Indirect fires also aid in destruction of forces found by the 
UAV and attack helicopters.  Two LAV platoons infiltrate along Axis 
Infiltrate avoiding enemy contact to get to Objective Rich, where they 
each execute defend missions.  In phase 2, the scout section and 
robot move up to the objective area.  This plan makes good use of the 
killing abilities of the attack helicopters  and indirect fires while 
placing the maneuver forces at minimum risk until they get to the 
objective.
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sense.  The example course of action developed by the planning
agent (Figure 4) employs friendly strengths to find and destroy
enemy forces while minimizing exposure to enemy direct and indi-
rect fire systems.

Experimental Results

Analysis of the experimental results shows a dramatic improvement
in force performance using the command and control agents.  In
fact, group two (see table 3), which made use of all agents, showed,
on average, a 40% reduction in enemy forces on the objective
accompanied by a 120% increase in friendly forces on the objective
when compared to group 3, which used no agents.  Group 2 had
similar improvements in total losses for friendly and enemy forces.
This resulted in a 154% improvement in overall fitness.

Table 3. Average performance of forces in each experimental group.  

Group 2, which made use of all intelligent agents, showed a marked 
performance increase over group 3, which used no agents.

Plan Data Real Time Agents 

no yes 

auto % Red Destroyed       Group 1     68.40 Group 2     74.31 

 % Blue Destroyed 24.83 18.92 

 Red in Obj_Rich 7.83 6.63 

 Blue in Obj_Rich 8.38 8.71 

 Fitness 0.42 0.49 

manual % Red Destroyed Group 3     55.44 Group 4     64.93 

 % Blue Destroyed 38.54 41.49 

 Red in Obj_Rich 10.92 7.92 

 Blue in Obj_Rich 3.92 3.58 

 Fitness 0.19 0.24 
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Visualization (Figure 5) and statistical analysis of variance (Table 4)
of the overall performance (fitness) of the units in each experimental
group show that performance using the planning agent is greatly
improved and statistically significant at a high level of confidence.
The effect of real time agents yields an average improvement in fit-
ness, but the improvement is not statistically significant.  However,
real-time agents are best suited for looking for positions of advan-
tage in killing the enemy.  Analysis of variance for the effect of real
time agents on enemy losses (Table 5) shows a 12% increase in
enemy losses when real time agents are used, and this effect is statis-
tically significant with a p value of 0.022.  In summary, the architec-
ture of intelligent command and control agents produced a
significant improvement in combat performance when compared to
forces that followed a manually developed plan, failing to adapt to
the changing battlefield situation.

Table 4. Analysis of variance for overall performance (fitness) of a 
combat action.

The use of the planning agent (Plan) is statistically significant while 
the use of the route, position, unit, and vehicle agents (Real Time 
Agents) is not.

Analysis Of Variance: Effects Tests (Fitness) 

Source Sum-of-Squares df Mean-Square F-Ratio P-Value

Plan 0.70 1 0.70 22.70 <.0001

Real Time Agents 0.04 1 0.04 1.23 0.27262

Plan*Real Time Agent 0.00 1 0.00 0.04 0.84434

Error 1.35 44 0.03

Total 2.09 47
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Table 5. Analysis of variance for the percentage of enemy forces 
destroyed.

The use of the planning agent (Plan) and the use of the route, posi-
tion, unit, and vehicle agents (Real Time Agents)  are both statisti-
cally significant effects.

Figure 5.  A box and scatter plot of fitness scores for forces in each 
experimental group.  The terms MANUAL and AUTO refer to manual 
planning or automated planning using the planning agent.  The 
terms YES and NO refer to whether or not the unit was adaptively 
controlled by the route, position, unit, and vehicle agents during the 
fight.  Means for each group are connected by a solid line.  The intel-
ligent agents improve the mean performance of automated forces.

Conclusions and Future Work

This experiment is evidence that a multiagent system composed of
computationally intelligent planning and real-time command and
control agents can significantly improve mission performance for
automated forces.  Although, the planning agent requires extensive

Analysis of Variance: Effects Tests (% Red Destroyed) 

Source              Sum-of-Squares df Mean-Square F-Ratio P-Value

Plan 1496.67 1 1496.67 11.81 0.0013

Real Time Agents 710.94 1 710.94 5.61 0.0223

Plan*Real Time Agent 38.63 1 38.63 0.30 0.58364

Error 5574.94 44 126.70

Total 7821.18 47    
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computation time, processors with ten times the speed of those used
in this experiment are currently available.  This time can be further
reduced by adding up to 120 parallel processors for fitness evalua-
tion, potentially accessed from widely distributed locations in a net-
work centric environment.  With the addition of these resources,
overall computation time can be reduced to under one hour, but
there is still a need for extensive research into understanding,
improving, and refining the algorithm to reduce computation time
while maintaining performance.  Overall, these results provide a
convincing argument for continued research and development to
improve this multiagent command and control system to a level
where it may be implemented within constructive simulations or
decision support systems.  

The research in this paper leaves many opportunities for future
work.  Each of the command and control agents developed still has
room for improvement.  Different search strategies may be applied
to the planning agent, route selection agent, and positioning agent.
The unit agent and vehicle agent may experiment with different
rules sets, or high performance rules could be learned during the
simulation.  Also, different agent architectures and coordination
mechanisms may decompose the tactical command and control
tasks in different ways.  Finally, research should be done to integrate
these agents into existing combat simulations and to address the ver-
ification and validation issues that arise with their use.  Once this
capability is realized, military analysts will be better equipped to
analyze the effects of C2 systems on military battles.  Decision
agents, acting within the simulation as military commanders, will
use the information provided by candidate C2 systems to make
decisions that direct forces to locations where they can achieve mili-
tary objectives.  Not only will analysts be able to measure the effects
of C2 systems on combat outcomes, they may also be able to
observe the tactics evolved by the multiagent system in order to gain
insights about how to fight on the information enabled battlefield.



26     The International C2 Journal | Vol 2, No 2

References

Alberts, David S., and Richard E. Hayes. 2003. Power to the Edge. Washing-
ton, D.C:  Department of Defense Command and Control Research 
Program.

Alberts, David S., and Richard E. Hayes. 2006. Understanding Command and 
Control. Washington, D.C.:  Department of Defense Command and 
Control Research Program.

Atkinson, Simon Reay, and James Moffat. 2005. The Agile Organization. 
Washington, D.C:  Department of Defense Command and Control 
Research Program.

Barris, Benjamin J., 1999.  FBCB2 Dominant Maneuver Analysis. In presenta-
tion at 38th Annual US Army Operations Research Symposium, 
October 1999, at Fort Lee, Virginia. 

Beaumont, Patrick and Brahim Chaib-draa, 2007. Multiagent Coordina-
tion Techniques for Complex Environments: The Case of a Fleet of 
Combat Ships. IEEE Transactions on Systems, Man, and Cybernetics – Part 
C:  Applications and Reviews, pp. 373-385, vol. 37, no. 3, May 2007.

Bratukhin, Aleksey, and Albert Treytl. 2006. Applicability of RFID and 
Agent-Based Control for Production Identification in Distributed Pro-
duction. In Proceedings of IEEE Conference on Emerging Technologies in Fac-
tory Automation: 1199-1205.

Coleman, Henry J. Jr., 1999. What Enables Self-Organizing Behavior in 
Business.  Emergence, 1(1): 33-48.

Ekanayake, Samitha W. and Pubudu N Pathirana, 2007. Smart Cluster 
Bombs – Control of Multi-agent Systems for Military Applications.  
Proceedings of the 2007 IEEE International Conference on Networking, Sensing 
and Control, pp. 471-476, London, UK, 15-17 April 2007.

Goldberg, David E., 1989.  Genetic Algorithms in Search, Optimization, and 
Machine Learning. Reading, MA: Addison Wesley.



KEWLEY & EMBRECHTS | Tactical Command and Control Agents    27

Feng, Quibin, A. Bratukhin, A. Treytl, and T. Sauter, 2007. A Flexible 
Multi-Agent System Architecture for Plant Automation, Industrial 
Informatics, 2007 5th IEEE International Conference on, vol.2, no., pp.1047-
1052, 23-27 June 2007

Headquarters Department of the Army. 2003. Mission Command:  Command 
and Control of Army Forces. Washington, D.C.: Headquarters Depart-
ment of the Army.

Hocaoglu, Cem and Arthur C. Sanderson, 1997. Multimodal Function 
Optimization Using Minimal Representation Size Clustering and its 
Application to Planning Multipaths. Evolutionary Computation, 5(1): 81-
104.

Liu, Hsing-Han and Pau-Lo Hsu, 2006. Design and Simulation of Adap-
tive Fuzzy Control on the Traffic Network, SICE-ICASE, 2006. Inter-
national Joint Conference, vol., no., pp.4961-4966, Oct. 2006

Kewley, Robert H., 2000.  Computational Intelligence for Support of Military Tac-
tical Decision Making.  PhD Thesis, Rensselaer Polytechnic Institute.

Kewley, R. H. 2004. Agent-based model of Auftragstaktik: self organiza-
tion in command and control of future combat forces. In Proceedings of 
the 36th Conference on Winter Simulation, pp. 926-930, Washington, D.C., 
December 05-08, 2004.

Kewley, Robert H. and Mark J. Embrechts, 2001.  A Computational Mili-
tary Tactical Planning System.  IEEE Transactions on Systems, Man, and 
Cybernetics, Special Issue:  Fusion of Soft Computing and Hard Computing in 
Industrial Applications, 32(2): 161-171.

Kewley, Robert H. and Larry. Larimer. 2003. An Agent-¨Based-Modeling 
Approach to Quantifying the Value of Battlefield Information. Phalanx 
V 36(2): 10-14, 25-26.

Lamont, Gary B., and Ian C. Price. 2006. GA Directed Self-Organized 
Search and Attack UAV Swarms. Proceedings of the 2006 Winter Simula-
tion Conference, 1307-1315.



28     The International C2 Journal | Vol 2, No 2

Lin, Donghui, Cheng Zhu, Peng Ding, and Huanye Sheng, 2004.  Sup-
porting Intercultural Collaboration: An Agent Coordination Work-
flow Model.  In IEEE International Conference on Services Computing, pp. 
629-632.

Lissack, Michael R., 1999. Complexity: The Science, its Vocabulary, and 
its Relation to Organizations. Emergence, 1(1): 110-124.

Ludwig, Jeremy and Arthur Farley, 2008.  Using Hierarchical Dynamic 
Scripting to Create Adaptive Adversaries.  Proceedings of the 2008 Behav-
ior Representation in Modeling and Simulation (BRIMS) Conference.  Availavle 
at www.sisostds.org.

Mamdani, E. H. and S. Assilian, 1975. An Experiment in Linguistic Syn-
thesis with a Fuzzy Logic Controller. International Journal of Man-
Machine Studies, 7:1-13.

Mitchell, Melanie, 1996.  An Introduction to Genetic Algorithms.  MIT Press.

Silver, Edward A., 2002.  An Overview of Heuristic Solution Methods.  
Haskayne School of Business, University of Calgary Working Paper 
2002-15.

Stensrud, Brian S., Douglas A. Reece, Nicholas Piegdon, and Annie S. 
Wu, 2007.  Asymmetric Adversary Tactics for Synthetic Training 
Environments.  Proceedings of the 2007 Behavior Representation in Modeling 
and Simulation (BRIMS) Conference.  Availavle at www.sisostds.org. 

Sycara, Katia P., 1998.  Multiagent Systems.  AI Magazine, 19(2):  79-92.

Xiao, Jing, Zbigniew Michalwicz, Lixin Zhang, and Krzysztof Trojan-
owski. Adaptive Evolutionary Planner/Navigator for Mobile Robots. 
IEEE Transactions on Evolutionary Computation, 1(1):18-28.

Zadeh, Lofti A., 1975. The Concept of a Linguistic Variable and its Appli-
cation to Approximate Reasoning, Parts I-III. Information Sciences, 8/9: 
199-249 v8 (part I), 301-357 v8 (part II),  43-80 v9 (part III).


